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Abstract: Incorporating with inhomogeneous phases with high electroluminescence (EL) intensity
to prepare smart meta-superconductors (SMSCs) is an effective method for increasing the super-
conducting transition temperature (Tc) and has been confirmed in both MgB2 and Bi(Pb)SrCaCuO
systems. However, the increase of ∆Tc (∆Tc = Tc - Tcpure) has been quite small because of the low
optimal concentrations of inhomogeneous phases. In this work, three kinds of MgB2 raw materials,
namely, aMgB2, bMgB2, and cMgB2, were prepared with particle sizes decreasing in order. Inhomo-
geneous phases, Y2O3:Eu3+ and Y2O3:Eu3+/Ag, were also prepared and doped into MgB2 to study
the influence of doping concentration on the ∆Tc of MgB2 with different particle sizes. Results show
that reducing the MgB2 particle size increases the optimal doping concentration of inhomogeneous
phases, thereby increasing ∆Tc. The optimal doping concentrations for aMgB2, bMgB2, and cMgB2 are
0.5%, 0.8%, and 1.2%, respectively. The corresponding ∆Tc values are 0.4, 0.9, and 1.2 K, respectively.
This work open a new approach to reinforcing increase of ∆Tc in MgB2 SMSCs.

Keywords: MgB2; EL inhomogeneous phase; inject energy; SMSCs; ∆Tc

1. Introduction

According to BCS theory, McMillan theoretically calculated the upper limit of the
critical temperature (Tc) of conventional BCS superconductors to be 40 K, which is called
the McMillan limit temperature [1,2]. Although the Tc of conventional superconductors
has an upper limit, the search for high-Tc superconducting materials has been continuous.
High-temperature superconductors [3,4], iron-based superconductors [5,6], high-pressure
superconductors [7–10], and photo-induced superconductors [11,12] have been gradually
studied and discovered. However, these new superconducting materials are not simple
conventional superconductors. Breaking the McMillan limit temperature remains a chal-
lenge for conventional BCS superconductors. In 2001, the superconductivity of MgB2 was
discovered [13]. The excellent superconductivity, simple preparation process, and espe-
cially high Tc of MgB2 quickly aroused great interest in the scientific community and led
scholars to believe that the McMillan limit temperature may finally be surpassed [14–19].
Various methods have been applied to improve the superconductivity of MgB2 [20–24],
which would not only improve the practical application of MgB2 but also help transcend
the McMillan limit temperature and further elucidate the superconducting mechanism.
Chemical doping is often used to study superconductivity. Unfortunately, many experi-
mental results confirm that this method reduces the Tc of MgB2 [25–30]. Thus far, no useful
strategy for improving the Tc of MgB2 is yet available.

Metamaterial mainly refers to materials made up of two or more media, which can
produce new properties that are not found in a single medium. Meta-method is often
used to achieve some special properties and provides new ways of improving the Tc
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of materials [31–33]. In 2007, our group proposed a method based on the structural
design of metamaterials for increasing the Tc of superconductors [34,35]. In this method,
electroluminescence (EL) materials are directly doped into a superconductor to form a
smart meta-superconductor (SMSC). The external field added during the measurement of
the Tc of SMSC with a four-probe method can excite the inhomogeneous phases to generate
EL, achieving the purpose of strengthening the Cooper pairs, resulting the change of Tc
in macroscopic. A SMSC is a material whose Tc can be adjusted and improved by the
stimulus of external field, which is a new property and cannot be achieved by traditional
doping with a second phase [36–42]. Our group subsequently conducted a series of studies,
mainly using MgB2 as the base superconducting material and Y2O3:Eu3+ as the base EL
material [36–38]. The results obtained in these studies show that unlike conventional
chemical doping, which consistently reduces the Tc of MgB2, the SMSC method of doping
EL materials could help increase the Tc of MgB2. The same conclusions were drawn from
substituting the inhomogeneous phase with YVO4:Eu3+ or luminescent nanocomposite
Y2O3:Eu3+/Ag [39,40] and replacing MgB2 with Bi(Pb)SrCaCuO [41,42]. The effectiveness
of improving the Tc of superconducting materials through the SMSC method by doping
with EL inhomogeneous phases has been proven, but the ∆Tc (∆Tc = Tc − Tcpure) values
obtained are generally small (0.2–0.4 K). Our previous results show that the SMSC method
can only improve Tc at low concentrations of inhomogeneous phases and leads to a small
∆Tc, greatly hindering the further improvement of the Tc of MgB2. Very recently, our
group has increased the Tc of smart meta-superconductor Bi(Pb)SrCaCuO by adjusting the
content of inhomogeneous phase [42], implying that the Tc of MgB2 SMSC can be further
improved through the similar method.

