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Chest radiographs are widely used in the medical domain and at present, chest X-radiation particularly
plays an important role in the diagnosis of medical conditions such as pneumonia and COVID-19
disease. The recent developments of deep learning techniques led to a promising performance in
medical image classification and prediction tasks. With the availability of chest X-ray datasets and
emerging trends in data engineering techniques, there is a growth in recent related publications.
Recently, there have been only a few survey papers that addressed chest X-ray classification using
deep learning techniques. However, they lack the analysis of the trends of recent studies. This
systematic review paper explores and provides a comprehensive analysis of the related studies that
have used deep learning techniques to analyze chest X-ray images. We present the state-of-the-art
deep learning based pneumonia and COVID-19 detection solutions, trends in recent studies, publicly
available datasets, guidance to follow a deep learning process, challenges and potential future research
directions in this domain. The discoveries and the conclusions of the reviewed work have been
organized in a way that researchers and developers working in the same domain can use this work
to support them in taking decisions on their research.
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1. Introduction

Respiratory diseases such as pneumonia is a common lung
infection condition and COVID-19 disease has become a life-
threatening disease that emerged in later 2019 and has been
impacted the entire world. Pneumonia is a fatal lower respiratory
infection under the acute diseases category and has been reported
to be a major cause of deaths around the world. In 2017, it was
accountable for 15% of child deaths that happened during the
year [1]. In addition, older people have a high risk of getting pneu-
monia that leads to critical conditions. However, if diagnosed and
treated early, the associated risk can be minimized [2]. Most types
of pneumonia infect the large regions of the lungs, while COVID-
19 begins with the small areas and uses the lungs’ immune
cells to spread. At present, with the recent rapid and massive
spread of COVID-19 [3], many researchers around the globe have
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committed intensive efforts into the research and development
of chest X-ray analysis to detect these lung infections conditions.
In general clinical practices, the radiologists look for the white
spots called infiltrates in the lungs to identify an infection to
diagnose pneumonia using chest radiographs [4]. Moreover, this
analysis will help the radiologists to determine whether the pa-
tient has any complications related to pneumonia like the pleu-
ral effusions which are known as the excess fluid surrounding
the lungs [4]. In the COVID-19 diagnosis, characteristics like the
airspace opacities of the chest radiographs are analyzed by the
radiologists to identify the infection of COVID-19 disease [5].
Chest X-ray image analysis is a cost-effective and non-invasive
approach [6], however, the interpretation of chest X-rays requires
expert knowledge as distinguishing abnormalities is a challenging
task [7]. Thus, computer-aided solutions can be used to identify
lung infection conditions by analyzing chest X-ray images as
a support tool for an effective and efficient diagnosis process
by reducing human error and effort. At present, computational
methods play a significant role in decision making across several
directions in the field of medical image analysis [8-12]. The
recent advancement in data engineering approaches, particularly
deep learning (DL) techniques have shown promising perfor-
mance in identifying patterns and classifying medical images
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Table 1
Summary of the related surveys.

Survey Considerations
papers Selection  Taxonomy DL models Datasets Evaluation
strategy metrics

[13] X X X X -

[14] - - X X -

[16] - - X X X

[17] - - X X -

[18] - - X X -

[19] X - X X -

including chest X-ray images. The state-of-the-art DL techniques
are mainly trained on data and learn the features effectively,
in comparison to the traditional approaches that require hand-
designed features with the knowledge of the domain. With the
insight of identifying the lung infection conditions efficiently
and effectively, recent studies have addressed chest X-ray image
classification using DL techniques.

There are several survey papers published in this field that
have summarized and organized the recent research work adding
understanding to the status quo in the domain and evaluating the
trends, developing a standpoint in the domain [13-15]. Still, there
is a requirement not addressed by these studies to assess and
summarize the related work and available resources on lung dis-
ease classification with chest X-ray images, to provide accessible
evidence to decision-makers. This systematic review addresses
these requirements by evaluating and summarizing the findings
of the reviewed work. This work explores the trends in recent
studies, analyzes the state-of-the-art DL models architectures,
provides taxonomies and summaries based on the observations.
This systematic review also explores public datasets that have
been used in the reviewed work and gives an insight into the
use of different datasets. We provide a comprehensive analysis
of the related chest X-ray classification studies considering the
Pneumonia, COVID-19 and normal conditions. Finally, we suggest
guidance to the readers on selecting the suitable models and tech-
niques under different considerations. The work also discusses
the open challenges and presents several possible future direc-
tions. Developers and researchers can be beneficial from these
findings to make decisions on selecting the most appropriate DL
techniques, available datasets and possible future directions for
research and development.

1.1. Related work

Many research and development based solutions have been
addressed chest X-ray image classification using DL techniques to
support the diagnosis process of pneumonia and COVID-19 condi-
tions. Table 1 summarizes the available survey papers published
during 2020-2021. Although, all the papers have addressed the
use of different DL models and related datasets, to the best of our
knowledge, only two surveys have presented a comprehensive
review in terms of DL [13,14]. Most of them have not addressed
aspects such as loss calculation, optimization, evaluation metrics,
the evolution of techniques and model selection guidelines, which
we have addressed in this systematic review.

Generally, a survey uses published literature of a selected
domain to summarize and present an overview knowledge of
the domain. On the other hand, a systematic review identifies,
evaluates, and summarizes the findings to provide a compre-
hensive synthesis of the considered studies [20]. Some of the
survey papers given in Table 1 have discussed DL approaches
for Pneumonia detection [18,19], while some have focused on
COVID-19 detection and have explored the use of DL in medical
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image processing as well as computational intelligence tech-
niques to detect COVID-19 conditions [16,17]. However, most of
these survey papers have focused only on one disease [16,21].
On the other hand, a survey conducted by Kieu et al. [13] has
discussed four diseases namely COVID-19, pneumonia, lung can-
cer, and tuberculosis using X-ray, CT scan, histopathology images
and sputum smear microscopy. Furthermore, Calli et al. [14]
have explored only chest X-ray analysis considering several lung
diseases like COVID-19, Pneumonia and Tuberculosis. All referred
survey papers have explored different DL algorithms and datasets
that are used in the literature. Moreover, the surveys done by
Kieu et al. [13] and Tilve et al. [ 18] have discussed pre-processing
techniques and the surveys conducted by Kieu et al. [13] and
Calli et al. [14] have addressed data augmentation techniques
as well. Only Bhattacharya et al. [16] have discussed evaluation
techniques in their survey, while Kieu et al. [ 13] have presented a
taxonomy of the different techniques used in studies. The existing
studies have not addressed the aspects such as loss function,
optimization, evolution and guidance. Therefore, this study has
considered those aspects.

In this systematic review, we mainly discuss the state-of-the-
art DL approaches presented in the related literature together
with the widely used datasets. Further, this study presents the
evolution of trends of the related DL techniques and guide future
researchers and developers to make better decisions in achieving
promising results. For instance as the main contributions of our
study, Table 3 states the recent related development studies that
have used multi-models and ensemble models. Table 4 shows
the use of different DL architectures in related studies with their
accuracy. Here, we discuss the used optimizers, loss functions
and give an insight into the percentage studies that have used
different DL models. Table 5 explores the widely used publicly
available datasets and shows their usage percentage by different
studies. Moreover, Table 6, Table 7 and Table 8 summarize the
studies on chest X-ray classification with Pneumonia, COVID-
19 and both Pneumonia and COVID-19 conditions, respectively.
Here, we comprehensively analyze the applied DL technique, loss
function, optimization function and the obtained performance
values. Also, we give an insight into the percentage of articles that
have shown promising results. Fig. 10 provides selection criteria
to consider the appropriate DL models for medical image clas-
sification from a practical point of view. Finally, we discuss the
open challenges and possible future research and development
directions.

1.2. Scope of the systematic review

This systematic review considers 68 related studies that have
applied DL techniques to classify chest X-ray images with pneu-
monia and COVID-19 conditions. This includes 24 conference
papers and 44 journal articles that were published between the
years 2017 and 2021. Table 2 states the statistics of the studies
considered for this systematic review. Given the timeliness of
the solutions, we have selected studies that have focused on
normal Pneumonia and COVID-19 Pneumonia detection, so that
medical experts or other concerned parties can use this study
to better understand the literature. Among many DL techniques,
CNNs have proved to be highly effective in the implementation of
medical image analysis frameworks. Therefore, we focus on the
applicability of CNNs with different approaches such as building
CNNs from scratch [22], applying transfer learning with popular
models [23] and using ensembles of multiple models [24]. This
systematic review provides a comprehensive list of datasets with
COVID-19 and Pneumonia images and analyzes the state-of-the-
art techniques used in the literature in each phase in the DL
process.
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Table 2
Summary of the considered studies.

