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ABSTRACT: The permeability of rocks is a critical parameter in
many subsurface geological applications, and pore properties
measured on rock samples (including rock fragments) can be used
to estimate rock permeability. A major use of MIP and NMR data is
to assess the pore properties of a rock in order to estimate the
permeability based on empirical equations. Although sandstones
have been extensively studied, permeability in coals has received less
attention. Consequently, in order to obtain reliable predictions for
coal permeability, a comprehensive study of different permeability
models was performed on coal samples having a range of
permeabilities from 0.003 to 1.26 mD. The model results showed
that the seepage pores in coals account for the bulk of the
permeability, while the contribution of adsorption pores to
permeability is negligible. The models that only consider a single
pore size point on the mercury curve, such as the Pittman and Swanson model, or those that use the entire pore size distribution, like
the Purcell and SDR model, are inadequate for predicting permeability in coals. This study modifies the Purcell model to determine
permeability from the seepage pores of coal, resulting in the enhancement of the predictive capability, with an increased R2 and
reduction in the average absolute error by approximately 50% compared to the Purcell model. To apply the modified Purcell model
to NMR data, a new model was developed that provides a high degree of predictive capability (∼0.1 mD). This new model can be
used for cuttings, which could lead to a new method for field permeability estimation.

1. INTRODUCTION
Permeability is a crucial parameter for the production of
coalbed methane reservoirs since it directly impacts the fluid
flow and gas delivery. Well testing, core analysis, and well
logging are the most common methods to measure reservoir
rock permeability. However, all these methods are expensive
and time-consuming, so there is a need for cheap and effective
alternatives for estimating rock permeability.1,2 Since the pore
structure is commonly thought to influence the permeability
through pore size distribution (PSD) and pore connectivity,3−5

predicting permeability by means of correlations to pore
structure parameters has gained prominence in formation
evaluation, particularly in unconventional reservoirs with
extremely complicated pore structures. Nuclear magnetic
resonance (NMR) and mercury injection porosimetry (MIP)
are two commonly used methods for assessing the pore
characteristics of porous media, and both of them can be
performed on cutting samples.6 Also being inexpensive,
cuttings are generally available throughout the length of the
well bore, which may also make possible the evaluation of
permeability in the field. Numerous permeability prediction

models have been developed on the basis of MIP and NMR
parameters. The Swanson model, Pittman model, and Purcell
model, for instance, are based on relationships between
permeability and pore parameters determined by MIP, while
the Schlumberger-Doll Research (SDR) and Coates model use
the NMR data.4−7

Since these permeability prediction models were developed
for conventional sandstones and carbonates,8,9 applying these
models directly to coals with different physical and
petrophysical properties represents special challenges.4,10 In
particular, MIP has limitations when probing coal pore
structures due to the influence of interparticle voids and coal
compression.11−13 Because of the resulting inaccuracies in the
pore structure characterization, inaccurate pore structure
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parameters are frequently determined, resulting in errors in
permeability estimation.14−18 A key advantage of NMR is that
it can overcome the potential deficiencies of MIP in measuring
the pore structure of coal. However, the widely used models,
such as the Coates model and the SDR model, are empirically
derived for sandstones, and their application to the prediction
of coal permeability is debatable.17 In light of these issues, the
main objective of this study is to develop a reliable
permeability estimation model for coal that takes into account
pore structure constraints. A set of coal samples with a
variation of permeability over three orders of magnitude were
collected from the Qinshui Basin, Ordos Basin, and Junggar
Basin of China for this study. An analysis of different
permeability prediction models using MIP and NMR data
was conducted, and a reliable permeability estimation model
for coals constrained by pore connectivity was developed.

2. REVIEW OF PERMEABILITY PREDICTION MODELS
The commonly used permeability estimation models are
summarized in Table 1, of which the Coates and SDR models
use NMR data, while the Pittman model, Swanson model, and
Purcell model use MIP parameters.
(1) Pittman model. Porosity, permeability, and r35 (throat

size that corresponds to a mercury saturation of 35%) were
empirically related by Kolodzie.18 Based on a multiple
regression analysis method, Pittman further studied the
correlation between porosity, air permeability, and other
parameters from MIP data, and found that r20 and r25 were
the most robust parameters for the estimation of sandstone
permeability.19 Subsequently, additional work has shown that
r50 and r55 are also effective parameters for permeability
prediction of sandstone.20,21 The Pittman model has also been
applied to other reservoir rocks, in which the r10 was suggested
for tight sandstone4 and r20 for carbonate rocks.

