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Tumor relevant protein functional 
interactions identified using 
bipartite graph analyses
Divya Lakshmi Venkatraman1,2, Deepshika Pulimamidi1,2, Harsh G. Shukla1 & 
Shubhada R. Hegde1*

An increased surge of -omics data for the diseases such as cancer allows for deriving insights into 
the affiliated protein interactions. We used bipartite network principles to build protein functional 
associations of the differentially regulated genes in 18 cancer types. This approach allowed us to 
combine expression data to functional associations in many cancers simultaneously. Further, graph 
centrality measures suggested the importance of upregulated genes such as BIRC5, UBE2C, BUB1B, 
KIF20A and PTH1R in cancer. Pathway analysis of the high centrality network nodes suggested the 
importance of the upregulation of cell cycle and replication associated proteins in cancer. Some of 
the downregulated high centrality proteins include actins, myosins and ATPase subunits. Among 
the transcription factors, mini-chromosome maintenance proteins (MCMs) and E2F family proteins 
appeared prominently in regulating many differentially regulated genes. The projected unipartite 
networks of the up and downregulated genes were comprised of 37,411 and 41,756 interactions, 
respectively. The conclusions obtained by collating these interactions revealed pan-cancer as well 
as subtype specific protein complexes and clusters. Therefore, we demonstrate that incorporating 
expression data from multiple cancers into bipartite graphs validates existing cancer associated 
mechanisms as well as directs to novel interactions and pathways.

Cancer is proving to be one of the deadliest diseases, with 18 million new cases and 9.6 million deaths in 20181. 
This invites attention for research, diagnosis and treatment of cancer. Cure for cancer is elusive due to the 
heterogeneity and complexity of its manifestation2. Decades of research on cancer has accumulated informa-
tion regarding histopathology, gene expression, signaling events and protein interactions (reviewed in Ref.3,4). 
For long, cancer studies were largely focused on the molecular level. With the emergence of systems biological 
approaches, information such as gene expression and pathway functioning are integrated to generate holistic 
perspective for the diseases such as cancer5.

One of the efficient ways to understand the difference between cancer cells and their normal counterparts is 
to study their differential gene expression signatures. The large-scale expression data for cancer and normal sam-
ples derived from the RNA-seq experiments available in multiple databases facilitate such system-wide analyses. 
Apart from studying individual cancer types, data from multiple cancers could be combined to understand com-
mon principles governing disease establishment and their inter-connectedness. This is useful in distinguishing 
pathways and proteins which are unique to a given cancer from the ones that are shared by multiple cancers. 
Pan-Cancer analysis project is one such attempt by TCGA (The Cancer Genome Atlas) to characterize cancers 
according to their molecular and genetic profiles6. Earlier, DNA microarray data spanning multiple cancers 
was analysed to obtain functional modules of genes showing expression or repression for a given cancer7. Also, 
microarray-based gene expression data from multiple cancers were considered to identify functional pathways 
that are dysregulated across various cancer types8,9. Along similar lines, RNA-seq data based study reported dif-
ferential gene expression signatures across 33 human cancer types as well as between highly and lowly-advanced 
cancers10. The differential gene expression information was also mapped onto known protein complexes to 
establish connections between cancers and their corresponding enriched protein complexes11. In another study, 
systematic cataloging of somatic mutations was performed to obtain mutational signatures in many different 
cancers12. Likewise, in a pan-cancer mode, somatic copy number variations were analysed to identify their com-
mon patterns of occurrence in cancer13. Over the years, such studies proved widely informative in establishing 
relatedness between different cancers. Besides these, it is useful to view the differentially regulated genes as 
functionally interacting proteins based on their expression pattern in multiple cancers.
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The cancer specific association between genes and the pathways can be aptly envisioned in the form of interac-
tion networks (graphs). Such interaction networks provide convenient ways to contextualize several biomolecules 
by describing their mode of association14. While protein–protein interactions are represented as an undirected 
graph, directionality is attributed from one node (source) to another (target) in the gene regulatory networks, cell 
signaling networks and phosphorylation networks15. Bipartite networks, on the other hand, represent interactions 
between two sets of nodes where the connections run only across the sets16. Many relationships in the real-world 
are modeled as bipartite graphs. For instance, a bipartite network of scientific collaborations includes scientists 
and their research papers, actor collaboration network includes actors and the movies they have worked in and 
the human disease network associates genes and the diseases17–19. Bipartite graphs can be converted into one-
mode projections and further analysed using graph theoretical methods20. One mode projection of a bipartite 
graph contains nodes belonging to one set, and the edges are drawn between them based on their connections 
to the nodes of the other set in the original bipartite graph. For example, in the human disease network, two 
diseases are connected if they share many common genes involved in the disease. Similarly, two genes are con-
nected if they tend to be associated with the same disease19.