Chest X-ray classification using DL Conference Journal
techniques papers articles
Studies on pneumonia 18 7
Studies on COVID-19 3 19
Studies on both pneumonia and 3 18
COVID-19

Furthermore, this study aims to address the following research
questions in the context of classifying chest X-ray images to
identify the lung infection conditions due to Pneumonia and
COVID-19. Therefore, this work can be utilized by the researchers
and developers to obtain a detailed understanding of the evolu-
tion of the DL techniques, their features and effectiveness in the
area of chest X-ray image classification.

RQ1: What are the trends of recent studies?

RQ2: What are the state-of-the-art DL based models and archi-
tectures?

RQ3: What are the potential publicly available datasets?

RQ4: What are the aspects addressed by the related studies?

RQ5: How to select a suitable DL approach?

RQ6: What are the open challenges and possible future research
directions?

The paper is structured as indicated in Fig. 1 described as
follows. Section 1 states the systematic review motivation, main
contributions of this research with the scope. Section 2 explains
the method followed during the systematic review based on the
PRISMA model and the evolution of DL architectures used in the
literature. Section 3 describes the DL approaches based on CNNs,
transfer learning and other widely used DL architectures. Sec-
tion 4 presents the publicly available datasets that contain chest
X-ray images of pneumonia and COVID-19 conditions. Section 5
elaborates and critically analyzes the existing studies that applied
DL for chest X-ray classification in focusing on pneumonia and
COVID-19 diseases. In addition, we suggest general criteria to
select techniques during the DL process based on different con-
ditions and discusses the open challenges with future potential
research directions. Finally, Section 6 concludes the study.

2. Methods
2.1. Overview

This systematic review explores, summarizes and evaluates
the findings in the literature relevant to the domain of lung
disease classification with chest X-ray images. This study pro-
vides the readers with comprehensive taxonomies and sum-
maries on different techniques, models and datasets used by the
reviewed articles. Moreover, it suggests descriptive guidance to
select suitable DL approaches using the observations made from
the reviewed work as the basis. Further, the authors discuss the
open challenges and show specific research directions in the
domain that researchers can work on using the knowledge shared
through this systematic review. The PRISMA guideline proposed
by Tricco et al. [25] was used for conducting the scoping review.

2.2. Data acquisition

The Preferred Reporting for Systematic Reviews and Meta-
Analysis Extension for Scoping Reviews (PRISMA-ScR) guideline
proposed by Tricco et al. [25] was used to conduct this sys-
tematic review. We have selected the articles, summarized the
findings and identified the existing research gaps based on the
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Fig. 2. The PRISMA-ScR protocol algorithm as a numerical flow diagram.

recommendations presented by this framework. The research
scope is defined following the provided checklist of the items
that should be reported. The PRISMA-ScR flow diagram is used
to explain the search and scoping processes depicted in Fig. 2.
The diagram depicts the flow of information through the several
stages of the systematic review and concludes the number of
articles identified, screened, eligible and eventually included.
Identification Criteria: Following the PRISMA model, we
searched and identified the relevant studies on Pneumonia and
COVID-19 detection with chest X-rays using DL techniques. In this
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systematic review, our search strategy was based on the studies
from several databases namely Google Scholar, IEEE Xplore, ACM
Digital Library, ScienceDirect and Springer. The main reason be-
hind using these databases was the high chance of finding a large
number of relevant studies. Moreover, these databases are widely
used for systematic reviews and include most of the reputed
sources.

We used the advanced search feature in each of these data-
bases, with keywords like “Pneumonia”, “COVID-19”, “Chest
X-ray” and “Deep learning” combined with operations like “AND”
and “OR” for the search query. Initially, we used * AllField:(pneu-
monia OR covid) AND AllField:(chest X-ray)” as the search strat-
egy. In order to narrow down the search results further, we used
additional keywords such as “deep learning” and “detection”. Ad-
ditionally, the study selection criteria were based on the available
filtering options like custom year range, for which we selected
from 2017 to 2021, study areas, and articles written in the English
language, to narrow down the search scope.

Screening criteria: The screening phase records the number
of identified articles and makes the selection process transparent
by reporting on decisions made during the systematic review.
Mainly we have removed the duplicates. The screening process
is mainly done by the second, third and fourth authors. First,
we checked the title and abstract of the articles and identified
the content covered in the sections and main points discussed
in the manuscript. The contradiction opinions were resolved by
analyzing those articles by the first author.

Eligibility criteria: The studies obtained through the identifi-
cation stage were discarded based on irrelevant titles, irrelevant
contents and unrelated techniques. Also, we have excluded the
research papers that were not written in the English language.
The second, third and fourth authors have divided the articles
equally among them and performed the data extraction process.
The accuracy and consistency were checked by the first author.

Inclusion criteria: In this final stage, the remaining studies af-
ter the filtering mechanisms of the eligibility stage were included
in this review.

2.3. Evolution of techniques

Fig. 3 shows a quantitative view of the use of different DL mod-
els in the related literature between the years 2017-2021. We
have considered the research papers indexed in Google Scholar
for the models in the related studies to give an overview. Our
search strategy is based on “chest X-ray” + “<model_name>"
+ “Pneumonia” OR “covid”. The considered data can have slight
flaws due to the associated noise of the search query. For instance,
an article can appear for a given DL technique even though the
method is discussed in their background literature instead of the
methodology. However, we assume the flaws are equally dis-
tributed over the search results for all the considered techniques.
Thus, the audience can get a comparative view of the usage of the
main techniques used in this area.

As shown in Fig. 3, it is visible that the usage of all the models
kept increasing each year irrespective of the type. The noticeable
differences in growth in 2019 can be concluded to be due to
the emergence of the COVID-19 pandemic. Until the year 2019,
both ResNet [26] and DenseNet [27] have shown similar growth,
but from 2019 to 2021, ResNet has shown a drastic increase in
popularity, exceeding all other models. The moderate growth of
ResNet at the beginning could be because it was introduced only
in 2016 [26], and due to its effectiveness, ResNet may have gained
more popularity later on. Although SqueezeNet was introduced
in the same year [28] as ResNet, it has gained less popularity
than ResNet. Although VGG [29] and U-Net models have shown
somewhat similar growth during 2017-2019, after the year 2019,
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Fig. 3. Trend of DL techniques used in chest X-ray based Pneumonia and
COVID-19 detection.

VGG [29] shows a rapid increase in its growth and manages to
gain popularity at the level of DenseNet.

The three models MobileNet [30], Xception [31] and Cap-
sNet [32], which were introduced in 2017, were not used that
much at the beginning probably because they were not known
widely, but have gained popularity after 2019 with the emer-
gence of studies for COVID-19 detection. Both MobileNet and
Xception show remarkable growth compared to CapsNet, where
Xception almost reaches the level of U-Net which has been
around since 2015 [33]. EfficientNet, which was introduced quite
recently in 2019 [34], has gained considerably high popularity
within a short period. Most models that were introduced within
the considered period were not used in the introduced year. Over-
all, it can be said that the interest in research in both Pneumonia
and COVID-19 detection with all these models have been steadily
increased.

3. Deep learning approaches

Deep learning techniques, particularly convolutional neural
networks (CNNs) have become popular in the domain of medical
image analysis [35]. The ability of DL techniques to learn complex
features, store knowledge and reuse for related models has made
it possible to implement highly accurate frameworks [36-39].
This section discusses different DL methods used in the literature
to classify chest X-ray images.

A taxonomy on chest X-ray analysis using DL is depicted in
Fig. 4. The work reviewed in this systematic review can be classi-
fied based on the employment of image segmentation, usage of an
existing DL architecture or built-from-scratch model, application
of transfer learning and the presentation of an ensemble model.
These key attributes are discussed in the following sections.

3.1. Convolutional Neural Network based related studies

CNN has become a widely used DL technique in medical im-
age classification due to the characteristics such as the ability
to learn complex features with a comparatively less number of
parameters and the benefits gained by sharing of weights [37].
Several studies in the literature have developed different CNN
architectures from scratch for both Pneumonia and COVID-19
classification. For instance, the study by Khoiriyah et al. [40],
has presented a CNN architecture comprising of three convolu-
tional layers and three fully connected layers for the detection
of Pneumonia in chest radiography as presented in Fig. 5. Us-
ing ADAM optimizer they have achieved an accuracy of 83.38%
with augmentation. Moreover, a newly developed CNN with two
convolutional layers and two fully connected layers with ADAM
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Fig. 4. Taxonomy of chest X-ray classification using deep learning.

optimizer was used by Bhatt et al. [22] for chest X-ray based
Pneumonia analysis. While using a shallower CNN, they have
shown an accuracy of 96.18%, which is much higher than the
accuracy obtained by Khoiriyah et al. [40].

