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a b s t r a c t   

Proteins are important ingredients in food and feed, they are the active components of many pharma
ceutical products, and they are necessary, in the form of enzymes, for the success of many technical pro
cesses. However, production can be challenging, especially when using heterologous host cells such as 
bacteria to express and assemble recombinant mammalian proteins. The manufacturability of proteins can 
be hindered by low solubility, a tendency to aggregate, or inefficient purification. Tools such as in silico 
protein engineering and models that predict separation criteria can overcome these issues but usually 
require the complex shape and surface properties of proteins to be represented by a small number of 
quantitative numeric values known as descriptors, as similarly used to capture the features of small mo
lecules. Here, we review the current status of protein descriptors, especially for application in quantitative 
structure activity relationship (QSAR) models. First, we describe the complexity of proteins and the prop
erties that descriptors must accommodate. Then we introduce descriptors of shape and surface properties 
that quantify the global and local features of proteins. Finally, we highlight the current limitations of protein 
descriptors and propose strategies for the derivation of novel protein descriptors that are more informative. 
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1. Introduction 

Proteins are important components of food and feed, providing 
amino acids that facilitate growth and maintain health [1,2]. Many 
active pharmaceutical ingredients (APIs) are also proteins, including 
subunit vaccines, antibodies, blood products and replacement en
zymes [3–6]. Furthermore, numerous industrial processes rely on 
enzymes for the catalysis of chemical reactions that are too complex 
and/or expensive for total chemical synthesis, such as the production 
of paclitaxel [7,8]. Unfortunately, the manufacturability of proteins 
can be hindered by low solubility, a tendency to aggregate or in
efficient separation from other proteins, nucleic acids or small mo
lecules [9,10]. Several in silico approaches have therefore been 
developed to address these challenges, including rational protein 
engineering and model-based bioprocess development [11–13]. 

The approaches typically require the quantification of properties 
such as protein surface charge distribution to facilitate in silico 
screening and optimization. The quantitation can be achieved using 
descriptors that are discrete scalars (e.g., the number of positive 
surface charges), continuous scalars (e.g., the isoelectric point, pI), or 
vectors that capture molecular features and thus act as surrogates 
for actual properties [14], i.e. they reduce the dimensionality of an 
object, here: a protein. For example, instead of using the explicit 
charge of each surface-expose functional group of a protein at a 
given pH (e.g. 19 negative and 3 positive charges at pH 8.5) one can 
use the isoelectric point or net charge (e.g. 16 negative at pH 8.5) as 
global charge descriptors. 

A key limitation of this dimensionality reduction is that, de
pending on their definition, descriptors may fail to capture protein 
complexity and the properties relevant for a specific application, e.g. 
the prediction of chromatographic protein separation. Specifically, 
the use of descriptors is characterized by an information loss. In 
particular, the complex interactions between different protein 
properties, such as shape and surface charge, can be challenging to 
capture in a descriptor. Hence, it is advisable to choose or develop 
descriptors using domain knowledge about the underlying mole
cular mechanisms of a specific application to ensure that the re
levant information is maintained after dimensionality reduction. 

The descriptor concept is well established in chemometrics, 
where it is used to characterize small-molecule compounds with a 
mass of less than 5000 kDa [15–17]. For example, typical small- 
molecule descriptors include the number of nitrogen atoms, the 
number of phenol rings, and the number of hydroxyl groups. Several 
suggestions for adapting the concept to proteins have been made  
[18–20] and discussing all of them in detail is beyond the scope of 
this review. 

One main application of descriptors in case of proteins is quan
titative structure–activity relationship (QSAR) modeling [21,22]. 
QSAR models correlate molecular properties (e.g., descriptors such 
as the isoelectric point) with experimental data reporting measur
able properties such as solubility, ligand interaction, or oligomer
ization [23–25]. If descriptors can be calculated ab initio, for 
example based on the protein’s shape and surface properties, such 
correlations can facilitate a priori predictions about molecular 
properties that have not been determined experimentally. Accord
ingly, manufacturability can be assessed during early product design 

and bioprocess development so that resources can be allocated to 
the most promising candidates. 