Recently, several computational and statistical approaches for defining driver genes based on cancer genom-
ics data have been suggested21. One such approach is the network-based method which greatly increases the 
precision of predicting driver genes22. Bipartite graph analysis has been widely used to predict the links between 
tumor samples and genes, and also to identify cancer driver genes of various individual cancers such as breast, 
lung and prostate22,23. We performed bipartite network analysis of the differentially expressed genes in multiple 
cancer types to identify protein functional associations that are pertinent to cancer. Graph theoretical analy-
ses—including centrality, clusters and motifs of the derived networks revealed important proteins and pathways 
associated with cancer. Our study, therefore, emphasizes on how the graph theoretical method, namely bipartite 
network analysis, can be effectively used in cancer systems biology to integrate the emerging large-scale data.

Results
Identifying differentially expressed genes across multiple cancer types.  We used RNA-seq data 
corresponding to 18 cancer types along with their control samples to obtain differential gene expression24. There 
were 10,107 and 9167 genes identified as up and downregulated in one or more cancers, respectively, with an 
overlap of 5333 genes (Table 1, Supplementary Table S1). Of these, many genes were differentially expressed in 
only one or a few cancers while some were differentially expressed across many cancer types (Fig. 1). For example, 
Parathyroid Hormone 1 Receptor (PTH1R) and collagen-binding Dermatopontin (DPT) were downregulated 
in all the 18 cancers. Previously, decreased DPT expression was seen in uterine leiomyomas25. Also, expression 
of the PTH1R was significantly reduced in hepatocellular carcinoma compared to normal liver tissues26. In line 
with our observations, the downregulation of PTH1R and DPT could be important for most of the cancers. Also, 
43 genes showed upregulation in all the 18 cancers. These include cell cycle associated genes CCNB2, CDC45, 
BUB1B, TTK, CDC25C, PKMYT1 and BUB1 (KEGG pathway enrichment with adjusted P-value < 2.4.9e−06)27. 
Further, we compared these with the previous literature to highlight some of the known upregulated genes in 
cancer. BIRC5 which codes for survivin protein is highly expressed in almost all the human cancers28. Survivin 
is also considered as a potential target for tumor therapy29. Another upregulated protein ubiquitin-conjugating 
enzymes 2C (UBE2C) is involved in the degradation of mitotic cyclins such as cyclin B and facilitates cell cycle 

Table 1.   List of cancer types included in the study along with the number of normal and tumor samples and 
their differentially regulated genes.

Cancer type Normal samples Tumor samples Genes upregulated Genes downregulated

Bladder urothelial carcinoma (BLCA) 28 362 1724 1390

Breast invasive carcinoma (BRCA) 322 982 2409 2305

Cervical and endocervical cancers (CESC) 13 259 2529 2030

Colon adenocarcinoma (COAD) 380 285 2292 3260

Esophageal carcinoma (ESCA) 670 183 2885 2359

Head and Neck squamous cell carcinoma (HNSC) 97 460 1593 2605

Kidney renal clear cell carcinoma (KIRC) 104 475 1780 1389

Liver hepatocellular carcinoma (LIHC) 163 295 1581 912

Lung adenocarcinoma (LUAD) 372 503 2502 2040

Prostate adenocarcinoma (PRAD) 154 426 963 2220

Stomach adenocarcinoma (STAD) 225 380 1984 1943

Thyroid carcinoma (THCA) 371 441 1372 2135

Uterine Corpus Endometrial Carcinoma (UCEC) 105 141 3411 2409

Cholangiocarcinoma (CHOL) 9 31 2680 1566

Kidney Chromophobe (KICH) 25 60 1388 1909

Kidney renal papillary cell carcinoma (KIRP) 29 236 1353 1162

Lung squamous cell carcinoma (LUSC) 51 489 3338 2657

Rectum adenocarcinoma (READ) 10 87 2667 3807
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progression. Elevated expression of UBE2C also correlates with poor survival and increased risk for relapse30. 
A member of the serine/threonine kinase protein family NEK2 also shows overexpression in multiple cancer 
types which is indicative of relapse and poor survival31. Some of the other upregulated genes include centromere 
proteins (CENPA, CENPF and CENPM), kinesin family members (KIF20A and KIF4A), DNA replication factor 
CDT1, holliday junction recognition protein HJURP, and G2 and S phase-expressed protein GTSE1. Pan-cancer 
expression analysis, therefore, suggests the importance of these differentially expressed genes in cancer.

High centrality nodes in the cancer associated bipartite networks.  In order to connect the cancer 
types and their differentially regulated genes, we built two cancer-gene association networks representing the up 
and the downregulated genes. Differentially regulated genes were modeled as bipartite graphs BG = (C, G, E), 
where C is the set of nodes representing a cancer type, G is the set of nodes representing differentially expressed 
genes and E is the set of edges in the graph.