22 All these
models can be described as follows:

= + +K C rlog log log iP P P P (1)

where KP is the absolute permeability; mD; CM1, αM1, and βM1
are empirical constants, φ is the helium porosity, %, and ri is
the pore radius corresponding to i percentage of cumulative
mercury saturation, μm. Porosity and pore radius are the two
main variables in the Pittman model that greatly influence the
permeability prediction. However, Liu et al. pointed out that
the Pittman model relied on only one point of the MIP curve
to estimate permeability, which may cause large errors in
permeability prediction.23

(2) Swanson model. Swanson found that the maximum ratio
of mercury injection saturation to capillary pressure (i.e.,

Swanson’s parameter, ( )S

P A

Hg

c
) corresponds to the apex of the

hyperbola, which is the maximum filling of effectively
interconnected pore spaces with mercury.6 Based on extensive
experiments, Swanson developed the empirical equation for
the Swanson’s parameter and permeability of sandstone and
carbonate, which is expressed as
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where KS is the absolute permeability, mD; SHg is the
saturation of mercury intrusion, %; Pc is the pressure of

mercury intrusion, MPa; ( )S

P A

Hg

c
is the Swanson’s parameter,

MP; and αS and βS are the empirical constants. The Swanson
model has been widely used for the permeability prediction of
normal sandstones and carbonates.24−26 However, studies have
also shown that the Swanson model is ineffective for low-
permeability tight sandstones and carbonates.27,28

(3) Purcell model. By combining the Washburn equation,
Darcy’s law, and Poiseuille’s law, Purcell developed a model for
calculating the absolute permeability of porous media, which
assumes parallel cylindrical capillaries with different radii but
similar lengths.7 The Purcell model is
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where KPu is the permeability, mD; F is the dimensionless
lithology factor; σ is the interfacial tension (0.48 N/m for
mercury−air system); θ is contact angle, 140°; SHg is the
dimensionless ratio of mercury volume to pores volume; φ is
the helium porosity, in percent; and Pci the capillary pressure,
MPa. Since it relies more on theoretical relationships than on
empirical ones that use only one point on the mercury curve,
the Purcell model relates the permeability of porous media to
the entire PSD. However, according to Zhang and Weller,29

the Purcell model is problematic for estimating permeability
because small pores do not contribute to permeability.
(4) The SDR model: A general description of the SDR

model is as follows:30

=K C TSDR SDR 2g NMR
SDR SDR (4)

where T2g is the geometric mean of T2 distribution, ms; φNMR
is the NMR porosity, %; and CSDR, αSDR, and βSDR are the
empirical parameters of the SDR model. Previous work has
shown that reasonable permeability estimates can be made for
sandstones by using constant coefficients in the SDR
model.31−34 Maclean et al. suggested that the SDR model is
accurate for permeability estimation of sandstones because
sandstone grain sorting is regular, and the porosity is mainly

Table 1. Permeability Prediction Models that Incorporate MIP and NMR Data

method advantages disadvantages references

Pittman
model

considers the effect of porosity focuses on a single pore size value from the capillary pressure curve;
uncertainty in the choice of the pore throat size; lack of theoretical basis

4,19,20,49

Swanson
method

reliable permeability prediction for high-permeability
sandstones and carbonates

unsuitable for low-permeability reservoir; does not consider the porosity; lack
of theoretical basis

8,24

Purcell
model

has a theoretical basis; relates the permeability to a wide
PSD

overestimates the contribution of micropores to permeability 7,29

SDR
model

reliable permeability prediction for sandstone; available
at the borehole

sensitive to the fluid in the pores; considers the total porosity; lack of
theoretical basis

30,31

Coates
model

reliable permeability prediction for sandstone; available
at the borehole; uses the connectivity porosity

lack of theoretical basis; requires a cutoff value for of T2
16,35
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intergranular, but that the equation is less precise in carbonates
because of complex pore types.35 In addition, Xiao et al.
pointed out that the SDR model cannot predict the
permeability of tight sandstone because of the poor relation-
ship between permeability and T2g.

28

(5) The Coates model is expressed as follows:32
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where KC is absolute permeability, mD;
FFI
BVI

is the ratio of the
free fluid part (FFI) to the bound fluid part (BVI). This ratio is
determined by the T2c (the cutoff value T2 that divides the T2
distribution into the irreducible fluid (bound fluid) and
movable fluid (free fluid)). CN1, αN1, and βN2 are the empirical

parameters of the Coates model, which vary in different study
areas and rocks. The model has demonstrated good
predictability for sandstone permeability. However, since
capillary-bound water cannot be centrifuged completely for

tight sandstone, the FFI
BVI

cannot adequately describe fluid

mobility, which can cause poor permeability prediction.16,36

In conclusion, since all of these permeability prediction
models are based on conventional sandstone properties, there
are problems when they are applied directly to rocks with
heterogeneous pore structures such as tight rocks and coals.
For this reason, the applicability of these models to predict the
permeability of coal needs to be further improved.