Whereas descriptors provide meaningful information about 
small molecules, they quickly become ambiguous and thus irrele
vant as the molecular mass and complexity increase. The ambiguity 
is more pronounced in proteins because they are polymers com
posed of a limited number of different but repeating monomeric 
building blocks. For example, two proteins like endo-beta-1,4-glu
canase B (UniProt ID O74706) and glyceraldehyde-3-phosphate de
hydrogenase A (UniProt ID P0A9B2) may have a similar atomic 
composition (3112 vs 3126 carbon atoms) and molecular mass 
(69.9391 kDa vs 70.8043 kDa) but adopt completely different 
structures because of differences in the primary sequence, whereas 
two proteins with different compositions but a limited degree of 
sequence homology may form similar structures [26–28]. Accord
ingly, descriptors must be tailored for proteins and the specific 
process or application problem. In the context of chromatography, 
the problem may be the determination of protein–ligand interac
tions that can in turn be used to predict isotherm parameters and, 
ultimately, separation conditions [29]. Protein descriptors can be 
discriminated into various types depending on the application con
text. Here, we classify protein descriptors into two main groups: 
surface descriptors and those related to shape, size or structure (for 
brevity, we describe these as surface descriptors and shape de
scriptors hereafter). These categories are useful in the context of 
modeling protein separation, e.g. during chromatography, as, for 
example, shape will determine diffusion whereas surface properties 
will determine sorption processes. However, other classifications 
may be more suitable in a different context and some descriptors are 
ambiguous because they could be assigned to more than one group. 
For example, the isoelectric point captures aspects of the protein 
surface charge and the (solvent) accessible surface area ((S)ASA), 
which is related to shape. 

In this review, we describe the complex features of proteins that 
must be captured by descriptors and the introduce the various fa
milies of shape and surface descriptors that are used, highlighting 
their applications and limitations, specifically in the context of QSAR 
models. Finally, we discuss properties that are underrepresented by 
current descriptors and opportunities to cover them when creating 
novel descriptors. We focus our discussion on bioprocess develop
ment, specifically downstream processing, such as chromatographic 
purification. We will not cover membrane proteins or the methods of 
descriptor selection because this must be carried out in the context 
of specific QSAR applications [30]. Also, descriptors covering biolo
gical function will not be discussed. 

2. Determinants of protein structure complexity that have to be 
covered by descriptors 

The purpose of protein descriptors is to capture chemical in
formation and relevant properties of the three-dimensional struc
ture in a simple, often one-dimensional form, for example as a scalar 
or set of scalars like the k largest positively charged surface patches. 
Therefore, in an abstract sense, calculating the numeric value of a 
descriptor is a complexity reduction task. The challenge is to mini
mize the information loss when extracting the important aspects of 
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protein properties, for example the surface charge (distribution), 
while reducing the dimensionality of the original object [31]. 

To illustrate the challenge of complexity reduction, we will 
briefly describe the important structural elements of proteins. The 
four well-known structural levels are the primary structure (amino 
acid sequence), the secondary structure (repeating local configura
tions such as α-helices, β-sheets and β-turns, generally held together 
by hydrogen bonds) or lack thereof (random coil), the tertiary 
structure (overall configuration or “fold”, defined by the path of the 
polypeptide backbone through space, which is stabilized by disulfide 
and hydrogen bonds as well as ionic and hydrophobic interactions) 
and the quaternary structure (assembly of polypeptide subunits into 
a higher-order structure) [32]. The quaternary structure is also de
scribed as oligomerization and may comprise multiple copies of the 
same polypeptide (homomultimer) or different polypeptides (het
eromultimer) [33]. Various degrees of oligomerization exist, starting 
with the monomer (e.g., bovine serum albumin; UniProt ID P02769) 
and dimer (e.g., human alcohol dehydrogenase class 3; UniProt ID 
P11766), but building to complex assemblies such as hetero-16-mers 
(e.g., ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO); 
UniProt IDs P00876 and P69249) and hetero-24-mers (e.g., human 
ferritin; UniProt IDs P02792 and P02794). Importantly, oligomer
ization can change the properties of the monomeric unit compared 
to the free monomer. The oligomer always has a larger mass and 
size, but the monomeric shape and surface charge may also change. 
For example, human ferritin monomers have a mass of 20–21 kDa 
and a size of ∼4 nm, whereas the 24-mer has a mass of ∼400 kDa 
and a diameter of ∼10 nm [34]. In addition, the free monomers have 
a flattened shape whereas the oligomer is a hollow sphere. Similarly, 
monomers of antibodies are composed of globular domains (e.g., 
immunoglobulin gamma heavy chain constant region 2B; UniProt ID 
P01867) but assemble into a Y-shaped tetramer, and in some cases 
higher-order structures with additional components. Even without 
considering oligomerization, the tertiary structure of proteins can 
adopt diverse shapes, including dense spheres (e.g., bovine chymo
trypsinogen A; UniProt ID P00766), barrels (e.g., red fluorescent 
protein drFP583; UniProt ID Q9U6Y8), rods (e.g., human fibrinogen; 
UniProt ID P02675) and hooks (e.g., integrin α-E; UniProt ID P38570). 
Surface properties are also affected by oligomerization. For example, 
the (structure-based) isoelectric points of the tobacco RuBisCO large 
and small subunits of are 5.60 and 6.51 respectively, whereas the 
isoelectric point of the hetero-16-mer is 6.21. 