The CNNs developed for chest X-ray classification for diag-
nosing COVID-19 are also keep emerging. In [41], a CNN built
from scratch comprising convolutional layers and max-pooling
layers followed by fully connected layers has been developed
in a study by Padma and Kumari [41], which has shown an
accuracy of 98.3%. Studies have also been done using CNN built
from scratch for three-class classification to detect both Pneu-
monia and COVID-19 to be able to distinguish among them. For
instance, Ahmed et al. [42] have presented a CNN model with
five convolutional layers, each followed by batch normalization
and max-pooling layers, and a dropout where the final layer is
fully connected. They have used RMSProp as the optimizer and
showed an overall accuracy of 90.64% in detecting COVID-19 and
Pneumonia.

Another study done by Kieu et al. [43] has proposed a Multi-
CNN model with three CNNs, CNN-128F, CNN-64L, and CNN-64R
that were built from scratch to classify chest X-ray images. Each
CNN component returns whether the input image is normal or
abnormal with a probability value. A fusion rule is applied to
these probability values to obtain the final result. Moreover,
Wang et al. [44] have presented a tailored architecture named
COVID-Net, using depth-wise separable convolution to detect
COVID-19 and Pneumonia. They have shown 93.3% accuracy for
multi-class classification with the ADAM optimizer. Accordingly,
the CNNs have provided state-of-the-art solutions for detecting
both Pneumonia and COVID-19 with relatively high accuracy.
However, training a CNN from scratch can be computationally
expensive and requires more data.

3.2. Transfer learning based related studies

Transfer learning is a popular method used in computer vision
where the knowledge acquired from one problem domain is
transferred to another similar domain [39]. Transfer learning is
used by a variety of studies in DL to create frameworks [45]
and models for important analyses while reducing the learning
cost. In many studies for chest radiography image classification,
pre-trained models are used to achieve better performance. In-
stead of developing a model from scratch, a model previously
trained on another problem is used as the baseline. For instance,
Irfan et al. [23] have carried out a deep transfer learning with
ResNet-50, InceptionV3 and DenseNet121 models separately for
Pneumonia classification using chest X-ray images. They have
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achieved higher accuracy using transfer learning compared to
training from the scratch for each model.

Generally, most of the CNN architectures are pre-trained on
the popular dataset ImageNet [46], which is a collection of about
1.2 million training images belonging to 1000 categories. Among
many studies, these pre-trained models on ImageNet have been
used in studies for Pneumonia classification [24], Pneumonia and
COVID-19 detection [10] and the detection of viral Pneumonia,
bacterial Pneumonia and COVID-19 [47] from chest radiographs.
Moreover, CIFAR [48] and MNIST [49] are some of the other
datasets used in pre-training.

Transfer learning can be used in two ways, as a feature extrac-
tor and for fine-tuning [39]. When used as a feature extractor,
the last fully connected layer is replaced and all the previous
layers in the model are frozen to be re-used with the pre-trained
weights. Here, the model is used as a fixed feature extractor
to take advantage of the learned features from a larger dataset
in a similar domain. Only the last classification layer is trained
according to the features extracted from previous layers [50]. This
method is commonly used when the datasets are small. Several
studies have been used transfer learning in the chest X-ray image
classification process [9,10,51].

Panwar et al. [52] have used VGG-16 as a feature extractor
with the ImageNet weights. In the fine-tuning approach, only the
initial layers are frozen and the top-level layers are retrained to
learn the specific features while generic features are extracted in
initial layers and can be applied to other tasks [53]. This method
is commonly used when there is a large training dataset available.
The study presented by Choudhuri et al. [54] has used a pre-
trained VGG-16 model after fine-tuning the top layers to classify
chest radiography as Pneumonia or COVID-19. In their study, the
CNN built from scratch has shown an accuracy of 96.6%, whereas
the VGG-16 based model has achieved a higher accuracy of 98.3%.
Although transfer learning has many advantages there are some
issues as well. The model needs to be pre-trained on a similar
dataset to achieve full performance and a lower learning rate
should be chosen to efficiently use pre-trained weights.

3.3. Ensemble model based related studies

Ensemble classification uses a combination of multiple models
to generate accurate results and to improve the robustness as
the ensemble reduces the dispersion of the predictions. In this
approach, the predictions of each core model are aggregated to
generate the final result [36]. The study by Hashmi et al. [24] have
used a weighted classifier to calculate the final prediction from
an ensemble of the 5 models DenseNet121, ResNet18, Xception,
MobileNetV2, and InceptionV3 for the binary classification for
Pneumonia. They have used Eq. (1) and Eq. (2), where, W}, denotes
the weight corresponding to each model and Py is the prediction
matrix for the two classes. The cross-entropy loss which is also
known as the log loss is indicated in Eq. (3). Here, the dataset size
is denoted by N and the probability of a given image affected by
Pneumonia is denoted by p where y denotes the true label, where
y=1 indicate the positive label. As shown in Fig. 6, the output of
each model is assigned a weight where the final output is calcu-
lated using the weighted classifier. They have used the Stochastic
Gradient Descent (SGD) as the optimizer with cross-entropy loss
to achieve a final accuracy of 98.43%.

PyW; + PoWy + PsW5 + -+ - + PWy = P (1)

Wi+ W+ W5+ +We=1 (2)
1 n

Loss = —— > |y x log(p) + (1 —y) x log(1 — p) (3)

i=1
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Compared to the weighted classifier method, Chouhan et al. [9]
have presented an ensemble model where the final output is
taken as the majority vote. They have used a prediction vector
from which the maximum number of predictions (normal or
Pneumonia) from the five pre-trained models AlexNet,
DenseNet121, InceptionV3, ResNet18 and GoogleNet is taken as
the output as depicted in Fig. 7. The final output is calculated
only from the majority vote of the outputs of each model with-
out assigning any weights. Compared to the model developed
by Hashmi et al. [24], this model has achieved an accuracy of
96.4%. In both studies, DenseNet121 and ResNet18 models have
contributed to the ensemble classification model.

Another study conducted by Pant et al. [55], has used an
ensemble model using a U-Net based on ResNet-34 and another
U-Net based on EfficientNet-B4. This has achieved an accuracy of
90% with binary cross-entropy loss, Dice loss using the Ranger
optimizer. Further, Hilmizen et al. [56] have experimented with
DenseNet121, MobileNet, Xception, InceptionV3, ResNet-50 and
VGG-16 models separately and concatenating several models.
They have tested models concatenating ResNet-50 and VGG-16,
then DenseNet121 and MobileNet, and another model which is
a concatenation of Xception and InceptionV3. Out of all these
concatenations, the concatenation of ResNet-50 and VGG-16 has
achieved the highest accuracy of 99.87% using Adam optimizer
with categorical cross-entropy.

Table 3 states several related studies that have used a com-
bination of different models. The column TL represents whether
the given study is based on transfer learning or not. Here, some
of the studies have used an ensemble model using several mod-
els [9,24,55,57,58], while the other studies have concatenated
several models to produce the final model [56,59,60]. It can be
seen that many studies have shown a preference to use ResNet,
InceptionV3 and DenseNet to achieve promising results.

3.4. Segmentation based related studies

Image segmentation is a method of dividing digital images
into multiple fragments [61]. It produces a collection of segments
comprising the entire image. In the medical domain, image seg-
mentation has been made the image analysis easier [16]. In a
related study, Narayanan et al. [62] have used transfer learning
with AlexNet, ResNet, VGG-16 and InceptionV3 models to detect
pneumonia conditions using chest X-ray images. Their approach
has shown a high performance with the InceptionV3 model with
99% of training accuracy and 98.9% of validation accuracy. Addi-
tionally, they have proposed a novel CNN architecture to further
analyze the chest X-rays to detect whether the diagnosed Pneu-
monia condition is due to bacterial or viral effect. They have
used image segmentation as a pre-processing step which is con-
ducted using a U-Net architecture. They have trained the U-Net
architecture solely with true lung masks provided by Shenzhen
Dataset [63,64]. Their U-Net contains encoding and decoding for
three stages. For all the convolutional and pooling operations they
have used 3 x 3 and 2 x 2 kernels, while for deconvolution and
up-pooling operations they have used bilinear interpolation. They
have discovered that the shape of the lung plays an important
role in deciding whether bacterial pneumonia or viral pneumonia.
The proposed CNN model without lung segmentation has shown
96.7% training accuracy and 96% of validation accuracy, while the
same CNN model with lung segmentation has achieved 98.5%
training accuracy and 98.3% validation accuracy for detecting
bacterial vs viral Pneumonia, showing the performance increase
due to the segmentation.
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Table 3

Summary of related studies with several models.
Study VGG ResNet InceptionV3 MobileNetV2 DenseNet CapsNet U-Net EfficientNet SqueezeNet AlexNet GoogleNet Xception TL Acc.%
[56] X X - - - - - - - - - Y 99.87
[9] - X X - X - - - X - Y 964
[24] - X X X - - - - - X Y 9843
571 - X X - X - - - - - - Y 9162
[58] X X X - - - - - - - - Y 9549
[59] X - - - - - - - - - Y 92
[55] - X - - - - - - - - N 90
[60] - - - X - - - X - - - N 99.27

Another study by Lalonde [65] has proposed a convolutional
-deconvolutional capsule network architecture for object seg-
mentation, which is an extension of the original capsule network
introduced by [32]. They have expanded the capsule network
by introducing a new concept, ‘deconvolutional capsules’ and
modifying the dynamic routing mechanism in the original net-
work. This novel architecture has improved the results of lung
segmentation while reducing the number of parameters required
for the task. They have compared the accuracy of their model
for lung segmentation with other existing networks using the
Dice coefficient and have achieved a relatively high accuracy of
98.47%. Similarly, Bonheur et al. [66], have proposed a seman-
tic segmentation network called ‘Matwo-CapsNet’, which uses
the concepts of capsules behind the original Capsule Network.
They have introduced several extensions to the original Cap-
snet [32], which include using matrix encoding instead of vector
encoding, combining pose information in each capsule with the
matrix encoding, using a dual-routing mechanism instead of dy-
namic routing and finally extending the SegCaps proposed by
Lalonde [65] to multi-label segmentation.