Further, we tested whether the distribution of the node redundancy coefficients in the real networks are dif-
ferent than the distribution in random networks with similar degrees. For this, 10 random bipartite networks 
with degree distributions similar to the real network were created using a configuration model, thereby ensuring 
that the scale free property of the generated random networks is preserved. These random networks and the two 
real networks representing up and downregulated genes in cancer were compared using two-sample Kolmogorov 
Smirnov test for the distributions of the node redundancy coefficients (“Methods”). For the upregulated bipartite 
network, the average D-statistic of the node redundancy coefficient was 0.833 (P-value < 1.5E−06). Similarly, 
for the downregulated bipartite network, the average D-statistic of the node redundancy coefficient was 0.788 
(P-value < 1.3E−05). Significantly high D-statistic for node redundancy in each of these comparisons suggested 
that the generated bipartite networks for the up and downregulated genes in cancer were indeed different from 
the random networks, thus implying their biological significance. For these bipartite graphs, topological indexes 
such as centralities were calculated which score the nodes by estimating their importance in the network32. 
Degree centrality in a bipartite measures the number of connections a node makes in the opposite node set. 
Therefore, genes which are up or downregulated in multiple cancers are evaluated as important by the degree 
centrality measure. Closeness centrality evaluates how rapidly a given node can communicate with the other 
nodes in a network through short paths. In a bipartite graph, a node can have a minimum distance of 1 to all 
nodes of the other set and a minimum distance of 2 from all nodes of its own set. Likewise, high betweenness 
centrality in a bipartite network implicates nodes that mediate communication between other pairs of nodes via 
multiple shortest paths crossing through them. Therefore, these centrality measures provide diverse aspects of 
node importance in the bipartite network. We aggregated the top 5% nodes of the betweenness, closeness and 
degree centrality measures, which yielded 616 and 619 genes for the downregulated and upregulated networks, 
respectively, without any overlap (Supplementary Table S2). We observe that 66% (407 out of 619) and 51% (313 
out of 616) of the top 5% aggregates are evaluated as important by all the three centrality measures for the up 
and downregulated networks, respectively. A close inspection of these individual centrality measures revealed 
that while top 5% of degree centrality results were nodes with a minimum degree of 11 for the upregulated and 
12 for the downregulated network, top 5% of the closeness and the betweenness centrality measures shortlisted 
some of the nodes which were differentially regulated even in 8 cancer types (Supplementary Fig. S1). Hence, 
we considered these genes as significant for further analyses.

Figure 1.   Bar plot representing the frequency of the differentially expressed genes against number of 
cancers. There are many genes which appear as differentially regulated in one or a few cancer types. However, 
comparatively smaller set of genes are differentially regulated in many cancer types.
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Pathway enrichment of the high centrality genes in both up and downregulated bipartite networks was per-
formed using Enrichr (KEGG pathway enrichment with adjusted P-value < 0.05)27. Cell cycle, Fanconi anemia 
pathway, DNA replication, homologous recombination and P53 signaling are some of the prominent pathways 
represented by the upregulated high centrality nodes (Fig. 2a). On the other hand, Dilated cardiomyopathy, Vas-
cular smooth muscle contraction, Hypertrophic cardiomyopathy, Adrenergic signaling in cardiomyocytes and 
Arrhythmogenic right ventricular cardiomyopathy pathways were enriched for the downregulated high centrality 
nodes (Fig. 2b). The downregulated proteins from these pathways included actins (ACTC1, ACTG2), myosins 
(MYH11, MYH7, MYLK, MYL3, MYL9), protein phosphatase 1 regulatory subunits (PPP1R12B, PPP1R12C, 
PPP1R14A, PPP1R1A), microRNA protein coding genes (CTNNA3, DMD, MYH7, PDE2A), complement pro-
teins (C1R, C6, C7, CFD) and ATPases (ATP1A2, ATP1B2). Apart from their primary functions such as muscle 
contraction, motility process, transport and metabolism, these genes also participate invarious other cellular 
processes. For example, actins are involved in cell division, migration and signaling, myosins are associated with 
cell migration and adhesion, and protein phosphatase 1 regulatory subunits are implicated in cell cycle progres-
sion, protein synthesis, transcription and neuronal signaling33–35. Importantly, few of these proteins, namely, 
ATP1B2, CTNNA3 and MYLK were reported to be downregulated biomarkers in glioma, hepatocellular and 
breast carcinoma, respectively36–38. Therefore, it appears important to investigate the functional implications 
associated with the downregulation of these proteins in cancers.