Post-translational modifications can also alter both the shape and 
surface properties of proteins. Glycosylation significantly increases 
the mass of a protein (e.g., by ∼1.9 kDa per site or 5–10% of a protein  
[35]), and affects the surface properties in a number of ways. On one 
hand, carbohydrates can shield the surface and prevent certain areas 
interacting with other molecules, for example to modify or suppress 
recognition by the immune system [36]. On the other hand, many 
carbohydrates feature charged monomers that alter the protein 
surface charge (distribution) [37]. Other post-translational mod
ifications may be smaller but can nevertheless alter the surface 
properties of a protein dramatically. For example, a phosphate group 
has a diameter of less than 0.4 nm [38], but adds two negative 
charges (depending on the pH of the surrounding medium). Simi
larly, methylation and acetylation remove a potential hydrogen 
bonding site and increase the hydrophobicity of the surface [39]. 
Protein databases such as UniProt (https://www.uniprot.org/) pro
vide annotated information about potential and reported post- 
translational modifications, but the set of modifications present on a 
given protein may vary and is difficult to predict a priori, especially if 
a protein is produced in a heterologous host that may not create 
native modifications authentically. For example, human proteins 
expressed in yeast often contain high-mannose glycans lacking the 
charged, terminal N-acetylneuraminic acid residues normally found 
in the native protein [40]. This makes it difficult to account for post- 

translational modifications when calculating descriptors, especially 
if samples of purified, authentic protein are not available for analysis. 
Nevertheless, all these layers of structural complexity should be 
considered when designing and calculating descriptors of protein 
surface and protein shape properties in order to obtain values that 
are representative of the actual protein. 

3. Descriptor availability, redundancy and applicability 

Given the structural complexity of proteins, many descriptors 
have been developed to cover different properties. Some descriptors 
were designed for the characterization of small molecules and cap
ture atomic properties such the number of specific nitrogen atoms or 
chemical groups such as aromatic rings [21]. These are often of 
limited use for proteins because they are unlikely to capture the 
surface and shape properties in a meaningful way and their values 
can be similar even for proteins lacking structural homology (see the 
carbon atom example above). Others have been developed specifi
cally to quantify protein shape and surface properties, such as the 
number, shape and size of surface patches (contiguous protein sur
face areas with a consistent property, like hydrophobicity or positive 
charge) [41,42]. However, the underlying property (e.g., positive 
charge) is typically a continuous parameter and it is difficult to de
fine the boundaries and thus the size and number of patches. A given 
position on the protein surface is unlikely to have an exactly zero net 
charge but will instead exhibit a slight charge due to the combined 
effects of positively and negatively charged amino acid side chains 
near that position [43]. A common workaround is to define thresh
olds for the patch boundaries, for example the minimal positive 
charge could be 10 eV. However, this means the boundary condition 
of a patch is defined arbitrarily, and the relevance of the threshold 
with respect to applications such as protein binding to a charged 
chromatography ligand would be unclear [24,44]. This is often ad
dressed by creating sets of similar descriptors that use different 
thresholds, e.g. the k largest patches. But even this creates new 
difficulties because introducing sets of similar descriptors sub
stantially inflates the total number of descriptors. Furthermore, the 
descriptors within such a set are highly redundant and collinear by 
design, aggravating the selection of the most relevant descriptors 
during subsequent QSAR model building [45]. An informed threshold 
selection and/or descriptor pre-selection by experts with domain 
knowledge (e.g., in chromatography) can reduce the number of de
scriptors but will rely on personal experience and may be unin
tentionally biased. Therefore, a more rational definition of 
thresholds and descriptors would be helpful in this context as was 
also recently discussed in the context of small molecules and when 
comparing self-supervised and manually selected features [46,47]. 