In this work, three types of MgB2 raw materials, namely, aMgB2, bMgB2, and cMgB2,
were prepared with particle sizes decreasing in order. Two types of inhomogeneous phases,
namely, Y2O3:Eu3+ and Y2O3:Eu3+/Ag, were also prepared based on our previous prepara-
tion method [43,44]. Two other types of non-EL dopants, namely, Y2O3 and Y2O3:Sm3+,
were also prepared for comparison. These four types of dopants were incorporated into
MgB2, and the change of Tc was studied. The results show that the Tc of MgB2 doped with
non-EL Y2O3 and Y2O3:Sm3+ was lower than that of pure MgB2 (∆Tc < 0). By contrast, EL
inhomogeneous phases Y2O3:Eu3+ and Y2O3:Eu3+/Ag increased the Tc (∆Tc > 0), and the
optimal doping concentration of the inhomogeneous phases increased from 0.5% to 1.2%
with the decrease of MgB2′s particle size. The optimal doping concentrations for aMgB2,
bMgB2, and cMgB2 were 0.5%, 0.8%, and 1.2%, respectively. The corresponding ∆Tcs were
0.4 K, 0.9 K, and 1.2 K, which exhibit significant improvements compared with the ∆Tcs
(0.2–0.4 K) in previous work [36–40]. Such an improvement of Tc is a novel property given
that all the experiments before our work confirmed that doping a second phase decreased
the Tc of MgB2.

2. Model

Figure 1a–c show the cross-sectional view of MgB2 SMSCs models prepared using
aMgB2 (Φa < 30 µm), bMgB2 (Φb < 15 µm), and cMgB2 (Φc < 5 µm) as raw materials. Φa,
Φb, and Φc refer to the particle sizes of aMgB2, bMgB2, and cMgB2 powders, which will
be described in detail at the experiment section. The brown hexagons represent the MgB2
particles, and the gray dashed lines represent the flakes of inhomogeneous phase with the
surface size of approximately 20 nm and thickness of approximately 2.5 nm [40,45]. The
flakes of Y2O3, Y2O3:Sm3+, Y2O3:Eu3+, and Y2O3:Eu3+/Ag mainly gather on the surfaces
of the MgB2 particles as shown in Figure 1d. Figure 1e–h present the schematics of Y2O3,
Y2O3:Sm3+, Y2O3:Eu3+, and Y2O3:Eu3+/Ag, respectively. The gray flake represents Y2O3.
The yellow, white, and green points represent Sm, Eu, and Ag. Obviously, the introduction
of these four dopants inevitably reduces the Tc of MgB2. This is mainly because the dopants
are not superconductors, which is unfavorable for the superconductivity of MgB2, like
the impurity phase of MgO in MgB2. For convenience, the reduction in Tc caused by
introducing the dopants is referred to as the impurity effect [36–42]. Non-EL dopants Y2O3
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and Y2O3:Sm3+ can only decrease Tc for the introduction of the impurity effect. Unlike
Y2O3 and Y2O3:Sm3+, introducing EL Y2O3:Eu3+ and Y2O3:Eu3+/Ag may increase the Tc,
which is referred to as the EL exciting effect [36–42]. Incorporating with inhomogeneous
phases has already been confirmed to be an effective method of increasing the Tc for both
MgB2 and Bi(Pb)SrCaCuO systems. The variation of Tc is often associated with the change
of electron density. However, in the experiments, the inhomogeneous phases do not react
with MgB2 and the diffusion between the inhomogeneous phases and MgB2 particles is
difficult under the current preparation process and conditions. As a result, the dopants only
exist between the MgB2 particles as shown in Figure 1a–c and cannot change the electron
density significantly. Therefore, in principle, the electron density is not the key tuning
parameter for the variation of Tc. Although the mechanism for this method remains unclear,
we intend to interpret this phenomenon in terms of EL of inhomogeneous phases based on
the results of our experiments. During the measurements, the applied external electric field
forms local electric fields in the superconductor, which could excite the inhomogeneous
phase to produce EL. The generated EL excites the electrons to inject energy, which is
favorable to strengthen the Cooper pairs and enables the increase in Tc. However, the
completeness of this interpretation needs further demonstration given that the photons
may disrupt Cooper pairs. Anyway, further study is required to build a relatively complete
theory, especially for such a new experimental phenomenon.
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Figure 1. The models of MgB2 SMSCs prepared using (a) aMgB2 (Φa < 30 µm), (b) bMgB2 (Φb <
15 µm), and (c) cMgB2 (Φc < 5 µm) as raw materials. Schematic depictions of (d) a particle of MgB2