The nodes which we identified as central in cancer associated bipartite graphs were either up or downregu-
lated in multiple cancers. Such a behavior is governed by the transcription factors which act as activators and/or 
repressors of gene expression. We tested the transcription factor enrichment for the 1235 differentially regulated 
high centrality genes. For further analysis, we considered top 25% enriched transcription factors with adjusted 
P-value < 0.05 which regulate 10 or more high centrality genes. The complete list of regulatory interactions is 
given in Supplementary Table S3. We observe that the mini-chromosome maintenance proteins (MCMs) MCM2, 
MCM3, MCM6 and MCM7, which were upregulated in most of the cancers, also regulate the expression of a 
significant number of high centrality genes in the network. In addition, many high centrality differentially regu-
lated genes in cancer were regulated by the E2F family genes, of which E2F4 alone regulates about 344 genes. 
E2F1, E2F2 and E2F7 proteins, which were upregulated in most of the cancer types and appear as high centrality 
nodes in the bipartite graphs, regulate around 224, 93 and 74 high centrality genes, respectively (Supplementary 
Table S3). As E2F family transcription factors participate in cell cycle control, the overexpression of E2F family 
genes and their subsequent gene regulatory activities might have significant implications on cancer cell prolif-
eration. We also observed that transcription factors E2F4 and ETS1 regulate 41 and 38 of the 43 genes which 
were upregulated in all the cancers, respectively (Supplementary Tables S1 and S3). Some of the other enriched 
transcription factors include MYB, BRCA1, STAT1 and ETV4 which are upregulated in majority of the cancer 
types. On the other hand, Retinoid X receptor RXRG which is a regulator of 15 high centrality differentially 
regulated genes is downregulated in 12 cancer types. Earlier in an ovarian adenocarcinoma progression model, 
activation of RXRG by retinoid treatment sensitized the cells to apoptosis39. Further analysis of the genes which 
are differentially expressed in most of the cancers and also regulate many high centrality nodes in the network 
could provide more insights on the common principles governing tumor development.

Weighted one‑mode projection of the cancer associated bipartite networks.  Depending on the 
nature of expression across different cancer types considered, we derived functional association between differ-
entially regulated genes in the original bipartite networks. The one-mode projection of a bipartite graph results 
in two sets of unipartite graphs in which two nodes of G (or C) are connected if they have at least one edge in 
common in the original bipartite graph (Supplementary Fig. S2). To obtain cancer specific protein functional 
interactions, we projected the bipartite graphs representing up and downregulated genes onto their respective 
unipartite graphs. While projecting, each edge in these graphs were weighed using a Jaccard index to account 

Figure 2.   Bar plots representing the enriched pathways of the top 5% high centrality nodes (Adjusted P-value 
versus Combined score). Combined score represents the product of logarithmic P-value computed using Fisher 
exact test and z-score. These scores for each pathway are obtained from Enrichr (gene enrichment analysis web-
based tool). (a) Upregulated, (b) downregulated.
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for the similarity in association (“Methods”). The distribution of the number of components and the size of the 
largest component at various weight-cutoff are provided in Supplementary Fig. S3. In order to eliminate insig-
nificant edges, we used 0.9 as the edge weight cutoff and analyzed the resulting protein functional interaction 
networks. These comprised of 37,411 edges among 4544 nodes and 41,756 edges among 4584 nodes for the up 
and the downregulated genes, respectively (Supplementary Table S4). While many of these interacting proteins 
are differentially regulated in majority of the cancer types, some of them seem to be specific for the known cancer 
subtypes40.

There was an overlap of 479 interactions (P-value < 2.50E−162) among 363 proteins between the upregu-
lated projected network and the curated protein–protein interaction network (Supplementary Table S5a). These 
include extensive interactions among proteins AURKB, BUB1, BUB1B, BIRC5, CCNB2, CDK1, CDCA5, CDCA8, 
CENPE, CENPM, CENPI, CENPH, CENPA, ERCC6L, NDC80, NUF2, SKA1, SPC24, and SPC25 (Supplemen-
tary Table S5a). Also, there were 67 known interactions between 112 (P-value < 7.43E−03) proteins in the down-
regulated projected network. While some of these proteins such as SNRNP70 and SRSF5 are the components 
of the spliceosome complex, the others, namely, SORBS1, TPM2 and MYH11 were reported to have a role in 
tumor metastasis and development (Supplementary Table S5a)41–43. These up and downregulated proteins were 
differentially expressed in more than 8 cancer types studied. Additionally, the projected upregulated network had 
77 known regulatory interactions of the transcription factors including E2F1, E2F7, MCM2 and MCM4 (Sup-
plementary Table S5b). The downregulated projected network had 62 known regulatory interactions, of which 
transcription factors TAL1, ZEB1 and MEIS1 regulate the genes which were differentially regulated in more 
than half of the cancers studied (Supplementary Table S5b). The upregulated transcription factors E2F1, E2F7, 
MCM2 and MCM4, as previously mentioned, belong to the group of 25% high centrality nodes and therefore 
their activities might be important for cancer development.