3.5. Other neural architecture based related studies

There are several architectures based on deep neural net-
works that have been used for image classification. This section
discusses the related studies based on these widely used latest
architectures. Table 4 shows a summary of related studies with
their DL models and obtained accuracy.

VGG: VGG is a classic network architecture for image classifi-
cation introduced by Simon and Zisserman in 2014 [94]. Among
the related studies on Pneumonia diagnosis from chest radiog-
raphy, several approaches have used VGG-16 model with Adam
optimizer [52,54,67]. The study by Militante et al. [67], have
carried out four class classifications for COVID-19, bacterial Pneu-
monia, viral Pneumonia, and normal and showed an accuracy of
95% by training the entire model without using transfer learning.
In contrast, Choudhuri et al. [54], have used VGG-16 architecture
on ImageNet pre-trained weights and fine-tuned the top layers
for the classification of three classes for COVID-19, Pneumonia,
or normal. Here, the transfer learning with the VGG-16 model
has improved the accuracy of the initially proposed CNN from
96.6% to 98.3%. Another study by Ferreira et al. [68], have used
VGG-16 with fully-connected layers replaced by customized mul-
tilayer perceptron (MLP), whereas Hilmizen et al. [56], have used
VGG-16 concatenating with ResNet-50 for detecting COVID-19
conditions using chest X-ray images.

ResNet: ResNet is a modern CNN architecture introduced by
He et al. in 2016 [26]. Youssef et al. have used the ResNet-
50 architecture in their study for Pneumonia classification [73].
They have added two more convolutional layers with several
dropouts and dense layers to the output layer of the ResNet-50
model, achieving an accuracy of 97.65%. A study by Farooq and
Hafeez [47], has carried out four class classifications for COVID-
19, bacterial Pneumonia, viral Pneumonia and normal classes.
They have presented a model called COVID-ResNet based on

the ResNet-50 model with the use of pre-trained weights on
ImageNet. They have used Adam optimizer achieving 96.23% ac-
curacy. Moreover, Irfan et al. [23], have carried out a deep transfer
learning with ResNet-50, Inception V3 and DenseNet121 models
separately, to classify chest X-ray images for Pneumonia, where
the ResNet-50 model has achieved better accuracy compared to
Inception V3.

Inception V3: Inception is a computational and resource-
efficient model introduced by Szegedy et al. in 2015 [95] where
the evolution of this model resulted in multiple versions such as
Inception V1, Inception V2, Inception V3 and Inception-ResNet.
However, many studies have been used the Inception V3 model,
which was introduced by Szegedy et al. in 2016 together with In-
ception V2 [96]. A study for binary classification between COVID-
19 and normal classes conducted by Hilmizen et al. [56], has
used Inception V3 concatenated with the Xception model achiev-
ing an accuracy of 98.8%. Several other studies, [9] and [24],
have also used Inception V3 for their ensemble models with
other pre-trained models for the binary classification of Pneu-
monia and normal classes, and showed an accuracy of 96.4%
and 98.43%, respectively. Moreover, Chouhan et al. [9], have
presented a model that concatenated Inception V3 with AlexNet,
DenseNet121, ResNet18 and GooglLeNet with Adam optimizer.
Further, the study by Hashmi et al. [24] has used DenseNet121,
ResNet18, Xception and MobileNetV2 as the other concatenated
models while using SGD as their optimizer, signifying its better
generalization compared to other adaptive optimizers. In both
studies, the cross-entropy loss has been used to calculate the loss.

MobileNet: MobileNet is a lightweight CNN architecture com-
pared to other existing models and was introduced by Howard
et al. in 2017 [30]. MobileNet architecture has several versions
such as MobileNetV1, MobileNetV2 and MobileNetV3. Many stud-
ies have used MobileNetV2 which was introduced by Sandler
et al. in 2018 [97]. A study by Tobias et al. [80], for Pneumonia
classification with chest X-ray images, has used the MobileNetV2
pre-trained model for its advantageous formulation of bottleneck
layers. Hu et al. [81], have used MobileNetV2 architecture for
faster and efficient chest radiography classification for binary
classes as Pneumonia or normal, same as Tobias et al. [80], re-
sulting in 93.4% accuracy. Another study has used MobileNetV2
based model to classify chest X-rays as Pneumonia, COVID-19
or Normal [84]. They have shown an accuracy of 98.65% and an
average recall of 98.15% using a modified architecture by adding
three layers namely global average pooling layer, dropout layer
and dense layer. A study carried out by Apostolopoulos and Mpe-
siana [10] has used MobileNetV2 for multi-class classification for
COVID-19, Pneumonia or normal by achieving a 94.72% accuracy.

DenseNet: DenseNet is a deep network introduced by Huang
et al. in 2017 [27]. Rajpurkar et al. [85] have used the DenseNet-
121 model for their CNN named ChexNet, which outputs the
probability of having Pneumonia in a chest X-ray image and a
heat-map that localizes the areas of the image that are most
indicative of the disease. This model is extended to detect 14
different thoracic diseases including Pneumonia with promising
performance for the detection of 14 classes. Moreover, Chouhan
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Table 4

Summary of related studies with widely used DL techniques.
Study VGG ResNet InceptionV3 MobileNetV2 DenseNet Caps Net U-Net EfficientNet SqueezeNet TL Accuracy’%
[67] X - - - - - - - - N 95
[52] X - - - - - - - - Y 88.10
[54] X - - - - - - - - Y 98.3
[68] X - - - - - - - Y 97.4
[69] X - - - - - - - - Y 87
[70] X - - - - - - - - Y 96.3
[71] X - - - - - - - N 93.1
[72] X - - - - - - - - N 97.36
[73] - X - - - - - - - N 97.65
[47] - X - - - - - - - Y 96.23
[74] X - - - X - - - - N 90, 90
[23] - - - - X - - - - Y 76
[75] - - - - X - - - - Y 98.45, 98.32
[76] - X - - - - - - - Y 98.18
[77] - X - - - - - - N 93.6
[78] - X - - - - - - - N 95.33
[79] - X - - - - - - Y 92
[51] - - X - - - - - - Y 90.1
[80] - - - X - - - - - N 90
[81] - - - X - - - - - N 93.4
[10] - - - X - - - - - Y 94.72
[82] - - - X - - - - - Y 99.1
[83] - - - X - - - - - N 98.6
[84] - - - X - - - - - N 98.65
[85] - - - - X - - - - N 76.80
[86] - - - - X - - - Y 80.02
[87] - - - - - X - - - N 84.22
[88] - - - - - X - - - Y 98.3
[62] - - - - - - X - - N 97.8
[38] - - - - - - - X - Y 96.70
[89] - - - - - - - X - Y 93.9
[90] - - - - - - - X - Y 93.48
[91] - - - - - - - - X Y 98.26
[92] - - - - - - - - X Y 90.95
[93] - X - - - - - - - Y 719

et al. [9] and Hashmi et al. [24], have also used DenseNet121 as
one of the models in the ensemble model. A study for Pneumonia
classification by Irfan et al. [23], which was carried out a deep
transfer learning with ResNet-50, Inception V3 and DenseNet121
models separately, has achieved the highest accuracy from
DenseNet121. Varshani et al. [86] have also tried out different
classification models like VGG-16, XCeption, ResNet-50, Dense-
Net121, DenseNet169 with different classifiers and have achieved
the high results (AUC of 0.8002) from DenseNet169 with Support
Vector Machine (SVM) as the classifier after parameter tuning.