Another major limitation of many protein descriptors is their 
averaging effect. For example, calculating the dipole momentum of a 
protein will integrate polarity over the entire molecule, which can 
mask distinct differences both on the surface and between surfaces. 
Indeed, molecules with different partial charge distributions may 
have the same dipole momentum (Fig. 1). Accordingly, the descriptor 
will not properly capture the intramolecular heterogeneity. The in
ability of Pearson’s correlation coefficient to distinguish between 
different types of (non-randomly) scattering data can be regarded as 
an analogy in this context. Therefore, novel descriptors may be re
quired that maintain information about the heterogeneity of prop
erties such as shape and charge distribution. 

The various types of descriptors can be calculated based on either 
the amino acid sequence or the protein structures such as those from 
the Protein Data Bank (PDB) using many different commercial or 
free-to-use software tools (Table 1). Some of these tools have re
cently been reviewed [45], and tool selection may be driven by the 
subsequent application of the descriptors and resulting QSAR model 
(e.g., the prediction of protein separation or solubility [48,49]). 
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Regardless of which software tool is used to calculate the de
scriptors, the values can vary substantially based on the hydrogen 
atom addition and energy minimization operations applied to the 
structures before descriptor calculation. For example, we obtained 
electric dipole moments of catalase (UniProt ID P00432, pdb ID 3re8) 
ranging from 371 to 812 Debye (1.237 ×10-27 to 2.708 ×10-27 C m) 
when using Molecular Operating Environment (MOE; Chemical 
Computing Group, Canada) for the calculation. In contrast, an open 
access server provided a value of 121 Debye (0.404 ×10-27 C m) [70]. 
At best, this variability can be accommodated by calculating the 
descriptors of a protein several times for structures derived from 
individual hydrogen atom addition and energy minimization pro
cedures or using slightly different parameters for the latter (e.g., 
force field, pH and temperature). 

4. Protein shape descriptors 

Protein shape descriptors often simplify the overall complexity of 
a protein structure by reporting sum parameters such as the mole
cular mass, the van der Waals (vdW) area or (S)ASA and corre
sponding volumes [71]. Similarly, protein properties may be 
averaged and represented through convex hulls [72] or equivalent 
spheres that share a certain feature with the protein of interest. 
Accordingly, the radii of such spheres are descriptors too: for ex
ample, the hydrodynamic radius (also called the Stokes radius, 
equivalent to diffusion properties, [73]) or the radius of gyration 
(equivalent to the moment of inertia, [74,75]), which can be used to 
predict polymer-induced precipitation and/or diffusion in porous 
media as well as potential sites of molecular interactions [76–79]. 
Recently, models have been developed that correlate the hydro
dynamic radius and radius of gyration for unstructured proteins [80]. 
Furthermore, the radii of gyration and eccentricity are measures of 
compactness [19,81], and thus indicate how well a protein complies 
with the frequent assumption of a sphere-like shape made by many 
predictive models. Indeed, predictions about friction or sedimenta
tion often assume smooth spheres [82] and so do models predicting 
unstructured regions of proteins. Eccentricity and the principal axes 
of inertia are interesting indicators of molecular anisotropy and are 
linked to ligand-binding sites [76]. They can mask distinct structural 
differences between proteins because molecules differing in shape 
may have the same eccentricity. Specifically, eccentricity is based on 
the minimum volume-enclosing ellipsoid [19], which can be iden
tical even between proteins that occupy substantially different 
fractions of the volume of that ellipsoid (Fig. 1). 