Table 2. Maceral Compositions, Proximate Analysis, Porosity, and Permeability of the Core Samplesa

sample Ro (%)

maceral composition (%) proximate analysis (%)

φ (%) K (mD)V I L M Mad Ad Vd FCd
S1 2.88 86 11 0 3 1.5 4.7 6.2 89.0 7.8 0.003
S2 3.35 80 16 0 T 2.1 11.6 6.8 81.7 9.0 0.068
S3 3.25 73 22 0 5 2.1 11.3 7.1 81.6 8.6 0.011
S4 0.47 68 20 9 3 1.9 10.6 20.6 68.6 10.5 1.260
S5 0.84 30 67 T T 7.7 21.3 26.7 44.9 14.8 0.995
S6 0.73 45 32 T 23 2.5 23.0 37.8 39.2 4.2 0.443

aNotes: Mad, moisture content (air-dried basis); Ad, ash yield (dry basis); Vd, volatile matter yield (dry, ash-free basis); FCd, fixed carbon content
(air-dried basis). V, vitrinite; I, inertinite; L, liptinite; M, minerals; T, trace; φ, He gas porosity; K, gas permeability.

Figure 1. NMR measurements at full water-saturated condition (Sw) and at irreducible water condition (Sir) as well as the method to calculate a T2
cutoff value (T2c). The labels S1−S6 denote the identification of the samples.
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3. SAMPLES AND EXPERIMENTS
3.1. Samples. Six coal samples with varying permeabilities

were chosen for comparison of different models for predicting
permeability. The sample compositional data are contained in
Table 2. The selected samples include high volatile bituminous
coals, medium volatile coals, and anthracite coals with a
maturity range of Ro = 0.47−3.35%. The coals were taken from
the Qinshui Basin, Ordos Basin, and Junggar Basin of China.
The samples in this study are all cylindrical in shape and cut
parallel to the bedding direction, with diameters of 25 mm and
lengths of 50 mm.
According to the maceral composition analysis (Table 2),

the major components are vitrinite (30−86%), inertinite (11−
67%), and liptinite (<10%). The mineral contents are generally
<5% except for sample S6, which has a mineral concentration
of 23%. The proximate analysis shows that the moisture
content is 1.5−7.7%, ash yield ranges from 4.7−23.0%, volatile
matter yield is 6.2−37.8%, and fixed carbon content varies
from 44.9−89.0%. Helium porosimetry and core permeability
analysis methods were used to measure porosity and absolute
air permeability. Table 2 contains the maceral compositions,
proximate analysis, porosity, and permeability of the samples.
3.2. Experimental Methods. For all six samples, MIP and

NMR experiments were performed in this study. Following
Chinese Oil and Gas Industry Standard SY/T 5346−2005, the
MIP experiments were performed with a 9520 Automatic
mercury porosimeter, which has a pressure of up to 200 MPa.

The Oxford GeoSpec 12/53 instrument was used for the NMR
studies. A typical Carr-Purcell-Meiboom-Gill (CPMG) NMR
pulse sequence was used to calculate the transverse relaxation
time T2.

14 The signal-to-noise ratio was increased to 200 by
setting the NMR measurement parameters as follows: echo
spacing of 0.132 ms, recycling delay of 750 ms, and echo
numbers of 3788. The NMR measurements on the core plugs
were first conducted at 100% water saturation. Subsequently,
the samples were centrifuged in a PC-1 Petroleum Core
Centrifuge to obtain the irreducible water saturation condition
(i.e., the minimum water saturation achievable by the
centrifuge), after which the samples were again analyzed.

4. RESULTS
4.1. NMR Results. 4.1.1. NMR T2 Distribution. The NMR

T2 spectra acquired at 100% water-saturated condition (Sw)
and irreducible water condition (Sir) are displayed in Figure 1.
The T2 values of coals commonly show wide relaxation time
distributions, ranging from 0.1 to 1000 ms. The selected coals
contain typical bimodal or trimodal distribution. The coal
samples with permeability <0.1 mD are characterized by
bimodal distributions, with peaks located at 0.1−10 ms and
50−200 ms. The left (lower value) peak contains more than
90% of the total peak areas, indicating the dominant
contribution of small pores to porosity (samples S1, S2, and
S3). The coal samples with permeability >0.1 mD exhibit
trimodal distributions (samples S4, S5, and S6). Compared to