The largest component of the up and downregulated network consisted of 6498 edges between 564 nodes 
and 9984 edges between 850 nodes, respectively. We observed that the genes which were part of these largest 
components were differentially regulated in 9 or more cancer types. These were compared with 4274 protein 
complexes derived from CORUM database to verify if we captured any known protein complexes. There were 14 
protein complexes which showed overlapping interactions with the largest components of the projected networks. 
Some of the complexes found in the upregulated projected networks are shown in Fig. 3. NDC80 kinetochore 
complex, which plays a key role in chromosome alignment and segregation during mitosis, comprises of 4 com-
ponents namely, NDC80, NUF2, SPC24 and SPC25. Out of the 6 possible interactions among these components, 
we captured 4 interactions in our network (Fig. 3a). NDC80 Kinetochore complex was previously reported to 
be involved in various types of cancers, including prostate and breast cancer44,45. In addition to the interactions 

Figure 3.   Interactions of the projected upregulated protein complexes. Rectangle shaped nodes are part 
of the upregulated projected network and the ellipse shaped nodes are differentially regulated components 
of the complex. Hexagons—other components of the complex. The red colored edges are the captured 
interactions between complex components in the projected network. (Blue nodes—upregulated, green nodes—
downregulated and grey nodes – not differentially regulated) (a) NDC80 kinetochore complex, (b) cell cycle 
kinase complex, (c) chromosomal passenger complex (CPC), (d) mini-chromosome maintenance (MCM) 
protein complex, (e) Centromere (CEN) complex and (f) ECT2–KIF23–RACGAP1 complex.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21530  | https://doi.org/10.1038/s41598-021-00879-2

www.nature.com/scientificreports/

between cell cycle kinase complex proteins CCNB1, CDK1 and CCNF (Fig. 3b), interactions of chromosomal 
passenger complex components AURKB, BIRC5 and CDCA5 were also recorded (Fig. 3c). Chromosomal pas-
senger complex regulates cell division and has been implicated in breast cancer46. The MCM complex which 
plays a major role in cellular development and cell cycle consists of 6 components MCM2–MCM7, of which 
MCM2, MCM4 and MCM6 were found to interact in the projected upregulated network (Fig. 3d). Also, inter-
actions between the proteins CENPA, CENPM, CENPK, CENPH and HJURP were identified which belong to 
centromere complex that regulates the kinetochore and spindle assembly (Fig. 3e). The network consisted of 
interactions among ECT2, KIF23 and RACGAP1 which belong to a complex associated with cytokinesis func-
tion (Fig. 3f). The upregulated network also showed an interaction between the transcription factor RUVBL1 
and the gene ACTL6A. RUVBL1 and ACTL6A are the components of various protein complexes such as uA4/
Tip60 HAT, p400-associated, c-MYC-ATPase-helicase, TIP49-TIP48-BAF53, INO80 chromatin remodeling, 
SRCAP-associated chromatin remodeling and TIP60 histone acetylase. The c-MYC-ATPase-helicase complex 
was found to associate with the complexes TIP49-TIP48-BAF53 and NuA4/Tip60 and reported to be involved 
in cell transformation and cancer47. Of the many downregulated spliceosome complex proteins in cancer, we 
captured the interactions between SNRNP70, SRSF5, DDX17 and LUC7L3 in the largest component of the pro-
jected downregulated network (Supplementary Fig. S4). We speculate that the downregulation of these proteins 
might affect the splicing of the genes that are likely to be associated with cell cycle events and signal transduc-
tion, and therefore might trigger these cellular mechanisms towards cancer. Importantly, the above-mentioned 
proteins of the functional complexes were differentially expressed in more than half of the cancer types that we 
have studied, suggesting their relevance in the context of pan-cancer analyses.

Further, we clustered the largest component of the projected networks to identify groups of genes which 
closely interact in the network. Their interconnection is associated with their functional relatedness, therefore 
revealing co-regulated functions associated with tumor and its progression. CytoCluster resulted in 90 and 173 
clusters for the largest components of the up and downregulated projected networks, respectively (Supplemen-
tary Table S6). Of these, 63 upregulated and 143 downregulated clusters showed significant enrichment for two 
or more pathways (KEGG, P adjusted < 0.05, Supplementary Table S6). These pathway-level cross-talks could 
be insightful in suggesting the underlying mechanisms across multiple cancers. One of the upregulated clusters 
(Cluster-16) comprised of MCM proteins (MCM2, MCM4 and MCM6) along with cell cycle (P-value < 4.71E−22) 
proteins CCNA1 and CDK1, and DNA replication (P-value < 5.61E−07) proteins such as ORC1and PCNA, thus 
attributing functions such as cell cycle regulation and arrest, cell proliferation and DNA replication to the cluster 
(Supplementary Table S6a and Fig. 4a). Also, another upregulated cluster (Cluster-84) constituted genes belong-
ing to Homologous recombination (P-value < 1.36e−05) and Fanconi Anemia pathways (P-value < 1.15E−06), 
which are known to be associated with DNA repair mechanisms48 (Supplementary Table S6a and Fig. 4b). 
Genes belonging to this cluster such as EME1 (Essential meiotic endonuclease 1), FANCI (Fanconi Anemia 
Complementation Group I) and RAD54L (DNA Repair and Recombination Protein RAD54-Like) are associated 
with functions related to repairing DNA damage, maintaining genomic stability and mitotic and homologous 
recombination.