Shape descriptors can also account for the number of secondary 
structures and their relative abundance in a protein. This is im
portant because motifs featuring, for example, up to four α-helices 
often mediate protein–protein interactions [83,84]. The descriptor 
calculation typically uses propensities derived from theoretical 
considerations or generalized experimental observations, as pro
posed by Chou and Fasman [85], and can be improved if data from 
actual protein three-dimensional structures are available from X-ray 
crystallography, nuclear magnetic resonance spectroscopy or 
homology modeling studies. Furthermore, the relative orientation of 
secondary structures, which is important for the formation of 
binding motifs, is not captured by these descriptors. 

The protein shape is also affected by intrinsically unstructured, 
disordered or natively unfolded regions, which facilitate flexible and 
context-specific binding [86,87]. These are described as intrinsically 
disordered regions (IDRs) if they are found within an otherwise 
structured protein, or intrinsically disordered proteins (IDPs) if the 
entire protein is affected. IDRs can be predicted based on propen
sities similar to those of helices and sheets, for example using neural 
networks [87,88]. Accordingly, the corresponding descriptors share 
similar limitations such as the reliance on biased datasets over-re
presenting globular proteins while neglecting other shapes [89]. 

At the level of primary structure, proteins can be described using 
graph theory approaches, such as the connectivity index and Wiener 
index. These indices facilitate primary sequence alignments [90] as 
well as the design of protein interaction networks [91,92], but are 
more likely to be relevant for small molecules. For example, the 
Wiener index is the sum of the shortest path between all pairs of 
vertices (e.g., atoms on the protein surface), yet the number of such 
pairs m increases as a function of the number of vertices n according 
to the equation m = n × (n – 1)/2, so that values can be large for 
proteins but differences between proteins may be small despite 
substantial differences in shape. Interestingly, protein size and oli
gomerization, as well as structural elements such as linker se
quences, seem to correlate with the relative abundance of amino 
acids like alanine, which may also be useful as a descriptor [93,94]. 

In contrast, global, rotation-invariant descriptors of protein shape 
may be derived from a series expansion of three-dimensional 
functions. Although these descriptors are based on the global shape 
of a protein, they account for distinct local features and therefore 
circumvent some of the shortcomings described above for conven
tional descriptors. One successful example is the so-called Zernike 
3D descriptor, which allows the rapid identification of similar pro
tein shapes and surfaces involved in protein–protein interactions  
[19,95,96]. Zernike 3D descriptors are vectors of, for example, 121 
entries. Each entry represents a norm of a vector of coefficients 
derived from the expansion series of a three-dimensional function 
formulated on an orthogonal basis [96], and different three-dimen
sional functions can be used [95]. Accordingly, protein shape simi
larity can be quantified by calculating the difference in the Euclidian 
norms of the Zernike 3D descriptors of two proteins or using similar 
distance measures such as the Manhattan metric. In addition to this 
tensor algebra-based approach, linear algebra and other forms can 
be used as well [97]. The topic of 3D molecular descriptors for 
proteins has recently been applied and reviewed elsewhere [97–99]. 
In this context, the Laplace-Beltrami operator may be used as an 
alternative option to describe protein shapes invariant to rotation 
and translation [100,101]. Specifically, this operator can be used to 
calculate local geometric descriptors, such as the heat kernel sig
nature [102], which can be used to create a fingerprint-like map for 
each node on a discretized, polygonal surface, for example of a 
protein. A challenge of this approach is the definition of meaningful 
time points at which a surface is to be evaluated, potentially creating 
a large number of (partially) redundant descriptors. There are var
ious methods to reduce the dimensionality of the high-dimensional 
local descriptors and condense them into predefined global 

Fig. 1. Descriptor ambiguity. A. Schematic representation of a protein (black ellipse) 
with positive (red) and negative (blue) surface charges creating a net zero dipole 
moment. B. Alternative schematic for a different protein (black circle) with the same 
net zero dipole moment as in A but different surface charge distribution, i.e. a central 
patch of negative surface charge. C. Schematic representation of protein domains 
(green dots) and the corresponding minimum volume-enclosing ellipsoid use to 
calculate eccentricity (black ellipse). D. Alternative protein with the same minimum 
volume-enclosing ellipsoid as in C, but substantially different domain architecture 
and mass. 
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descriptors, e.g. by calculating the covariance matrix or aggregating 
eigenfunctions [101,103]. When combining Laplace-Beltrami op
erator-derived descriptors with methods such as bag-of-features  
[104], it may become possible to simultaneously capture protein 
shape and surface properties, for example by correlating protein 
properties with a heat kernel signature [102]. (Fig. 2). 