CapsNet: Capsule network (CapsNet) introduced by Sabour
et al. in 2017 [32] is an alternative introduced to overcome the
limitations associated with CNNs such as the missing of small
details in the images due to the max-pooling, that transfer im-
portant information between layers [87] and the requirement of
large datasets to be trained to achieve high accuracy. A study
conducted by Toraman et al. [87], as depicted in Fig. 8, has used
CapsNet with four convolutional layers instead of one, unlike
in the original CapsNet to have a more effective feature map.
These layers are followed by a LabelCaps layer consisting of 16D
capsules for both two and three classes. With this model, they
have experimented for the two classes COVID, and no findings as
well as for the three classes COVID, Pneumonia and no findings
achieving the accuracy of 97.04%, 94.57%, respectively. Moreover,
Afshar et al. [88] have made use of CapsNet with four con-
volutional layers and three Capsule layers and achieved 98.3%
accuracy with pre-training and 95.7% accuracy without transfer
learning approach.

U-Net: U-Net model, which is introduced by Ronneberger
et al. in 2015 [33], is a model that can be applied for biomed-
ical segmentation problems and considered to performs well in
various biomedical segmentation applications with only a few
annotated images [98]. A study by Pant et al. [55] have used

two models, a U-Net model based on ResNet-34 and another U-
Net model based on EfficientNet-B4 separately, and ensembled
together where the data is simultaneously passed through both
models. Ranger optimizer is used with binary cross-entropy loss
(BCE) and Dice loss due to its better performance even with
imbalanced data. The U-Net model based on EfficientNet-B4 has
achieved the highest accuracy, precision, and F1-score whereas
the ensemble of the two models has achieved the highest recall.
A study conducted by Narayanan et al. [62], has applied a U-
Net architecture to implement a lung segmentation algorithm to
enhance their model performance. Further, Rahman et al. [99],
have presented an architecture adapted from U-Net to generate
lung field segmentation. They have evaluated the results of their
segmentation using Dice coefficient and Intersection-Over-Union
which have yielded the values 94.21% and 91.37%, respectively.
EfficientNet: EfficientNet is a family of models, introduced
by Tan and Le in 2019 [34]. Luz et al. [89] have used Effi-
cientNet BO-B5, MobileNet, MobileNetV2, VGG-16, and VGG-19
with transfer learning for multi-class classification of Pneumonia,
COVID-19 and normal classes. They were able to obtain higher
performance in the EfficientNet B4 model, with an accuracy of
93.9%, a sensitivity of 96.8% and a positive prediction of 100%.
Another study for multi-class classification by Marques et al. [38]
has used the EfficientNet B4 model achieving 96.70% accuracy.
In a study carried out for the binary classification for COVID-19,
Nigam et al. [90] have tried out several models and have achieved
the highest accuracy of 93.48% for the EfficientNet model.
SqueezeNet: Following the objective of identifying a small
CNN with few parameters that can still preserve accuracies achi-
eved by other similar architectures, Iandola et al. introduced
SqueezeNet in 2016 [28]. Ucar et al. [91], have used a SqueezeNet
based model named as COVIDiagnosis-Net for multi-class classi-
fication to detect COVID-19 and Pneumonia using Bayesian op-
timizer which was able to achieve a higher accuracy value of
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Fig. 8. Representation of a Capsule Net architecture by Toraman et al. [87].

98.3%. SqueezeNet is also used by Akpinar et al. [92], for binary
classification using Adam optimizer achieving an accuracy of
90.95%.

Considering the studies mentioned in Table 4 it can be seen
that VGG, ResNet, MobileNet and DenseNet models have been
used by many of the studies. The most frequently used model
is VGG. As a percentage, 26.5% of the studies have used the
VGG model and 20.6% studies have used ResNet, while MobileNet
and DenseNet each has separately been used by 14.7% of the
studies considered for this systematic review. These studies have
obtained a mean accuracy value of 93.62% with VGG, 92.13%
with ResNet, 95.16% with MobileNet, and 84.25% with DenseNet.
Moreover, the models U-Net, CapsNet, SqueezeNet, and Incep-
tionV3 seem to be less popular among the works that have
been considered in this systematic review, while the rest of the
models have been used by a considerable number of studies. The
least frequently used model is InceptionV3, which has a usage
percentage of 2.9%, while CapsNet, U-Net, and SqueezeNet models
are used with a percentage of 5.9%.

Accordingly, as stated in Table 4, it can be seen that many
studies have tended to use transfer learning. As a percentage
61.8% of the studies mentioned in the table have used transfer
learning in their model, while the rest have not used transfer
learning. Another fact to be noticed is that the VGG model is
mostly used with transfer learning compared to other studies. As
indicated in the reviewed studies, the use of transfer learning can
be due to several reasons such as usage of small datasets [54],
need to achieve better performance [23] and the need to improve
the training time [69]. However, the mean accuracy value of the
studies that have used transfer learning is 92.2%, while the mean
accuracy of the studies that have not used transfer learning is
92.5%. This analysis indicates that both methods have been able to
produce promising results based on the considered dataset, used
DL model and the hyperparameter tuning.

It should be noted that some of the studies have experimented
with several models indicating the accuracy values obtained from
each of the experimented models. When considering such studies,
only the model with the highest accuracy value was included in
this table. For instance, Hemdan et al. [74] have achieved the
same accuracy for both models VGG and DenseNet separately.
Moreover, Chauhan et al. [75], have achieved 98.45% accuracy for
normal class and 98.32% accuracy for COVID-19 class.

Apart from the discussed learning models, several other mod-
els have been used in the reviewed studies with different datasets
as shown in Table 5. Among other studies, Ozturk et al. [124],
have presented a DarkNet-19 based model named DarkCovidNet
with high accuracy of 98.08%. Further, the work presented by
Nigam et al. [90] and Khan et al. [106] have used the Xception
model in their research and have gained accuracy of 85.03% and
95%, respectively.

4. Public datasets

DL is a way of processing large datasets to extract the im-
portant features and provide classifications and predictions. High
quality training datasets play a significant role in the field of
DL. Generally, to obtain better classification accuracy the dataset

COVID -19

Pneumonia

Normal

Fig. 9. Sample of each class of the chest X-ray.

should be sufficiently large to train the DL models, unbiased, ac-
cessible and taken from a real-world problem domain of interest.
Table 5 states widely used publicly available datasets.

Fig. 9 displays a sample of each class of the chest X-ray images
namely normal, Pneumonia and COVID-19 subjects. As summa-
rized in Table 5, many studies that detect Pneumonia have used
datasets such as Chest X-ray Images (Pneumonia) [112], Large
Dataset of Labeled Optical Coherence Tomography (OCT) [100],
and Chest X-ray14 [118]. The Chest X-ray Images (Pneumonia)
dataset was collected from Guangzhou Women and Children’s
Medical Center, Guangzhou and has been graded by two experts.
The Chest X-ray14 dataset has 14 classes of Thorax diseases
including Pneumonia.

Among the reviewed studies, 62.7% of the studies were based
on only a single dataset, while the remaining 37.3% of studies
have used multiple or combined datasets, supporting generaliz-
ability. Considering the usage of the available public datasets, the
highest number of studies have used the first public COVID-19
image dataset named COVID Chestxray Dataset [104], which is
a percentage of 29.5% out of the reviewed papers. The second
most used dataset is Chest X-ray Images (Pneumonia) [112], with
a percentage of 22.5%. The datasets such as Augmented COVID-
19 X-ray Images Dataset [123], COVID-19 Patients Lungs X-ray
Images 10000 [117], CoronaHack - Chest X-ray-Dataset [122]
have used by approximately 1.4% of the reviewed studies. The
reason for the limited use of these datasets could be due to the
small number of images. Furthermore, relatively a few studies
have used the Mendeley Augmented COVID-19 X-ray Images
Dataset [123], as it contains augmented data.