Likewise, one of the clusters (Cluster-28) in the largest component of downregulated network were associated 
with the pathways such as calcium signaling (P-value < 3.27E−03) and sensory transduction (P-value < 2.62E−03) 
(taste transduction) (Supplementary Table S6b and Fig. 4c). Downstream of sensory transduction involves the 
activation of G-protein coupled receptors (GPCRs) and voltage gated channels which are essential for proper 
cellular functioning49,50. Genes belonging to this cluster such as members of calmodulin dependent phosphodies-
terase family (PDE1B and PDE1C) regulate the second messengers, which are the key regulators of many physi-
ological processes. Also, GABBR1 (Gamma-aminobutyric acid type B receptor subunit 1) modulates the activity 
of voltage-dependent calcium channels. Individually these pathways are involved in intracellular signaling49,50, 
their co-downregulation might be an important aspect to study across cancers.

Another downregulated cluster (Cluster-74) consisted of genes involved in vascular smooth muscle con-
traction (P-value < 6.48E−06), dilated (P-value < 4.40E−05) and hypertrophic cardiomyopathy pathways 
(P-value < 4.87E−04), which are primarily involved in muscle contraction (Supplementary Table S6b and Fig. 4d). 
Members involved in this pathway such as Adenylyl cyclase (ADCY4 and ADCY5) and Actin proteins [ACTG2 
(Actin Gamma 2, Smooth Muscle) and TPM2 (Tropomyosin 2)] are associated with functions such as GPCR 
signaling, cell motility and calcium dependent smooth muscle contraction. Therefore, downregulation of these 
pathways together might be an important factor for cancer. Such interactions of the differentially regulated genes 
at multiple levels, such as complexes and clusters will be informative in revealing mechanisms that are crucial 
across multiple cancers.

Identifying subtype‑specific interactions.  While the largest components showed enrichment for all 
or most of the cancers studied, some of the other network components were differentially regulated in known 
cancer subtypes (Supplementary Table  S4)40. The upregulated component enriched for the cancer subtypes 
Bladder urothelialcarcinoma (BLCA), Head and Neck squamous cell carcinoma (HNSC) and Lung squamous 
cell carcinoma (LUSC) showed interactions among proteins belonging to MAGE family (Melanoma Antigen 
gene—functions as drivers of tumorigenesis), namely, MAGEA9 (Melanoma-Associated Antigen 9), MAGE9B 
(Melanoma Antigen Family A9B), MAGEB6 (Melanoma-Associated Antigen B6) and MAGEC1 (Melanoma-
Associated Antigen C1). Since MAGE family members promote the transformation of fibroblasts and increase 
the growth of cancer cells, their differential expression and interaction might be important for cancer subtypes 
BLCA, HNSC and LUSC (Supplementary Fig. S5)51. Also, the upregulated interactions that characterize COAD 
and READ cancer subtypes include interactions between proteins belonging to gene groups Small Nucleolar 
RNA (snoRNAs) and WD repeat domain containing protein. One such example is the interaction between 
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NOP56 (Nucleolar Protein 56) and NLE1 (Notchless Homolog 1) (Supplementary Fig. S6a). On the other hand, 
interactions between Zinc fingers C2H2-type proteins were observed in the downregulated network component 
which is specific to COAD and READ cancer subtypes (Supplementary Fig. S6b). Similarly, one of the upregu-
lated component specific to Kidney renal clear cell carcinoma (KIRC) and Uterine corpus endometrial carci-
noma (UCEC) cancer subtype showed interaction between CHST9 (Carbohydrate Sulfotransferase 9—mediates 
cell–cell interactions and signal transduction), RGS13 (Regulator of G-protein signaling—implicated in GTPase 
activator activity) and NOG (Noggins—involved in the development of various body tissues). Also, the inter-
action between VAW7 (Von Willebrand Factor A Domain Containing 7) and WNT4 (Wnt Family Member 
4-implicated in oncogenesis) was observed in the downregulated network component for KIRC and UCEC can-
cer subtypes. While VAW7 is known to mediate platelet-tumor cell interactions, WNT4 is involved in the devel-
opment of kidney, genital system, lung and other organs52. Impaired kidney development was earlier observed 
in the gene knockout studies of WNT453. Additionally, downregulation of WNT4 in endometrial cancer cell 
lines and tumors was previously reported54. Collectively, these interaction data provide insights on the functions 
which represent pan-cancer as well as the cancer subtypes.