Figure 2. The PSD of NMR data, MIP data, and corrected MIP data. The labels S1−S6 denote the identification of the samples.
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the bimodal distribution, the third peak is in the interval of 1−
100 ms, and the peak at >100 ms is increased in size, indicating
increased contributions of larger pores in permeability.
By definition, the T2 cutoff value (T2c) separates the

movable and irreducible fluid porosity in the T2 spectrum of
NMR. The T2c of coal can be acquired from accumulative T2
spectra at saturated and irreducible water conditions,35 as
shown in Figure 1. The irreducible fluids are mainly trapped in
adsorption pores, where fluid cannot be easily drained due to
capillary pressure, while the movable fluids are stored in
seepage pores where they can be easily drained by
centrifugation. The T2c values for these six coal samples
range from 1.96 to 5.2 ms (Figure 1), which is similar to the
values of 2−31 ms published by Yao et al.16 Generally, the coal
samples with high permeability exhibit high movable fluid
contents, and low-permeability samples exhibit high irreducible
fluid contents, which indicates that seepage pores contribute to
the bulk of the permeability of coals.
4.1.2. PSD Determination from NMR Data. Previous

studies have shown that T2 is linear with the pore
size,17,20,35,37 which can be determined from the centrifuge-
T2c method.

14 Consequently, the PSD can be generated from
the T2 spectra. By using this method (detailed in references of
Yao et al.16 and Zheng et al.37), the T2 spectra of coal samples
in this study are converted into the PSDs.
Figure 2 shows the PSD determined from the NMR data.

The low-permeability samples (S1, S2, and S3) are dominated
by the small pores (<0.1 μm). In contrast, the large pores
(>0.1 μm) are responsible for the high permeability of samples
S4, S5, and S6. The comparison of the PSD determined by
NMR with that determined by MIP is described in detail in
Section 4.2.2.
4.2. MIP Results. 4.2.1. Original MIP Results. In Figure 3,

raw mercury intrusion and extrusion profiles for the six coal

samples are shown. Despite the differences in coal rank, all
samples showed noticeable increases in intruded mercury
volumes at high pressure, while a slight increase in mercury
volume at low pressure. However, it remains unclear whether
all the intruded mercury can be attributed only to the pore
volume of coal. Coal is an elastic organic rock, and under high
injection pressure, the matrix is easily compressed mechan-
ically.14 Due to the loose packing of coal particles, the mercury
can enter the interparticle voids first at low injection

pressure.13 Consequently, the intruded mercury volume should
equal the sum of interparticle voids filling, intraparticle pore
filling, and matrix compression. Consequently, the pore
volume is expected to be overestimated based on the original
MIP data. Before using MIP results to characterize the pore
structures of coals, the effects of interparticle voids and coal
compressibility should be carefully examined and corrected.
Fractal theory is a powerful analytical tool that has been

widely applied to represent the pore structure of coals.38,39 It
has also been demonstrated that the fractal dimensions of
porous solids can also be used as a ″fingerprint″ to distinguish
interparticle voids filling, intrapore filling, and matrix
compression for MIP data.12,40,41 Based on Li’s fractal model
(i.e., =S aP D

Hg c
2), the fractal dimension (D) can be obtained

by plotting SHg and Pc on a logarithmic plot.
42 Figure 4 shows

the calculation of fractal dimension for the six coal samples,
and the curves are divided into three fractal domains (D1, D2,
D3) by two inflections. The pressure corresponding to these
two inflections is called the threshold pressure (Pt) and upper
limit pressure (Pu) (Figure 4). Pt is close to 0.03 MPa and Pu is
close to 30 MPa for all samples.
At the low pressure range (P < Pt), the fractal dimensions

(D1) are larger than 3 for all samples, which means the space
where mercury enters at <Pt is not fractal because intergranular
voids are not fractal,43 implying that interparticle voids are
predominant in filling mercury at <Pt. Actually the interparticle
voids mainly depend on the sample size but have nothing to do
with coal composition.13 For all six samples, the Pt acquired
from the fractal method is close to 0.03 MPa. It is concluded
that the process of interparticle void filling continued until the
threshold pressure (Pt).
At the high pressure range (P > Pu), the coal matrix is

compressed. Based on the fractal method, the previous work
found that the upper limit pressure is around 30 MPa for
different rank coals,12,13 which agrees with these results. More
importantly, a linear relationship between pressure and
intrusion volume is a characteristic of coal compressibility at
higher pressures.12,44,45 In this study, the mercury intrusion
volume as a function of pressure is presented in Figure 5. The
curves can be separated into the linear region and nonlinear
region at 30 MPa, supporting that coal compression is
dominant in the high-pressure region.46