5. Protein surface property descriptors 

The functionality of the protein surface comprises various im
portant properties that affect solubility and interactions with other 
molecules, including proteins, substrates, or ligands during chro
matographic separation. These surface properties are defined by the 
functional groups of amino acid side chains exposed on the protein 
surface, including charged, polar or hydrophobic residues (among 
other classifications [105]), and may constitute patches on the sur
face if several amino acids of the same type cluster together [12]. The 
corresponding protein surface regions may partially overlap, making 
it difficult to define boundaries as discussed above. Protein surface 
descriptors typically report properties as counts (e.g., number of 
positively charged surface patches) or sums (e.g., total positively 
charged surface area), both of which can be normalized against 
another property such as the (S)ASA. Sets of descriptors can capture 
the same property using different thresholds (also known as gates), 
defined by a minimum number, size, or other parameter. Like shape 
descriptors, surface descriptors can capture properties globally and 
locally as discussed below for charged, polar and hydrophobic de
scriptors. 

5.1. Charge 

A prominent global descriptor of a protein’s surface charge 
properties is the isoelectric point (pI). This can be calculated from 
the primary sequence alone [106] or by accounting for structural 
information reflecting the functional groups accessible on the pro
tein surface [107]. Databases with proteome-wide isoelectric point 
information are now available [108] and this metric can be used, for 
example, as a predictor of crystallization efficiency [109] whereas it 
may be insufficient to predict protein–ligand interactions in a 
chromatography setting [110]. A property related to the isoelectric 
point is the overall net charge of a protein in a buffer with a given 
pH. In molecular dynamics simulations, this property correlates well 
with the colloidal interaction strength between proteins [111]. 

Protein surface charge can also be characterized by the number 
and size of positively and/or negatively charged patches, and 
thresholds for the minimum patch size (e.g., in Å2 or nm2) and 
charge (e.g., in eV) can be applied. Additional constraints may be 
formulated to specify the surface charge descriptors. For example, 
the charged surface area may be limited to the k largest patches or 
counting can be restricted to certain protein domains or parts 

thereof, such as the complementarity determining regions (CDRs) of 
an antibody. Such charge-based descriptors have been used in QSAR 
models for the successful prediction of retention on different types 
of charged chromatography resin [24,48]. Locally, descriptors may 
report residue pKa values, which can be combined with a protein’s 
pseudo amino acid composition to discriminate between mesophilic 
and thermophilic proteins [112]. 

Other descriptors relate surface charge to the behavior of pro
teins in suspension. Specifically, the ζ-potential is the electric po
tential of a protein at its slipping plane when moving through a 
suspension. The ζ-potential can be calculated for different condi
tions, such as bulk suspensions or confined environments like pores  
[113,114], and depends on properties such as pH and conductivity, 
which must be specified accordingly [115]. The ζ-potential can be 
used to predict the likelihood of protein aggregation, with values 
close to zero indicating a high propensity and values <  –40 or >  40 
mV typically indicating colloidal stability [116]. A closely related 
descriptor is the Debye (screening) length (κ-1), which is a measure 
of how quickly (in terms of distance) the effects of the electric po
tential of a protein decline in the surrounding suspension. Accord
ingly, the Debye length depends on the salt type and concentration 
as well as temperature, and can be used to describe the effect of 
suspension properties on the formation of a protein–polyelectrolyte 
complex [117]. 

5.2. Polarity 

Whereas charge is defined by the presence of ions of opposing 
charge, polarity concerns partial charges that arise when the elec
tronegativity differs between two covalently bound atoms [118]. 
Accordingly, polarity-based descriptors may account for surface 
properties based on charge, non-charged but polar features, or a 
combination of both, blurring the boundary between charge and 
polarity-based descriptors. Dipole moments exemplify a family of 
global, polarity-based descriptors, capturing the overall anisotropy 
of the surface (partial) charge distribution of a protein. On one hand, 
this family consists of the dipole direction and dipole moment of a 
protein, the latter distinguishing between proteins that are likely to 
precipitate in the presence of either ammonium sulfate or poly
ethylene glycol [18]. The (charge) separation distance and (charge) 
shape regularity are descriptors with a similar information content, 
which also applies to the ζ-dipole moment derived from the ζ-po
tential described above. On the other hand, dipole moments may 
also be calculated for each of the three axes of a Cartesian coordinate 
system or for the principal axes of inertia of the protein as discussed 
above. More selective measures of polarity can also be applied, for 
example by calculating the charge symmetry of variable regions of 
antibodies, providing useful descriptors for the in silico prediction of 
antibody solubility [25]. 