5. Discussion and lessons learned
5.1. Comparison of related studies

This section discusses the chest X-ray classification studies
based on DL techniques in three categories of lung infection
diseases. Table 6, Table 7 and Table 8 summarize the studies on
chest X-ray classification that have considered Pneumonia con-
ditions only, COVID-19 conditions only and both Pneumonia and
COVID-19 conditions, respectively. We have stated the applied DL
technique, loss function, optimization function and the obtained
performance values. The abbreviations used in the table data
are as follows: Categorical Cross-entropy (CCE), Siamese Con-
volutional Network (SCN), Binary Cross-entropy (BCE), Stochas-
tic gradient descent (SGD), Multi-objective Adaptive Differential
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Dataset name Images Disease Related studies
Large Dataset of Labeled Optical 5856 Pneumonia [22,24,51,71,101-103]
Coherence Tomography (OCT)
[100]
COVID Chestxray Dataset [104] 646 COVID-19, Pneumonia [10,41,54,57,58,60,67,70,72,74—
78,82,87,93,105-108]
COVID19 Radiography Dataset 21,165 COVID-19,Viral Pneumonia, [42,54,60,103,108,111]
[109,110] Lung Opacity
Chest X-ray Images (Pneumonia) 5863 Virus and Bacterial [9,40,57,58,62,68,75,78,80,81,
[112] Pneumonia 105,106,113-116]
Kaggle COVID-19 Patients Lungs X 100 COVID-19 [42]
Ray Images 10000 [117]
Chest X-ray14 (latest version of 112,120 Pneumonia Pathology [23,70,76,81,85,87,92,93,119]
chest X-ray8) [118] classes
CheXpert [120] 224,316 Pneumonia [23,57]
COVID-19 X rays [121] 95 COVID-19 [10,59]
COVIDx [44] 13,975 Bacterial and Viral [44,47,72,79,89]
Pneumonia, COVID-19
CoronaHack - Chest X-ray-Dataset 5933 COVID-19 [56]
[122]
Mendeley Augmented COVID-19 1824 COVID-19 [67]

X-ray Images Dataset [123]

Evolution (MADE), Forward Positive Rate (FPR), Area Under the
Receiver Operating Characteristics curve (AUROC), Intersection
over Union (IoU), Mean Squared Error (MSE), Accuracy (Acc),
Precision (P), Recall (R), Sensitivity (Sn), Specificity (Sp), Mul-
tilayer Perceptron (MLP), Normal (N), COVID-19 (C), COVID-19
sensitivity (Sec), COVID-19 positive prediction (+P¢), fallout =
FP/(FN + TP), miss rate = FN/(FN + TP), S-dice = 2TP/(2TP + FP
+ FN), and Jaccard similarity = TP/(TP + FP + FN).

Table 6 shows that most of the related studies have used
existing DL architectures instead of CNN built from scratch. For
instance, 44% of the studies indicated in Table 6 have developed
their own CNN architecture, while the rest have used existing DL
architectures. Some of the studies have built an ensemble model
using several existing architectures. Most of these ensemble mod-
els have used variations of the ResNet model like ResNet18,
ResNet-34, ResNet-50 and ResNet101 [9,24,55,125]. DenseNet121
and InceptionV3 models have also been used in several ensemble
models [9,24]. These ensemble models have reached more than
90% accuracy. For example, the study by Hashmi et al. [24] have
achieved a higher accuracy value of 98.43%. Their ensemble model
was developed using ResNet18, DenseNet121, InceptionV3, Xcep-
tion and MobileNetV2 architectures. Therefore, it is observable
that the use of an ensemble model can result in high accuracy
values in the reviewed studies.

Other studies have used a single existing model or a CNN
built from scratch. The highest accuracy of 98.46% is achieved
by the study conducted by Mamlook et al. [126], which has
used a CNN model and the second-highest accuracy of 98.43%
is achieved by the study done by Hashmi et al. [24] using an
ensemble model. As a percentage, 36% of the indicated studies
have achieved more than 95% accuracy. The models that are used
in these studies are ResNet-50 [73], VGG-16 with MLP [68], CNN
with U-Net [62], CNNs built from scratch [22,102,114,126] and
ensemble models [9,24]. From this analysis, it can be determined
that not only ensemble models but even single models such as
ResNet and VGG, as well as newly developed CNNs, can achieve
promising results with their datasets.

When training the DL model, the associated optimizer play a
significant role to reduce the overall loss and improving the accu-
racy. Considering the related studies stated in Table 6, 44% of the
studies have used Adam optimizer [9,22,23,40,62,81,85,102,113,
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115,127]. Adam optimizer is widely used due to the combined
benefits of other types of SGD like RMSProp and AdaGrad. That
is, Adam optimizer uses both the first and second moments of
the gradients when adapting the learning rate. Thus, the Adam
optimizer is a method that adaptively calculates the individual
learning rates. Performance-wise, the average accuracy achieved
by the studies that used Adam optimizer is 88.93%.

Considering the related studies that have achieved more than
95% accuracy, four studies have used Adam optimizer [9,22,62,
102], while SGD [24], RMSprop [68] and Gradient Descent [114]
has been used by one study each. However, studies have used
RMSProp instead of Adam optimizer when the model is VGG-16.
The reason could be the failure of the Adam optimizer in model
training due to the large number of parameters associated with
the VGG network. Moreover, the studies with the VGG-16 model
have increased the model accuracy by using multi-layer percep-
tion instead of fully connected layers [68,69]. Accordingly, the
DL process uses optimizers to reduce the error in the algorithm.
The loss function is used to compute this error by quantifying
the actual and predicted output. Considering the loss calculation,
many studies have used variants of cross-entropy loss, while
some studies have used other types of loss functions like Dice
loss and Mean Square Error [9,114].

Furthermore, different model evaluation techniques have been
used in the literature to assess the generalization correctness of
models on test data. Model performance are mainly measured
using accuracy, precision, recall, sensitivity, specificity and F1
score [22,24,51,55,69] values, while some have used AUROC [9,
22,23,62,86]. Cross-validation has also been used by several stud-
ies [102,126,128]. Other methods like IoU and hold-out validation
have also been used [43,125].

Table 7 presents the studies that have been carried out to
detect COVID-19 from the chest X-ray images. It can be seen that
many studies have used existing architectures rather than devel-
oping new CNNs from scratch. As a percentage, only 23.8% of the
studies have used CNNs developed from scratch, while the rest of
the studies have used existing model architectures. The usage of
the models VGG and ResNet, is high among the considered work.
For instance, 38% of the studies have used VGG and 28.6% of the
studies have used ResNet. Performance-wise, the average of the



D. Meedeniya, H. Kumarasinghe, S. Kolonne et al.

Table 6

Applied Soft Computing 126 (2022) 109319

Summary of related studies for chest X-ray classification with pneumonia conditions.

Study DL technique Acc % Loss function Optimizer GPU Evaluation metric

[40] CNN 83.38 Cross-entropy Adam v Acc

[22] CNN 96.18 CCE Adam v Sn, Sp, P, F1-score,
Acc, AUROC

[23] DensetNet121 76 BCE Adam v AUROC

ResNet-50 69
InceptionV3 61
[24] Ensemble model (ResNet18, 98.43 Cross-entropy SGD v Acc, R, P, F1-Score,
DenseNet121, InceptionV3, AUROC
Xception, MobileNetV2)
[73] ResNet-50 97.65 - - v Categorical Accuracy
[9] Ensemble model (AlexNet, 96.4 Cross-entropy Adam v AUROC, R, P, Sp, Acc
DenseNet121, InceptionV3,
ResNet18, GoogLeNet)
[80] MobileNetV2 90 Cross-entropy - - Acc
[81] MobileNetV2 934 BCE Adam v AUROC, Acc, Sp, Sn
[85] DenseNet121 76.80 Weighted BCE Adam - F1-score
[55] Ensemble model (ResNet-34 90 BCE, Dice loss Ranger optimizer - Acc, P, R, F1-score
based U-Net, EfficientNet-B4
based U-Net)

[101] CNN 93.73 - - v Acc

[125] Mask RCNN - Multi-task loss SGD v IoU for true positive
(ResNet-50+ResNet101)

[119] CNN 86 BCE - v Acc

[113] CNN 90.68 BCE Adam - Acc

[114] CNN 97.34 Cross-entropy MSE Gradient Descent v Acc

[68] VGG-16 with MLP 97.4 - RMSprop v Acc, Sn, Sp, AUROC,
F1-score.

[126] CNN 98.46 - - - P, R, Acc, F1-Score,
AUROC, cross
validation

[115] CNN 92.31 CCE Adam - Acc, R, Fl1-score

[102] CNN 95.30 CCE Adam - cross validation, Acc,
AUROC

[128] CNN 94.40 Cross-entropy - v 5-fold cross

MLP 92.16 validation, Acc,
AUROC
[127] SCN 80.03 BCE Adam - Acc, P, R, F1-score
[69] VGG-16 87 CCE RMSprop v Acc, Sp, R, P, F1-score.
Xception 82
[86] DenseNet-169 80.02 - - - AUROC
with SVM