SMSC, (e) Y2O3, (f) Y2O3:Sm3+, (g) Y2O3:Eu3+, and (h) Y2O3:Eu3+/Ag. The morphology of Y2O3,
Y2O3:Sm3+, Y2O3:Eu3+, and Y2O3:Eu3+/Ag is flaky with surface size of approximately 20 nm and
thickness of approximately 2.5 nm [40].

A distinct competition exists between the impurity effect and EL exciting effect. Tc
would be improved (∆Tc > 0) when EL exciting effect dominates; otherwise, introducing
the inhomogeneous phase would decrease Tc (∆Tc < 0). During the preparation process,
the impurity effect should be reduced as extensively as possible, and the EL exciting
effect should be enhanced to obtain samples with a high Tc. The resulting superconductor
is called a SMSC, and the Tc of which can be improved and adjusted by incorporating
EL inhomogeneous phases [36–42], which is a new property and cannot be achieved by
traditional doping with a second phase. However, the ∆Tcs obtained in our previous
work through the SMSC method are quite small. The low doping concentrations of
inhomogeneous phases greatly hindered the further improvement of Tc. To further improve
the ∆Tc of MgB2, the doping concentration of the inhomogeneous phase must be increased
to enhance the EL exciting effect. However, the impurity effect inevitably increases with the
increasing doping concentration, as analyzed above. The results of our previous work show
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that the impurity effect tends to dominate at high concentrations, which is not conducive
to the Tc of the sample. This phenomenon is principally caused by the agglomeration
of excessive inhomogeneous phase flakes, which cannot disperse well in the sample to
improve Tc at concentrations exceeding the optimal value. A simple strategy to solve
this problem is to reduce the particle size of MgB2 as shown in Figure 1a–c. It can be
seen that reducing the particle size would increase the optimal doping concentration of
the inhomogeneous phase. The inhomogeneous phase flakes can disperse well in the
sample with small particle size and fully exert the EL exciting effect to further increase
∆Tc. Such a strategy has already been successfully applied to increase the Tc of smart
meta-superconductor Bi(Pb)SrCaCuO [42].

3. Experiment

Y2O3, Y2O3:Sm3+, Y2O3:Eu3+, and Y2O3:Eu3+/Ag were prepared by a hydrothermal
method [40,44]. Briefly, a certain amount of Y2O3 and Eu2O3 were weighed and dissolved
in HCl to make a precursor. The precursor was dissolved in benzyl alcohol and stirred
with a magnetic stirrer. A certain amount of octylamine and AgNO3 was added dropwise
into the beaker in turn. Then the mixture was transferred to a high-pressure reaction
kettle, which was then placed in a drying oven and kept at 250 ◦C for 24 h. Thereafter, the
reaction kettle was naturally cooled to room temperature. The precipitate was washed
several times with absolute ethanol to remove impurities and then separated from the
solution by centrifugation, precipitation, and drying. The obtained solids were placed in
a high-temperature tube furnace and heated at 800 ◦C for 24 h to form a white powder.
After illumination, Y2O3:Eu3+/Ag was obtained. The same procedure was carried out
prepare Y2O3, Y2O3:Eu3+, and Y2O3:Sm3+ by controlling the addition of Eu2O3 and AgNO3
and replacing Eu2O3 with Sm2O3. The morphology of Y2O3, Y2O3:Sm3+, Y2O3:Eu3+,
and Y2O3:Eu3+/Ag is flaky with surface size of approximately 20 nm and thickness of
approximately 2.5 nm [40,45].

Three types of MgB2 raw materials marked with aMgB2, bMgB2, and cMgB2 were
prepared in this work. Φa, Φb, and Φc refer to the particle sizes of aMgB2, bMgB2, and
cMgB2 powders. A 500-mesh sieve was used to sift MgB2 powder (99%, 100 mesh, Alfa
Aesar) to prepare aMgB2, indicating that Φa < 30 µm. bMgB2 was prepared by sifting
aMgB2 powder through vacuum filtration with a pore size of about 15 µm, indicating that
Φb < 15 µm. Meanwhile, Mg and nano boron powder sifted through vacuum filtration
with the pore size of about 5 µm were applied to prepare MgB2 powder by the traditional
sintering process. The obtained MgB2 powder was then sifted through vacuum filtration
with the pore size of about 5 µm to prepare cMgB2, indicating that Φc < 5 µm. MgB2-based
superconductors were synthesized by an ex situ preparation process, which is described in
detail in our previous work [37,40]. The doping concentrations in this work all refer to the
mass percentage.