Fig. 2. Discretized polygonal surface of plastocyanin B’/B’’ (UniProt ID P35477) colored according to its heat kernel signature [102] at various time points. The heat kernel 
signature of each vertex reflects a theoretical heat dissipation over time and serves as a tool to elucidate distinct local geometry determined by the intrinsic properties of the 
protein surface that can be used as a descriptor. 
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The polarity of a protein may also be predicted from the primary 
sequence based on polarity propensities of the individual amino 
acids [119,120], but this approach neglects any structural informa
tion and is limited in value. The same applies to descriptors such as 
hydrophilicity indices, as well as the number of hydrogen-bond 
donors and acceptors, which are probably more relevant for small 
molecules because, for example, there are fewer donors per mole
cule compared to proteins, and differences thus facilitate better 
discrimination. 

5.3. Hydrophobicity 

Surface hydrophobicity is important for protein–protein re
cognition [121], aggregate formation [122], solubility, and proteo
lytic stability [123]. Many descriptors therefore encode hydrophobic 
properties. The total hydrophobicity of surface-exposed and solvent- 
accessible amino acid side chains is a global descriptor [124], which 
can be refined by applying a quadratic model to these values [125]. 
This modified descriptor was successfully used to predict protein 

Fig. 3. Comparison of hydrophobicity scales. A. The hydrophobic propensities of the 24 hydrophobicity scales used in ProtScale are plotted for each of the 20 canonical amino 
acids. Mean (red), frequently referenced scales (Kyte & Doolittle, green), the scale ordered in reverse (Parker, orange), and the scale with the lowest absolute correlation to the 
other scales (Welling, blue) are highlighted in color. B. Same hydrophobicity scales as in A but with standardized values. C. Maximum spanning tree of the absolute correlations 
between hydrophobicity scales with inversion number (IN) to average scale and value range of scale (RoS). The r values at edges indicate the Pearson correlation coefficient 
between the connected scales. D. Color code of the boxes in C. according to the inversion number of the corresponding hydrophobicity scale. The inversion number quantifies the 
similarity of the order of amino acid hydrophobicity between the different hydrophobicity scale. Specifically, each scale is compared to the average amino acid order of hy
drophobicity scaled between 0 and 1, e.g. an IN of 0 would indicate a perfect match with average whereas a value of n⋅(n-1)/2 (here:190) indicates a fully inverted order. E. Amino 
acid hydrophobicity averaged over all scales. The five inverted hydrophobicity scales (blue) were reverted when calculating the average to ensure a uniform direction in hy
drophobicity. Amino acids are given in three-letter code in A, B and E. 
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retention times during hydrophobic interaction chromatography. 
Similarly, partitioning coefficients, for example in octanol–water 
two-phase systems (logP(o/w)), can be used to describe the overall 
hydrophobicity/lipophilicity of a protein. However, such descriptors 
may be difficult to predict ab initio and the overall hydrophobicity 
does not reveal the distribution of hydrophobic patches on the 
protein surface. Similar to global charge descriptors, the hydro
phobic dipole moment is a metric that quantifies the degree of 
asymmetry in surface hydrophobicity [126]. 

The hydrophobic dipole moment can also be calculated for 
fractions of a protein, such as a domain or secondary structure, as an 
indicator for intramolecular and intermolecular interactions [126]. 
However, information about the spatial distribution and relative 
orientation of the individual moments is not stored in these de
scriptors. Similarly, hydrophobicity can be calculated for the k largest 
patches, a certain number of patches, or a number of patches above a 
certain threshold, as discussed for surface charge above. It is im
portant to note that if threshold selection is arbitrary and many 
thresholds are used, the number of collinear descriptors increases, 
which also increases the risk of overfitting QSAR models if the size of 
the training set is small compared to the number of de
scriptors [127]. 