Discussion
Cancer manifestation in different tissue types needs to be analyzed in conjunction to obtain their unifying 
themes. Previously, genome analyses of different cancer types uncovered mutation and copy number variation 
landscapes12,13. Many such events at the genomic level percolate into gene expression and thereby modulate 
downstream protein activities. Using publicly available RNA-seq data, we profiled gene expression in various 
cancer tissues and compared them with the corresponding normal tissues to obtain differentially regulated 
genes. We observed a significant number of genes that are differentially regulated in multiple cancers. While 
genes such as PTH1R, DPT, DES, TCF21 and PDE2A are downregulated in many cancers, cell cycle associated 
genes, centromere proteins and kinesin family proteins are upregulated in all the cancer types we studied (Sup-
plementary Table S1). Using graph theoretical approaches, we revisited pan-cancer analysis to connect differential 
gene expression across multiple cancer types. This systems-level approach led us to dissect general principles 
associated with cancer in terms of important cancer driver genes, their functional interactions and pathways, 
which were not evident from the individual data otherwise.

Figure 4.   Network representing the projected up and downregulated clusters. Ellipse shaped nodes represents 
the members of cluster. (Blue nodes—upregulated and green nodes—downregulated and brown nodes—
proteins involved in respective pathways) (a) Cluster-16 (up), cell cycle, cellular senescence and DNA replication 
pathways. (b) Cluster-84 (up), Fanconi anemia and Homologous recombination pathways. (c) Cluster-28 
(down), Calcium signaling and sensory transduction pathways. (d) Cluster-74 (down), Vascular smooth muscle 
contraction, dilated and Hypertrophic cardiomyopathy pathways.
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The graph properties of the bipartite networks that we built using differentially regulated genes were largely 
different from the random networks, suggesting underlying biological reasons to these networks. High centrality 
genes in the upregulated network pointed towards pathways such as cell cycle, DNA replication and P53 signaling 
as prominent for cancer manifestation. On the other hand, proteins from actin, myosin, protein phosphatase 
1 regulatory subunits and ATPases gene groups were represented as the downregulated high centrality nodes. 
Our work reiterated the importance of mini-chromosome maintenance proteins (MCMs) and E2F family tran-
scription factors in regulating the expression of a large number of differentially regulated genes in cancer. The 
functional interaction network built by projecting the bipartite graphs highlighted the protein–protein asso-
ciations which could be significant for cancer. We also borrowed information from the other large-scale data, 
namely, regulatory interactions, protein complexes and known protein–protein interactions to gain functional 
perspectives on the derived proteins and their interactions. The super-associations of protein interactions such 
as complexes and clusters revealed proteins from the NDC80 kinetochore complex, MCM complex, centromere 
complex and spliceosome complex as important interactors mediating cancer progression. Some of the interac-
tions in the projected networks appeared to be cancer subtype specific40. While extensive interactions between 
MAGE family genes such as MAGEA9, MAGE9B, MAGEB6 and MAGEC1 correspond to the cancer subtypes 
BLCA, HNSC and LUSC, interactions between Zinc fingers C2H2-type proteins in the downregulated compo-
nents characterized COAD and READ cancer subtypes. Together, these approaches exemplify bipartite graph 
means to connect and study multi-layer information. Apart from these data serving as a useful resource for the 
cancer-associated protein functional interactions, we believe that a similar method could be potentially applied 
to study other pan-cancer data such as DNA mutation, differential methylation, copy number variation and 
small RNA expression.

Methods
Differential gene expression in cancer.  Consolidated RNA-seq data from Genotype Tissue Expression 
project (GTEx) and The Cancer Genome Atlas (TCGA) databases were obtained from24,55. A summary of the 
samples and differentially expressed genes with respect to their cancer types (n = 18) are given in Table 1. In this 
method, RNA-seq raw reads of 18 cancer types along with their control were realigned and quantile normalized 
for quantifying gene expression. edgeR (Empirical analysis of Digital gene expression in R) v3.24.3, a Bioconduc-
tor software package for examining the differential expression of replicated count data was used to identify DEGs 
with adjusted P-value < 0.05 using Benjamini and Hochberg method and absolute log fold change of ≥ 156. Two 
bipartite networks representing up and downregulated genes were established using NetworkX v2.2, package in 
python by connecting cancer types to their differentially regulated genes as shown in the Supplementary Fig. S2. 
In this graph, C is the set of nodes representing a cancer type, G is the set of nodes representing differentially 
expressed genes and E is the set of edges in the graph.