4. Results and Discussion

Figure 2a shows the EL spectra of Y2O3, Y2O3:Sm3+, Y2O3:Eu3+, and Y2O3:Eu3+/Ag,
which confirm that Y2O3 and Y2O3:Sm3+ are non-EL materials, whereas Y2O3:Eu3+ and
Y2O3:Eu3+/Ag show a remarkable EL property. Among the four materials tested, Y2O3:Eu3+/
Ag showed the highest EL intensity because of the composite luminescence [44]. Figure 2b–d
present the SEM images of the pure MgB2 samples prepared using three different raw
materials. Figure 2b is the SEM image of aMgB2, which shows that most of the particle
exceeded 1 µm. For bMgB2, only a few of the particles exceeded 1 µm as shown in Figure 2c.
Figure 2d presents the SEM image of cMgB2, which shows that most of particles are below
500 nm. The particle sizes of aMgB2, bMgB2, and cMgB2 decrease in order. Figure 2e
reveals the XRD patterns of four samples. The black and red curves depict the XRD pat-
terns of aMgB2 and aMgB2 + 0.5% Y2O3:Eu3+/Ag, respectively. The blue and magenta
curves correspond to the XRD patterns of bMgB2 + 0.8% Y2O3:Eu3+/Ag and cMgB2 + 1.2%
Y2O3:Eu3+/Ag, respectively. The black vertical lines represent the standard XRD patterns
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of MgB2. The main phase of all the samples was clearly MgB2. The Y2O3 phase was found
in the doped samples. Small amounts of the unavoidable MgO phase were also detected in
all the samples [46–49]. The XRD patterns of the other samples show a similar feature.
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Figure 3a illustrates the normalized resistivity-temperature (R–T) curves of aMgB2
doped with x% Y2O3 (x = 0, 0.2, 0.5, 0.8, 1.0, 1.2). The black curve corresponds to the
aMgB2 sample, which shows that the Tc of the pure sample was 37.4–38.2 K. The other
curves represent aMgB2 doped with Y2O3 with concentrations of 0.2%, 0.5%, 0.8%, 1.0%,
and 1.2%, indicating that the corresponding Tcs are 37.0–37.8 K, 36.8–37.6 K, 36.5–37.3 K,
36.1–37.0 K, and 35.8–36.8 K. The results show that like conventional chemical doping, the
introduction of non-EL Y2O3 decreases the Tc of MgB2 (∆Tc < 0) and tends to increase the
superconducting transition width [50]. Meanwhile, the Tcs of the doped samples decrease
with the increase of the doping concentration as shown in the inset figure. Figure 3b
shows the normalized R–T curves of aMgB2 doped with 0.5% y (y = 0, Y2O3, Y2O3:Sm3+,
Y2O3:Eu3+, Y2O3:Eu3+/Ag). The doping concentration was fixed at 0.5% base on our
previous work [40]. The Tc values of MgB2 doped with Y2O3, Y2O3:Sm3+, Y2O3:Eu3+,
and Y2O3:Eu3+/Ag were 36.8–37.6 K, 36.9–37.7 K, 37.6–38.4 K, and 37.8–38.6 K. The re-
sults clearly show that non-EL Y2O3 and Y2O3:Sm3+ decreased the Tc of MgB2, while EL
Y2O3:Eu3+ and Y2O3:Eu3+/Ag increased the Tc of MgB2, as shown in the inset. The Tc
values of MgB2 doped with Y2O3:Eu3+ and Y2O3:Eu3+/Ag increased by 0.2 and 0.4 K,
respectively, compared with that of aMgB2. This finding is similar to those of our previous
studies.