4.2.2. Correction of MIP Result. As discussed above, the
MIP results of coal are inaccurate because of the coal
compressibility and interparticle voids. In this section, we
will correct the MIP results to obtain reliable data for the
characterization of the coal pore structure.
With the increasing invasion pressure, the intruded mercury

tends to fill the interparticle voids first, which may be
misinterpreted as larger pores in coals. As discussed above,
when P < Pt, mercury has not yet occupied the intrapore
volume of the coal samples, and thus the data were removed
from the MIP data for a reliable pore structure character-
ization. The correction model of coal compressibility proposed
by Li et al.11 has been successfully used to correct the MIP data
of coal at high pressure.41,47,48 The correction process consists
of two steps: first, calculating the matrix compressibility
coefficients of coal and second, correcting the mercury volume
caused by matrix compression. The matrix compressibility
coefficients were calculated to be 3.82 × 10−11, 3.56 × 10−11,
3.77 × 10−11, 4.56 × 10−11, 5.30 × 10−11, and 1.53 × 10−11 N−1

Figure 3. Mercury intrusion−extrusion curves of the samples.
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for S1−S6, respectively, which is close to the value of 7 × 10−11

to 2.3 × 10−10 N−1 reported for coal by Toda and Toyoda.45

A comparison of mercury intrusion curves before and after
correction for the interparticle voids and coal compressibility is
shown in Figure 6. The corrected results are distinctly lower
than those of raw data, indicating that the pore volume is
overestimated by raw MIP data. When the PSD of MIP results
before and after corrections was compared with the PSD
derived from the NMR data (Figure 2), it can be seen that the
PSD acquired via NMR and that via the corrected MIP data
are in the same range of 0.001−10 μm, while that of raw MIP
results has a wider pore size range (0.001 to 100 μm). This
indicates that the interparticle voids are effectively removed by
this correction method. However, it is unlikely that MIP and
NMR measurements will coincide due to the physical
differences between the two measurements (Figure 2). NMR
data represent the distribution of the pore body radii, while

MIP data reflect the throat radii.29 Generally, the pore volume
from MIP was lower than that obtained from NMR data. Due
to the fact that MIP and NMR determine pore characteristics
based on fluid intrusion, such as water and mercury. On one
hand, the water molecule can enter a smaller pore than
mercury. On the other hand, if some pores have nanometer-
sized pore entrances, these pores may not be detected by
mercury intrusion.12

5. DISCUSSION
5.1. Prediction of Permeability by Models. In this

study, a comparison of the various permeability prediction
models was conducted to investigate their applicability to
permeability predictions for the coal samples. For MIP data,
three permeability estimation models were investigated,
including the Pittman, Swanson, and Purcell models, while

Figure 4. The straight lines are fitted to log P verses log SHg data to estimate fractal dimension (D). Fractal dimension values for different pore
regions are shown on the graphs. The labels S1−S6 denote the identification of the samples.
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the SDR and Coates models were the model studied that used
NMR data.
5.1.1. Pittman Model. The Pittman model is based upon

the correlation between permeability, porosity, and pore radii
at different mercury saturations.19 Using the Pittman model, it
was proposed in the previous work to use the r10, r35, r40, and

r50 to predict sandstone permeability.
2,20,49 In this study, the

correlation between permeability and pore radii at a mercury
saturation of 5, 10, 25, 35, 50, and 75% is plotted in Figure 7.
The permeability shows no linear correlation with the pore
radii at mercury saturation >25%. In contrast, a good
correlation is observed between permeability and the radii at
mercury saturation <25% with correlation coefficients (R2)
between 0.7937 and 0.8942. For mercury saturation <25%,
mercury mainly enters the pores >0.1 μm (red dashed line in
Figure 7). Conversely, mercury invades the pores <0.1 μm at
mercury saturation >25%. This phenomenon suggests that the
pores >0.1 μm are the main contributor to permeability in
coals. In normal sandstones, the pore radii at mercury
saturation >35% (r35or r55) are the best indicator of
permeability.19 For tight sandstone with a complex pore
structure, Rezaee et al. found the correlation coefficients
between permeability and pore throat radii at r5− r25 are >0.70,
while no obvious correlation is found between permeability
and pore throat radii at saturations of r25− r80.