[51] InceptionV3 with 90.1 CCE Nadam v Acc, P, R, F1-score

more layers

[62] CNN with U-Net 97.8 - Adam - AUROC, Acc

accuracy values obtained by the studies that have used VGG ar-
chitecture is 92.7%, while for ResNet it is 89.14%. Compared to the
studies conducted for Pneumonia detection in Table 6, there is an
increase in accuracy values of the studies conducted for the detec-
tion of COVID-19. From the studies indicated in Table 7 it is visible
that, 61.9% of the studies have achieved more than 95% accuracy.
The models used in these studies are ResNet-50 [56], VGG-16 [56,
72], VGG-19 [70], CapsNet [88], DensNet121 [75], MobileNet [82],
MobileNetV2 [83], InceptionV3 [83], Xception [83], InceptionRes-
NetV2 [82] and CNNs developed from scratch [6,105,107,108,
129]. From this analysis, it can be seen that among the studies
that have achieved more than 95% accuracy values, only 38.5% of
studies have come up with newly developed CNN architectures.
GPU is the most widely used hardware accelerator for DL and
testing [130]. Most of the studies have used GPU, and the rest
of the studies have not mentioned their hardware acceleration
details.
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The rest of the studies have employed existing model archi-
tectures where some of them have introduced new modifica-
tions like combinations of architectures. For instance, Hilmizen
et al. [56] have used a combination of ResNet-50 and VGG-16,
Sethy et al. [78] have applied ResNet-50 with SVM, and Shibly
et al. [72] have used a VGG based Faster R-CNN. Another notice-
able fact is that some studies have experimented with several
models separately and have indicated the achieved accuracy for
each of them. Nigam et al. [90] have experimented with five
models while Mohammadi et al. [82] and Jabber et al. [83] each
have tried with four models. Three out of the four models experi-
mented in the study of Jabber et al. [83] have achieved more than
95% accuracy. Moreover, the study by Mohammadi et al. [82], has
shown promising accuracy threshold for two models out of four
models. Although the studies that have addressed the classifica-
tion of chest X-rays with COVID-19 conditions keep emerging, it
can be seen that many studies have been able to achieve higher
accuracy. Only the study done by Bekhet et al. [129] has not used
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Table 7
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Study DL technique Acc % Loss function Optimizer GPU Evaluation metric
[41] CNN 98 - - - Acc, P
[56] ResNet-50 +VGG-16 99.87 CCE Adam v Acc, Sn, Sp
VGG-16 98.93
[88] CapsNet 98.3 Cross-entropy Adam v Acc, Sn, Sp, AUROC
[52] VGG-16 88.10 - Adam - Acc, Sn, Sp, AUROC
(nCOVnet)
[70] VGG19 96.3 BCE Adam v Acc, P, R, F1-score
[105] CNN 99.5 BCE Adam - Acc, P, Sn, Sp, F1-score,
AUROC
[72] VGG-16 based Faster R-CNN 97.36 cross-entropy Momentum v Acc, P, Sn, Sp, Fl-score,
10-fold cross validation
[75] DenseNet121 N - 98.45 cross-entropy Adamax v Acc, P, R, F1-score
C-98.32
[71] DeTraC (VGG19) 93.1 cross-entropy SGD v Acc, Sn, Sp, AUROC
[82] MobileNet 99.1 BCE Adam v Acc, P, R, F1-score,
InceptionResNetV2 96.8 AUROC
VGG-16 93.6
VGG19 90.8
[90] EfficientNet DenseNet121 93.48 CCE, Weighted BCE Adam, SGD v Acc, P, R, F1-score
Xception 89.96
NASNet 88.03
VGG-16 85.03
79.01
[93] ResNet-101 71.9 Cross-entropy - v Acc, Sn, Sp, AUROC
[83] MobileNetV2 98.6 - - - Acc, P, Sp, R, F1 score
InceptionV3 98.1
Xception 974
ResNet-50 825
[129] CNN 96 log-loss SGD X Acc, Sn, Sp, MAE, AUROC
[77] ResNet-SVM 93.6 BCE RMSProp - Acc, Sn, F1 score, P
[74] VGG19 920 cross-entropy - v Acc, P, R, F1-score
DenseNet201 90
[57] Ensemble model (ResNet-50, 91.62 - Adam v 5-fold cross validation,
DenseNet201, InceptionV3) Acc, Sn, F1-score, AUROC
[116] MADE-based CNN 94.48 MSE MADE v Acc, Sn, Sp, F1-score,
Kappa statistics
[78] ResNet-50 +SVM 95.33 - - v Acc, Sn, FPR, F1-score
[107] CNN 98.5 - - v Acc, Sn, Sp, AUROC,
cross-validation
[108] CNN 99.49 - - v Acc, Sn, Sp, 5-fold

cross-validation

a GPU, since they mainly focused on building an efficient method
that even can run on a normal CPU. Thus, it can be observed that
many recent studies have used GPUs for their implementation.

As indicated in Table 7 the reviewed studies have used sev-
eral optimizers such as Adam, SGD, RMSprop, Momentum, and
Adamax to optimize their models. It can be seen that many
studies have used Adam optimizer, where the percentage is 38%
out of the considered studies. Moreover, the average accuracy of
the studies that have used Adam is 95.8%. Moreover, five studies
out of the 13 studies that achieved more than 95% accuracy have
used Adam optimizer [56,70,82,88,105], while Momentum [72],
Adamax [75] and SGD [129] has been used by one study each.
The rest have not mentioned an optimizer in their studies. Ac-
cordingly, many studies have used GPU for the implementation.
However, some of the studies have not mentioned their hardware
acceleration details.

The use of performance metrics for the analysis of chest X-
rays for the COVID-19 condition is similar to the metrics used
for chest X-ray analysis for pneumonia conditions. For instance,
many studies have used cross-entropy loss to calculate the loss
function. Many models were evaluated using accuracy, sensi-
tivity and specificity [52,56,71,72,88,108]. F1-score is also used
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in several studies to evaluate their models. As indicated by the
reviewed studies, this is due to its ability to compare the results
of the two classifiers’ precision and recall, and its eligibility to
measure the performance of the models tested with imbalance
datasets [70,72,82,90,105]. Some other studies have evaluated
their model using the metric AUC (area under the curve) of
the ROC (Receiver Operating Characteristic) due to the better
representation of the true positive rate vs. the false positive
rate [52,71,82,88,93].

Accordingly, Table 8 summarizes the chest X-ray classification
studies that have considered both pneumonia and COVID-19 con-
ditions. As in previous cases, many studies have used existing
CNN architectures and from the studies indicated in the table,
the usage of CNNs developed from scratch is only 20%. It can be
seen that some studies have tried several techniques separately
such as the two models COV19-ResNet, COV19-CNNet used in
the study by Keles et al. [103] and the four techniques CNN,
SVM, DT, KNN used in the study by Nour et al. [37]. Moreover,
some have used a combination of models such as the ensemble
model of ResNet50V2, VGG-16, InceptionV3 used in the study
by Shorfuzzaman et al. [58] and the model developed with the
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Summary of related multi-class classification for chest X-ray with both pneumonia and COVID-19 conditions.

Study DL technique Acc % Loss function Optimizer GPU Evaluation metric
[42] CNN 90.64 CCE RMSprop - Acc, P, R, F1-Score,
5-fold cross-validation
[54] VGG-16 98.3 CCE Adam - Acc, Sn, Sp
[10] MobileNetV2 94.72 - Adam - Acc, Sn, Sp
[47] ResNet-50 96.23 - Adam - Acc, Sn, P, Fl-score
(COVID-ResNet)
[38] EfficientNet 96.70 - Adam v 10-fold cross validation,
Acc, P, R, F1-score
[67] VGG-16 95 CCE Adam - Acc, P, R, F1-score
[87] CapsNet 84.22 MSE Adam - Acc, 10-fold cross
validation, Sn, Sp,
F1-score, P
[124] Darknet-19 87.02 Cross-entropy Adam - 5-fold cross validation,
(DarkCovidNet) Acc, Sn, Sp, P, F1-score
[91] SqueezeNet 98.3 - Bayesian v Acc, COR, COM, Sp,
F1-score, MCC
[44] COVID-Net 93.3 - Adam - Acc, Sn
[103] COV19-ResNet COV19-CNNet 97.61 - - v Acc, P, R, Sp, Fl-score,
94.28
[76] ResNet-50 98.18 - - v Acc, P, R, Fl-score
[59] VGG-CapsNet 92 CCE SGD - Acc, P, R, Fl-score,
AUROC
[89] EfficientNet B3-X 93.9 - Adam - Acc, Sec, +Pc
[106] CoroNet (Xception) 95 - Adam v Acc, P, R, Sp, Fl-score
[37] CNN 97.14 - Adam, Bayesian v 5-fold cross validation,
SVM 98.97 Acc, Sn, Sp, AUROC,
DT 96.10 F1-score
KNN 95.76
[111] CNN (CVDNet) 96.69 cross-entropy Adam - Acc, P, R, F1-score,
5-fold cross validation
[58] Ensemble (ResNet-50V2, 95.49 CCE Adam v Acc, Sn, Sp, P, AUROC
VGG-16, InceptionV3)
[79] ResNet-50 92 CCE Adam - Acc, Sn, Sp, F1-score,
AUROC
[60] SqueezeNet & MobileNetV2 99.27 - - v Acc, Sn, Sp, P, F1-score,

(Combined features set)

5-fold cross validation

combined feature set of both SqueezeNet and MobileNetV2 in the
study of Togacar et al. [60].