At the primary sequence level, the hydrophobicity index of each 
amino acid in a protein can be aggregated to an overall hydro
phobicity. However, many different definitions of this index have 
been developed over time [128], 24 of which are implemented in 
ProtScale, a protein identification and analysis tool on the Expasy 
server [129]. The definitions are based on either theoretical calcu
lations or empirical data [130], such as the accessible surface of 
amino acids, the fraction of the number of different amino acids 
buried within proteins, the amino acid free energy of transfer from 
ethanol to water, and peptide retention times during reversed-phase 
chromatography [125]. Accordingly, the ranges and dimensions of 
hydrophobicity indices differ substantially. Nevertheless, 19 of the 
24 indices in ProtScale are strongly connected, with an average 
Pearson’s correlation coefficient of r = 0.81 (Fig. 3, Table S1). The 
remaining five indices still have an average Pearson’s correlation 
coefficient of r = 0.62. They are negatively correlated with the first 
group of indices (r = –0.72), indicating an inversion of the direction 
of the scales compared to the other indices. 

Ultimately, the selection of hydrophobicity descriptors will de
pend on the application. Whereas a dedicated tag-based hydro
phobicity descriptor predicts the binding of tagged proteins during 
hydrophobic interaction chromatography more accurately than an 
index variant describing the entire surface, the accessible surface 
hydrophobicity can be used successfully to describe protein parti
tioning in aqueous two-phase systems [130]. 

5.4. Aggregation 

Charge, polarity and hydrophobicity affect protein properties at 
the same time, and a holistic investigation should therefore account 
for combinations of these factors and their interactions. Calculating 
such combinations may be difficult a priori due to complex mutual 
interferences, including shape effects and environmental effects due 
to solvent and buffer properties. Therefore, a set of descriptors has 
been developed based on empirical polypeptide aggregation data to 
predict the tendency of proteins to form aggregates [131,132]. Al
though this approach can resolve differences caused by single amino 
acid substitutions, it depends on an empirical dataset for calibration 
and is therefore laborious to augment (including a lack of standar
dization between laboratories when generating such data) and is 
inherently biased in favor of polypeptides/proteins available in suf
ficient quantities. Alternative approaches include the Zyggregator 
family of descriptors based on more fundamental properties that can 
be updated quickly from the ever-growing protein structure 

databases, such as the α-helical propensities of amino acids [133]. 
Additional approaches to predict aggregation are statistical ther
modynamic algorithms like TANGO [11], the spatial distribution of 
patches [12,111,134] or explicit molecular interactions [135]. 

6. Conclusion – need for and potentials of novel protein 
descriptors 

Developing meaningful protein descriptors is a major challenge 
because it requires the integration of domain/application knowledge 
and has to balance information loss against redundancy and high 
dimensionality. Therefore, alternatives to commonly used aggrega
tion functions such as mean, maxima, or thresholds have been 
proposed and include fuzzy measures to create global descriptors 
considering interdependencies for molecular descriptors [136,137]. 
These approaches seem promising in improving protein descriptors, 
especially as advanced structure prediction tools such as alpha-fold 
and ESM models provide access to an ever increasing number of 
protein structures [138,139]. 

Many descriptors currently used to capture protein shape and 
surface properties fail to account for the complexity of proteins, such 
as the relative position of charged surface patches or the anisotropy 
of properties in general. This can be a major limitation if distinct 
shape and surface properties strongly influence protein behavior in a 
given application. For example, close proximity between charged 
and hydrophobic surface patches can be required for protein binding 
to multimodal chromatography ligands [140], whereas the absolute 
number, size or strength of these patches may be much less im
portant. Accordingly, descriptors should be cross-correlated and co- 
contextualized for each application using domain knowledge about 
the underlying molecular mechanisms. This approach helps to avoid 
excessive gating (i.e., the imposition of many threshold conditions 
for individual descriptors) and alternative descriptors can be defined 
on a rational basis. In this context, it can be valuable to use de
scriptors originating beyond the protein and biological molecule 
domain. For example, descriptors developed or first used for the 
analysis of cell images [141] or computer vision have been adapted 
to small molecules but not yet to proteins [103]. Three-dimensional 
functions such as the Laplace-Beltrami operator can also provide a 
good source of novel descriptors [142]. 
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