Figure 4a illustrates the normalized R–T curves of bMgB2 doped with x% Y2O3:Eu3+

(x = 0, 0.5, 0.6, 0.7, 0.8, 1.0). The black curve corresponds to bMgB2, which shows that the
Tc of the pure sample is 36.6–37.4 K. The other curves are the R–T curves of bMgB2 doped
with Y2O3:Eu3+ with doping concentrations of 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, and 1.0%,
indicating that the corresponding Tcs are 36.8–37.6 K, 37–37.8 K, 37.2–38.0 K, 37.4–38.2 K,
37.0–37.9 K, and 36.7–37.7 K. The Tc of the doped samples first increased and then decreased
with the increase of the doping concentration. The inset summarizes the evolution of ∆Tc
as a function of the doping concentration. The optimal doping concentration and the
corresponding ∆Tc increased to 0.8% and 0.8 K, respectively, compared with those of the
samples prepared using aMgB2 as raw material. Figure 4b demonstrates the normalized R–
T curves of bMgB2 doped with 0.8% y (y = 0, Y2O3, Y2O3:Sm3+, Y2O3:Eu3+, Y2O3:Eu3+/Ag).
The Tcs of bMgB2 doped with Y2O3, Y2O3:Sm3+, Y2O3:Eu3+, and Y2O3:Eu3+/Ag were
35.8–36.6 K, 36.0–36.8 K, 37.4–38.2 K, and 37.5–38.3 K, respectively. Among these samples,
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bMgB2 + 0.8% Y2O3:Eu3+/Ag obtained the highest ∆Tc (0.9 K) because of the high EL
intensity, as shown in Figure 2a.
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Figure 4. Normalized R–T curves of bMgB2 doped with (a) x% Y2O3:Eu3+ (x = 0, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) and (b) 0.8% y (y =
0, Y2O3, Y2O3:Sm3+, Y2O3:Eu3+, Y2O3:Eu3+/Ag). Normalized R–T curves of cMgB2 doped with (c) x% Y2O3:Eu3+ (x = 0,
0.8, 1.0, 1.2, 1.5) and (d) 1.2% y (y = 0, Y2O3, Y2O3:Sm3+, Y2O3:Eu3+, Y2O3:Eu3+/Ag). Insets: the values of ∆Tc (∆Tc = Tc −
Tcpure).
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Figure 4c reveals the normalized R–T curves of cMgB2 doped with x% Y2O3:Eu3+ (x =
0, 0.8, 1.0, 1.2, 1.5). Similarly, the black curve corresponds to the pure sample, indicating that
the Tc of cMgB2 is 36.0–36.8 K. The other curves correspond to cMgB2 doped with Y2O3:Eu3+

at different concentrations of 0.8%, 1.0%, 1.2%, and 1.5%, indicating that the corresponding
Tcs are 36.2–37.0 K, 36.6–37.4 K, 37.0–37.8 K, and 36.4–37.2 K, respectively. It is same with
the results in Figure 3a, that is, Tc first increases and then decreases with the increase of
the doping concentration, as shown in the inset figure. The optimal doping concentration
is 1.2%, and the corresponding ∆Tc is 1.0 K. Figure 4d shows the normalized R–T curves
of cMgB2 doped with 1.2% y (y = 0, Y2O3, Y2O3:Sm3+, Y2O3:Eu3+, Y2O3:Eu3+/Ag). The Tc
values of cMgB2 doped with Y2O3, Y2O3:Sm3+, Y2O3:Eu3+, Y2O3:Eu3+/Ag are 34.7–35.7
K, 34.9–35.7 K, 37.0–37.8 K, and 37.2–38.0 K. Y2O3 and Y2O3:Sm3+ decrease Tc, whereas
Y2O3:Eu3+ and Y2O3:Eu3+/Ag increase Tc. These results are consistent with those of the
samples prepared using aMgB2 and bMgB2 as raw materials. The Tc of cMgB2 + 1.2%
Y2O3:Eu3+/Ag was enhanced by 1.2 K compared with that of the pure sample, exhibiting
the highest ∆Tc among the samples.

Figure 5a shows the SEM image of aMgB2 + 0.5% Y2O3:Eu3+/Ag. Figure 5b–e are the
EDS mapping for elements Mg, Y, Eu, and Ag listed in the lower right corner of each figure.
Figure 5h shows the SEM image of cMgB2 + 1.2% Y2O3:Eu3+/Ag. Figure 5g–j are the EDS
mapping for elements Mg, Y, Eu, and Ag. Given that the inhomogeneous phase did not
react with MgB2, the mapping of elements Y, Eu, and Ag can reflect the distribution of the
inhomogeneous phase in the sample. It can be seen that Y2O3:Eu3+/Ag is relatively evenly
distributed in aMgB2. Similarly, the inhomogeneous phase did not generate significant
agglomeration in cMgB2, even though the optimal concentration was enhanced to 1.2% as
the particle size decreased, as shown in Figure 5g–j. Therefore, the inhomogeneous phase
was able to fully exert the EL exciting effect to further increase ∆Tc at high concentrations.
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Figure 5. (a) SEM image and (b–e) EDS mapping of aMgB2 + 0.5% Y2O3:Eu3+/Ag. (f) SEM image
and (g–j) EDS mapping of cMgB2 + 1.2% Y2O3:Eu3+/Ag.