20 Because coal
and tight sandstone contain complex pores that are generally
poorly connected, they behave differently from normal
sandstone. Rezaee et al. chose r10 as the best permeability
predictor for tight sandstone because the correlation of
permeability and pore radii was the best at that level.20

However, a flaw in this methodology is that that many pores

Figure 5. Linear region and nonlinear region of mercury intrusion
volume as a function of pressure (red line is 30 MPa).

Figure 6. The mercury intrusion data before and after corrections of the interparticle void and coal compressibility. The labels S1−S6 denote the
identification of the samples.
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contributing to permeability are neglected if only one level of
mercury saturation (i.e., one pore radii) is selected.
5.1.2. Swanson Model. As shown in eq. 2, the Swanson’s

parameter is correlated with permeability. The Swanson’s
parameter is the maximum ratio of mercury injection

saturation to capillary pressure (( )S

P A

Hg

c
), which corresponds

to the maximum filling of effectively interconnected pore
spaces with mercury.6 Equation 2 can be simplified as follows:

= +
i
k
jjjjj

y
{
zzzzzK

S

P
log log log

A
S S S

Hg

c (6)

As shown in Figure 8, the Swanson’s parameter shows a
poor correlation with permeability. By using the capillary
pressure values in the denominator of Swanson’s parameter (

( )S

P A

Hg

c
), the corresponding pore sizes can be calculated based

on the Washburn equation. The Swanson’s parameter of
samples S1 to S6 corresponds to the pore radii of 8.23, 6.67,
6.68, 5.33, 5.34, and 6.66 μm, respectively. This suggests that
only pore radii >5.33 μm contribute to permeability. However,
as shown above, pores >0.1 μm contribute significantly to the
permeability of coal. As a result, the Swanson’s parameter does
not correlate well with permeability for coals. Xiao et al. also
found that the Swanson’s parameter is not well-correlated with the

permeability of tight rocks with complex pore structures because
the MIP curves of tight rocks do not produce a characteristic
hyperbolic curve, and the Swanson’s parameter may not be the
inf lection point of mercury invasion.28

5.1.3. Purcell Model. Unlike other models that use only one
point on the saturation curve for permeability prediction,
Purcell relates the permeability to the entire PSD by the
assumption of parallel cylindrical capillaries.4 According to the
Purcell model (eq 3), there is a positive linear correlation

between permeability and
S

P0

1 d Hg

ci
2 . As shown in Figure 9a, a

Figure 7. Relationship between the pore sizes at mercury saturation levels of 5% (a), 10% (b), 25% (c), 35% (d), 50% (e), and 75% (f) versus
permeability in the log−log coordinate. The red dashed line corresponds to the pore size of 0.1 μm.

Figure 8. Relationship between permeability and Swanson’s
parameter.
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good linear relationship between permeability and
S

P0

1 d Hg

ci
2

can be found for high-permeability samples (S4, S5 and S6),
while the samples with permeability <0.1 mD cannot be fitted
by the same linearly relationship. Zhang and Weller also found
a poor prediction of low permeability by the Purcell model.29

They observed that small pores do not contribute to
permeability but are considered in the Purcell model. Using
a combination of NMR and CT technology, Zhou et al.
demonstrated that the large pores (size >0.25 μm in radius) in
coal are the main channels for gas flow, accounting for up to
90% of the total volume flux.50

5.1.4. The SDR Model. By taking the logarithm of both sides
of eq 4, the following expression can be derived:

= + +K C Tlog log logSDR SDR SDR NMR SDR 2gm (7)

Through the correlation analysis between logKSDR and logT2gm,
the applicability of SDR model to coal samples can be
investigated. Figure 10a shows that there is not a linear
correlation between logT2gm and logKSDR, indicating that that
the SDR model does not work for coals investigated in this
study (Figure 10a). According to Yao et al., the SDR model
does not work well for coals because it considers the total
porosity, while in fact seepage porosity is far more significant
to coal permeability.16 According to Zheng et al., the SDR
model assumes a strong relationship between total porosity
and permeability, which is effective for sandstones, but not for
the coals.51

5.1.5. The Coates Model. Similar to the SDR model, the
applicability of Coates model to our studied coal samples can

also be investigated by examining the linear relationship
between logKC and log FFI

BVI
,

= +K
C

log log
FFI
BVI

logC C
C C

C
NMR (8)

As shown in Figure 10b, the logKC show a strong positive
correlation with the log FFI

BVI
with R2 = 0.8766, indicating the

Coates model is capable of estimating the permeability of coal.
Qiao et al. stated that the movable fluid (FFI) located in
seepage pores is a key factor in the good performance of the
Coates model.15 It was also found that the estimated
permeability shows a strong positive correlation with the
measured permeability in the study by Yao et al.16