From the studies indicated in the table, 60% of the stud-
ies have achieved more than 95% accuracy values. The single
models used in these studies are VGG-16 [54,67], ResNet [47,
76,103], EfficientNet [38], SqueezeNet [91], Xception [106]. Con-
sidering the models of combined feature set of SqueezeNet &
MobileNetV2 [60], ensemble model of ResNet50V2, VGG-16, In-
ceptionV3 [58] can be stated. Moreover, CNNs developed from
scratch [37,111], SVM [37], DT [37] and KNN [37] are some of the
other approaches used. It can be seen that VGG-16, ResNet, and
SqueezeNet are used in several studies which produced promis-
ing results of more than 95% of accuracy. Moreover, the study
by Nour et al. [37] has applied multiple classification techniques
in machine learning such as SVM, Decision Tree, and K-nearest
Neighbors along with CNN separately and each of these tech-
niques has been able to produce more than 95% of accuracy.

Similar to the studies with binary classification, most of the
studies with multi-class classification have used Adam optimizer.
As a percentage, 70% of the studies indicated in Table 8 have
used Adam. The rest of the studies have used optimizers like
RMSprop, SGD, and Bayesian. An average of 93.9% of accuracy
value comes from the accuracy of the studies that have used
Adam optimizer. From the 14 studies which produced more than
95% accuracy, eight of the studies have used Adam optimizer [38,
47,54,58,67,106,111], while two of the studies have used Bayesian
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optimizer [37,91] and the rest have not mentioned an optimizer
in their study. From this analysis, it can be concluded that the
use of Adam as an optimizer has improved the models to produce
promising results.

The Evaluation of the models has mostly been done using
accuracy, precision, recall, sensitivity, specificity, and F1 score [47,
67,76,103,106,111], while some have used AUROC [58,59,79].
Cross-validation has also been used by several of the work [87,
111]. Apart from these methods, Ucar and Korkmaz [91], have
also used metrics such as correctness, completeness, and Matthew
Correlation Coefficient (MCC).

5.2. Guidelines for deep learning process

The decision of selection of techniques to be used during a
DL process depends on factors such as the type of the problem,
dataset and the expected outcome. As shown in Fig. 10, we
provide several considerations to review when exploring the ap-
propriate models and techniques for medical image classification
from a practical point of view.

When following a DL process for medical image classification,
first different pre-processing techniques can be applied to the
dataset and prepare it for training. If the dataset consists of an
insufficient number of images, different data augmentation tech-
niques can be used to obtain a scaled-up and diverse dataset [24,
67,85,113,125]. Similarly, for imbalanced datasets, the methods
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like oversampling and undersampling can be used. Consequently,
other pre-processing techniques such as noise reduction, nor-
malization, dimension reduction and smoothing can be used to
further improve the datasets [54,55]. The exact combination of
these methods would give promising results depending on the
type of the dataset and the models being used, and needs to be
experimented with to select the most suitable combination of
hyper-parameters.

The selection of the most appropriate core DL model is an
important task that depends on extensive exploration of the liter-
ature. For instance, if the problem requires image segmentation,
then the models such as CapsNet or U-net can be used [55,62].
Another important consideration is the available computational
or processing power. The models such as SqueezeNet, MobileNet
and EfficientNet can be executed even without high computa-
tional power [60,89], while the models like Xception, Inception,
VGG, ResNet and DenseNet require high computational power
to be executed [23,67,73,106]. While it is important to consider
these factors before selecting a model, the exact requirements
specific to the problem need to be given higher priority con-
sidering t trade-offs between the accuracy and computational
complexity.

Once the model has been selected and trained using the pre-
pared dataset, the model can overfit. To overcome this, tech-
niques like regularization, early stopping and feature removing
can be tried out [23,42,75,113]. Finally, model refinements can be
applied to improve the performance of the trained model. Hyper-
parameter tuning and trying out ensembles of different models
are some techniques that can be experimented with [9,24,57,58].
The effectiveness of the aforementioned techniques depends on
the data types, application domain, available computational re-
sources and other constraints. These guidelines can be used as an
advisory for the practitioners; however, should not be considered
as a rigid criterion.

5.3. Current challenges

Several challenges are often encountered when using DL tech-
niques in medical image analysis. One of the challenges in chest
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X-ray classification is imbalanced datasets, which results in in-
accurate outcomes [131]. Class imbalance can also cause model
overfitting, as addressed by several studies [55,125,132] in binary
classification. Similarly, studies on multi-class classifications for
Pneumonia and COVID-19 detection have shown overfitting sit-
uations [37,47,91]. Moreover, the limitation of sufficient datasets
and the lack of benchmark dataset makes it challenging to pro-
duce more accurate models. This scarcity of publicly available
datasets, especially COVID-19 datasets, has become a significant
cause for imbalanced datasets for the multi-class classification
models.

Handling large size images is another main challenge. Even
with powerful GPUs, training with large image sizes can be time-
consuming and computationally costly. Most studies have re-
duced the original image size during training to reduce computa-
tional costs and time. For instance, Farooq and Hafeez [47], have
used the progressive image re-sizing method to reduce the train-
ing time in multi-class classification, whereas Stephan et al. [101]
has experimented with five different image sizes to identify the
best image size to achieve high accuracy while minimizing the
training time and computational cost in binary classification. As
stated in Section 2.3 and Section 2.2, the systematic review may
have a limitation caused by minor errors associated with the
search results.

5.4. Study contributions and lessons learned

We have explored the trends of recent studies (RQ1) by analy-
zing the used techniques such as transfer learning, use of ensem-
ble models and segmentation and have presented a taxonomy as
given in Fig. 4. The employment of different architectural models
combined was observed and a summary is provided in Table 3.
Moreover, by providing a comparison between the different DL
based models used and how parameters such as optimizers, loss
functions and evaluation metrics were employed together with
the accuracies achieved as stated in Table 4. In this study, we
have presented the state-of-the-art DL based models and ar-
chitectures (RQ2). The publicly available potential datasets have
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been identified (RQ3) along with the studies that have used
them with a comprehensive analysis on the types of diseases and
the number of available images as provided in Table 5. As one
of the main contributions, We have provided a comprehensive
comparison between the related studies (RQ4) by discussing the
techniques, models, and metrics used in them along with the
accuracy achieved and comparison tables for each of the consid-
ered cases. The details were presented in Table 6, Table 7, and
Table 8. Furthermore, we have guided the selection of a suitable
DL approach as shown in Fig. 10 (RQ5) according to specific
requirements using the identified and analyzed approaches. In
addition we provided a comprehensive discussion on the facts
to be considered when choosing the right techniques. Finally, we
have addressed the open challenges and possible future research
directions (RQ6) with the analyzed information. The findings of
this article will be beneficial for researchers and developers in
producing effective and efficient computational solutions for the
betterment of the same domain.

5.5. Future research directions

The existing research approaches can be extended in several
directions. The accuracy and performance gained from the exist-
ing DL architectures can be further improved by implementing
an optimization algorithm [ 133,134]. Also, both segmentation and
classification can be applied for chest X-ray images and develop
an ensemble model to produce better results [135,136].

Additionally, chest X-ray classification with techniques such as
deep probabilistic programming, and parallel processing can be
considered as promising future research directions [11,137]. In
deep probabilistic programming, an intersection of probabilistic
modeling and DL is used for the implementation of new inference
algorithms and probabilistic models. These models would enable
the computation and modeling of a large number of parameters.

In another point of view, these DL approaches can be extended
with explainable models. This will improve the transparency and
interpretability of the diagnosis system. Hence the users can
understand the system process and enhance the trustworthi-
ness [138,139]. Local Interpretable Model-Agnostic Explanations
(LIME), Gradient-weighted Class Activation Mapping (Grad-CAM)
are some techniques that can be used for explainable Al

Moreover, researchers and developers can focus on develop-
ing a system that operates under low resource environments to
encourage deployments of such systems in real medical environ-
ments. Furthermore, most of the existing models have not been
widely tested in real environments. Therefore, these automated
chest X-ray classification models can be used in clinical trials for
model verification [140].

6. Conclusion

Analysis of chest X-radiation is one of the common methods
to identify lung infections. Over the years, many studies have
been conducted to identify pneumonia conditions using chest X-
ray images. With the growth of data engineering approaches and
the spread of COVID-19 disease over the globe, there is a rapid
increase in related research and development studies. However,
there is a lack of comprehensive systematic reviews available on
the current state-of-the-art solutions. This paper has considered
the recently published articles on chest X-ray analysis using DL
techniques for the diagnosis of pneumonia and COVID-19.

We explored different DL based approaches used in the litera-
ture for chest X-ray classification. This study provided taxonomies
and compared different techniques and models used by the re-
viewed articles. In addition, we stated widely used related public
datasets used by researchers and developers for the classification
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of pneumonia and COVID-19. In this review, we extensively an-
alyzed the existing studies and disclosed the current challenges
in classifying chest X-ray images. We further suggested possible
guidelines for DL based classification and stated future possible
directions for research and development. Thereby the future chest
X-ray analysis process will thrive with accurate and efficient
automated approaches, producing promising results.
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