Bipartite network analysis.  NetworkX was used for studying bipartite network properties (https://​netwo​
rkx.​github.​io/​docum​entat​ion/​latest/​overv​iew.​html). Centrality measures for the bipartite graphs were calculated 
using definitions given in Ref.32, and derived as below:

	 I.	 For the bipartite graph, BG = (C, G, E), the degree centrality for node c (or g) is calculated as:

where deg(c) is degree of node c, for c ∈ C , deg(g) is degree of node g, for g ∈ G , Cn is number of nodes 
in set C, Gn is number of nodes in set G.

	 II.	 For the bipartite graph, BG = (C, G, E), the closeness centrality of node c (or g) is calculated as:

where dc and dg are respectively the sum of geodesic distances from node c and node g to all the other 
nodes in the graph, Gn is number of nodes in set G, Cn is number of nodes in set C.

	 III.	 For a bipartite graph BG = (C,G,E), the normalized betweenness centrality of node c (or g) is calculated 
as:

where B(c) is betweenness of node in c, Bet(c) is normalized betweenness centrality of node c

Dc =
deg(c)

Gn
,

Dg =
deg

(

g
)

Cn
,

Closenessc =
Gn + 2(Cn − 1)

dc
, for c ∈ C,

Closenessg =
Cn + 2(Gn − 1)

dg
, for g ∈ G,

Bet(c) =
B(c)

1
2

[

Gn
2(s + 1)2 + Gn(s + 1)(2t − s − 1)− t(2s − t + 3)

] ,

https://networkx.github.io/documentation/latest/overview.html
https://networkx.github.io/documentation/latest/overview.html
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where B(g) is betweenness of node in g, Bet(g) is normalized betweenness centrality of node g.

Union of the top 5% nodes that show high centrality in either of the three measures were taken for further 
analysis.

Pathway enrichment for the high centrality nodes was analyzed using Enrichr27. Gene regulatory network 
(GRN) was built by combining data from TRRUST, HTRIdb, Human Regulatory Network derived from ENCODE 
and RegNetwork databases57–60. In total, 226,782 gene regulatory interactions between 1604 transcription factors 
and 22,485 target genes were obtained. The P-values for the enriched transcription factors were calculated using 
hypergeometric distribution and adjusted using Benjamini–Hochberg method.

A statistical validation of the bipartite network was performed by comparing node redundancy coefficients 
between the real networks and 10 random bipartite networks. Random networks were generated using configura-
tion model which creates random graphs from a given degree distribution. The function configuration_model in 
NetworkX61 (version 2.2) was used to create random bipartite graphs by preserving the degrees of the nodes of 
each node set in the original network (https://​netwo​rkx.​org/). The node redundancy coefficients between each 
of the random networks and the gene-cancer bipartite network were compared to test if they are from the same 
distribution. For this, two-sample Kolmogorov–Smirnov test was performed using scipy.stats package in Python 
(http://​www.​scipy.​org/) and the average D-statistics of the distributions were reported. The D-statistic of the two 
sample Kolmogorov–Smirnov test measures the largest vertical distance between two empirical distributions. The 
D-critical value is 0.019 and 0.020 for the upregulated and the downregulated networks, respectively. The sam-
ples are concluded to be drawn from different distributions if the D-statistic is greater than the D-critical value.

One mode projected network analysis.  The one-mode projection networks for both up and down-
regulated networks were generated using overlap-weighted projection. The weights in the one-mode projection 
represent the Jaccard index between neighborhoods of the two nodes in the original bipartite network as given 
by the equation:

P-values for the overlap between projected networks at Jaccard index cutoff of 0.9 and the Protein–Protein 
Interaction (PPI) network were calculated using hypergeometric test and adjusted using Benjamin-Hochberg 
method.

Interaction networks and databases.  PPI network was curated by combining the databases BIND—
Biomolecular Interaction Database62, BioGRID—Biological Repository for Interaction Datasets63, DIP—Data-
base of Interacting Proteins64, HIPPIE—Human Integrated Protein–Protein Interaction rEference65, HPRD 
-Human Protein Reference Database66, IntAct67, MINT—Molecular INTeraction database68, NetworKIN69, 
PDZBase—PPI database for PDZ-domains70, and Reactome71. This resulted in 501,227 interactions between 
18,023 proteins. The protein complexes data was downloaded from CORUM (The comprehensive resource of 
mammalian complexes) database which consists of 4274 complexes built from 4473 genes72. Gene Ontology 
data was downloaded from the Gene Ontology Annotation (GOA) database73. Gene group data was downloaded 
from HGNC—HUGO (Human Genome Organisation—Gene Nomenclature Committee)74. For each cluster, 
gene group enrichment was tested using hypergeometric test and the corresponding P-values were adjusted 
using Benjamini–Hochberg method. Networks were visualized using Cytoscape v3.7.175. All data were analyzed 
using in-house python and shell scripts.
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