5.2. The Modified Purcell Model. 5.2.1. The Modified
Purcell Model Using MIP Result. As discussed above, the
Pittman model and Swanson model poorly predict the
permeability of coals because only one pore size is considered.
In contrast, the Purcell model and SDR model cannot
accurately predict the permeability of low-permeability samples
since they use the entire PSD. However, by considering only
the connected seepage pores, the Coates model can predict
permeability for coals. Since the Purcell model has a strictly
theoretical basis, it could be modified to take into account the
pore connectivity as well.
The key to modifying the Purcell model lies in selecting a

proper pore range. This study focuses on the pore >0.1 mm
since pore >0.1 mm in radius account for the bulk of the fluid
flow. There are three reasons for the selection of 0.1 μm as the
key dimension: (1) previous work has shown that the division
between adsorption pores and seepage pores is 0.1 μm, with

Figure 9. Relationship between permeability and
S

P0

1 d Hg

ci
2 based on the Purcell model (a); relationship between permeability and

S

Pe
0

de Hg

ci
2

based on the modified Purcell model (b).

Figure 10. Relationship between log(K) and log(T2g) based on the SDR model (a); relationship between log(K) and log(
FFI
BVI
) based on the Coates

model (b).
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the former providing the main adsorption space for gas, while
the latter provides the principal flow paths.17,52 (2) NMR data
show that the movable water is mainly contained in seepage
pores (Figure 5). (3) The fitted result in the Pittman model
indicates that pores >0.1 μm are the main contributor to
permeability in coals. Therefore, the Purcell model was
modified by considering the contribution of different sizes of
pores to permeability,

=K F
S

P
5 ( cos )

d
Pu

2
e

0

Hg

ci
2

e

(9)

where φe is called effective porosity, defined as the percentage
of seepage pores to total pores. As shown in Figure 9b,
compared the original model (Figure 9a), the performance of
the modified model is significantly enhanced, with a correlation

coefficient of 0.9875 between permeability and
S

Pe
0

de Hg

ci
2 .

5.2.2. The Modified Purcell Model Using NMR Result (N-P
Model). Since the PSD obtained from the T2 spectrum of
NMR is related to that obtained from the MIP curve, the NMR
T2 distribution has been used to predict the MIP curves in
previous studies.53,54 Consequently, the NMR T2 distribution
can be used for permeability estimation using the Purcell
model.
As discussed in Section 5.1.3, eq 3 shows the relationship

between permeability and capillary pressure K
S

PPu
0

1 d Hg

ci
2 .

The Washburn equation shows the relationship of the capillary
pressure and pore radius:

=P
r

2 cos
c (10)

Substituting eq 10 in (eq 3), we have

= =K F
S

P
F r V5

( cos ) d 5
4

d
r

r

i rPu

0

1 2
Hg

ci
2

2
i

min

max

(11)

where Vrdi
is the volume fraction of pores with the size ri.

According to the basic principles of NMR, the T2 relaxation
is a function of the radius of pores:35

=
T

F
r

1

2

s 2

(12)

where Fs is the pore shape factor (2 for columnar pores) and ρ2
is the surface relaxation. The signal amplitude of NMR is
proportional to the water content in pores. As a result, Vrdi

can
be expressed as

=V CA T( )r i2i (13)

where C is a constant, which is given by the NMR equipment
parameter and A(T2i) is the NMR signal amplitude at T2i
relaxation time.
Substituting eqs 12 and 13 in eq 11, we have

=K FF C T A T
5
4

d ( )
T

T

i iN P s 2 NMR 2
2

2
2min

2max

(14)

T2C acts as a separation point between movable and
irreducible water. The irreducible fluids are mainly trapped

Figure 11. Relationship between permeability and T A Td ( )
T

T
i iNMR 2
2

2
2min

2max (a); relationship between permeability and T A Td ( )
T

T
i ie 2
2

2
2c

2max (b).

Table 3. Accuracy and Precision of Results of Permeability Modelsa

model equation adjusted-R2 MAE (mD) MAD (mD)

Pittman model logKP = 2.1 + 1.4 log φ + 3.1 log r10 0.8661 0.13 0.30

Purcell model =K
S

P
0.47

d
Pu

0

1
Hg

ci
2 0.9628 0.16 1.23

Modified Purcell model
KPu′ = 1.33

S

Pe
0

de Hg

ci
2

0.9926 0.07 0.34

Coates model =
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
i
k
jjj y

{
zzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
K

0.05
FFI
BVIC

NMR
0.86 3.60

0.8869 0.08 0.44

N−P model =K T A T0.017 d ( )
T

T

i iN P e 2
2

2
2c

2max
0.9633 0.06 0.10

aMAE is mean absolute error, and MAD is maximum absolute deviation.
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in adsorption pores, while the movable fluids are stored in
seepage pores where they can be easily drained by
centrifugation.17,37 Since the seepage pores account for the
vast bulk of the permeability, the equation was modified to
consider only these pores,