Table 1 shows the ∆Tcs for aMgB2 + 0.5% x, bMgB2 + 0.8% x, and cMgB2 + 1.2% x (x
= Y2O3, Y2O3:Sm3+, Y2O3:Eu3+, and Y2O3:Eu3+/Ag). For the three kinds of MgB2 raw
materials, non-EL dopants Y2O3 and Y2O3:Sm3+ can only decrease Tc (∆Tc < 0) and the
higher the doping concentration, the lower the Tc. However, EL inhomogeneous phases
can increase the Tc (∆Tc > 0). For the aMgB2 raw material, we prepared the MgB2 SMSCs
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doped with 0.5% inhomogeneous phase. The results show that ∆Tc values for aMgB2
doped with Y2O3:Eu3+ and Y2O3:Eu3+/Ag are 0.2 K and 0.4 K. For the bMgB2 raw material
with a smaller particle size than that of aMgB2, the optimal doping concentration was
first explored by changing the concentration of Y2O3:Eu3+ from 0.5% to 1.0%. The results
show that the optimal doping concentration is 0.8%. Subsequently, 0.8% Y2O3:Eu3+, and
Y2O3:Eu3+/Ag were separately doped into bMgB2 and the corresponding ∆Tc values were
0.8 K and 0.9 K, respectively. Similar results were obtained in the samples prepared using
cMgB2 as the raw material. For cMgB2, which has the smallest particle size among the
three raw materials, the optimal concentration was enhanced to 1.2%. The ∆Tcs for cMgB2
doped with Y2O3:Eu3+ and Y2O3:Eu3+/Ag were 1.0 K and 1.2 K, respectively. These
results indicate that reducing the particle size can effectively increase the optimal doping
concentration of the inhomogeneous phase, thereby enhancing the ∆Tc.

Table 1. ∆Tcs for aMgB2 + 0.5% x, bMgB2 + 0.8% x and cMgB2 + 1.2% x (x = Y2O3, Y2O3:Sm3+,
Y2O3:Eu3+, and Y2O3:Eu3+/Ag).

∆Tcs Y2O3 Y2O3:Sm3+ Y2O3:Eu3+ Y2O3:Eu3+/Ag
aMgB2 (0.5%) −0.6 K −0.5 K 0.2 K 0.4 K
bMgB2 (0.8%) −0.8 K −0.6 K 0.8 K 0.9 K
cMgB2 (1.2%) −1.1 K −1.1 K 1.0 K 1.2 K

In this work, the ∆Tc is improved by increasing the optimal doping concentration
of inhomogeneous phases through reducing the particle size, however, the Tc values of
MgB2 SMSCs are relatively low due to the low Tc of the pure MgB2 sample. As the particle
size decreases, the grain boundaries in the sample increase and the connectivity decreases,
which are disadvantages to the superconductivity [51–53]. One possible solution is to
incorporate the inhomogeneous phase into the interior of the particles to overcome the
disadvantages caused by the increasing grain boundaries with the doping concentration
increasing.

5. Conclusions

Although the effectiveness of improving the Tc of superconducting materials through
the SMSC method by doping with EL inhomogeneous phases has been proven in previous
works, the ∆Tcs obtained are quite small. To further increase ∆Tc, three types of MgB2 raw
materials, namely, aMgB2, bMgB2, and cMgB2, were prepared with particle sizes decreasing
in order. EL inhomogeneous phases were incorporated into these three raw materials with
different concentrations to study the change of ∆Tc. The results show that the optimal
doping concentrations for aMgB2, bMgB2, and cMgB2 are 0.5%, 0.8%, and 1.2%, respectively.
The corresponding ∆Tcs are 0.4, 0.9, and 1.2 K, respectively. Meanwhile, increasing the EL
intensity of the inhomogeneous phase can be considered to further increase ∆Tc. This work
not only proves the effectiveness of the SMSC method in improving Tc but also provides
an alternative approach to improving the Tc of superconducting materials.
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