=K FF C T A T
5
4

d ( )
T

T

i iN P s 2 e 2
2

2
2c

2max

(15)

The permeability prediction is poor for low-permeability
samples when the new N−P model considers the total porosity
(Figure 11a). In contrast, the new N−P model that uses only
the seepage porosity has a good fit for all samples (Figure 11b).
5.3. Comparison of Permeability Models. In this study,

statistical error analysis was used to compare the permeability
models and select the most appropriate one. Different error
measurements provide different insights. The adjusted
coefficient of determination (Radj2 ) is used widely to measure
the goodness of a fit,10 and regression models with different
degrees of freedom variables can be compared for the accuracy
of the permeability estimation accuracy Radj2 . The mean
absolute error (MAE) expresses the average of absolute errors
of the predicted data to actual data, while the maximal absolute
deviation (MAD) measures the maximum difference between
predicted and actual data. The correlated permeability models
and the error measures of the permeability models are
summarized in Table 3.
Figure 12 shows the correlation between measured

permeability and permeability estimated by the various models.

The red dashed line identifies the high and low ranges for a
difference of 0.1 mD. Although the Radj2 value of the Purcell
models is 0.9628, it greatly overestimates the air permeabilities
for all samples (the red circles in Figure 12) and has the
highest MAE and MAD values (0.16 and 1.23 mD,
respectively; Table 3). This is because a significant amount
of mercury is injected into the smaller pores of coal samples
(Figure 3). These pores do not contribute to permeability but
are included in the models for predicting permeability.29,50 The
modified Purcell model provides a very good linear relation-
ship with air permeability (Radj2 = 0.9875), and the MAE and
MAD values are extremely low, respectively 0.07 and 0.34 mD
(the blue triangles in Figure 12). This model is 50% more
accurate than the Purcell model. The Pittman model and
Coates model (black rectangles and green diamonds in Figure
12), both empirical models based on sandstone correlations,
show good linear relationships with air permeability with Radj2
of 0.8661 and 0.8869, respectively. Both of them have good

estimates of air permeability at high permeabilities (>0.5 mD)
where MAD <0.1 mD, but show relatively poor performance at
low permeabilities (<0.5 mD) where MAD is 0.3 and 0.44 mD,
respectively. As reported previously, the poor performance at
low permeabilities is because these models assume that
porosity and permeability are highly correlated, which is not
true for low-permeable coals, where porosity-permeability
relationships are weak.16,23 When all error parameters are
combined, the new N−P model provides the best prediction of
coal permeability and provides permeability prediction for coal
with an accuracy of 0.1 mD (yellow pentagon).
In-situ applications are a potential use of the proposed

models, particularly, since NMR analysis can characterize the
pore structure and PSD of small, irregularly shaped samples
that are difficult to analyze using conventional methods.47

Consequently, if permeability cannot be directly measured, the
pore characteristics can be determined from small samples
(such as portions of sidewall core samples or drill cuttings) and
used to estimate permeability.

6. CONCLUSIONS
The different models for the prediction of permeability and
their applicability to coals have been compared. Based on the
Purcell permeability model using MIP data, a new model using
NMR data is proposed to estimate the permeability. The
following conclusions can be drawn.

(1) Fractal dimension can help to distinguish the inter-
particle voids filling, intrapore filling, and matrix
compression. The influence of interparticle voids and
coal compressibility should be carefully examined and
corrected before using MIP results to predict coal
permeability.

(2) In coals, the bulk of the permeability is contributed by
the seepage pores (>0.1 μm), while the contribution of
the adsorption pores (<0.1 μm) to permeability is
negligible.

(3) The Pittman model and Swanson model, which consider
only a single pore size point on the mercury curve, are
unsuitable for the prediction of permeability in coals.
Additionally, the Purcell and SDR models, which use the
entire PSD, fail to predict the permeability of coals when
the permeabilities are low.

(4) The Purcell model was modified by considering the
specific contribution of different size pores to perme-
ability. The modified model improves the predictive
quality by increasing the R2 and reducing the average
absolute error by a factor of approximately 50%.

(5) The modified Purcell model was then applied to NMR
data. The coal permeability can be predicted by the new
model with an accuracy of 0.1 mD. The model proposed
in this paper has the potential to be used in in-situ
permeability measurements.
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