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Paeoniflorin is derived from Paeonia suffruticosa Andr., Paeonia lactiflora Pall., or Paeonia
veitchii Lynch and has been used in traditional medical applications for more than 2,000
years. Paeoniflorin is a monoterpenoid glycoside with various effects on liver diseases.
Recent studies have revealed that paeoniflorin demonstrates a wide range of activities,
including hepatic protection, cholestasis alleviation, liver fibrosis attenuation, nonalcoholic
fatty liver disease prevention, and hepatocellular carcinoma inhibition involved in multiple
pathways. Moreover, anti-inflammation, antioxidation, and immune regulation with the
regulation of TLR4-NF-kB, ROCK/NF-kB, HO-1, mitochondria-dependent as well as
HMGB1‐TLR4 signaling pathways are correlated with hepatic protection in liver injury and
nonalcoholic fatty liver disease. Antioxidative mechanisms, anti-inflammation, and hepatic
transporter regulation involved in NOX4, PI3K/Akt/Nrf2, NF‐kB, NTCP, BSEP, as well as
MRP2 signals are mainly relevant to the anticholestatic effect of paeoniflorin. The inhibition
of hepatic stellate cell activation and alleviation of extracellular matrix deposition via vast
signals such as mTOR/HIF-1a, TGF-b1/Smads, and JAK2/STAT6 are primarily involved in
the antifibrotic effect of paeoniflorin. The regulation of macrophages also contributes to the
alleviation effect on liver fibrosis. In addition, the reduction of invasion, metastasis, and
adhesion and the induction of apoptosis-related targets, including Bax, Bcl-2, and
caspase-3, are related to its effect on hepatocellular carcinoma. The literature indicates
that paeoniflorin might have potent efficacy in complex liver diseases and demonstrates
the profound medicinal value of paeoniflorin.

Keywords: paeoniflorin, hepatic protection, cholestasis, liver fibrosis, nonalcoholic fatty liver disease,
hepatocellular carcinoma, mini-review
Abbreviations: ALP, Alkaline phosphatase. ANIT, Alpha-naphthylisothiocyanate. BCG, Bacillus Calmette-Guérin. BSEP, Bile
salt export pump. CCl4, Carbon tetrachloride. Con-A, Concanavalin A. DMN, Dimethylnitrosamine. ECM, Extracellular
matrix. GalN, D-galactosamine. LPS, lipopolysaccharide. GSH, Glutathione. GCLc, Glutamate-cysteine ligase catalytic subunit.
GCLm, Glutamate-cysteine ligase modifier subunit. HCC, Hepatocellular carcinoma. HHSECs, Primary human hepatic
sinusoidal endothelial cells. HSCs, Hepatic stellate cells. I/R, Ischemia/reperfusion. MRP2, Multidrug resistance-associated
protein 2. NAFL, Nonalcoholic fatty liver. NAFLD, Nonalcoholic fatty liver disease. NASH, Nonalcoholic steatohepatitis.
NTCP, Na+/taurocholate-cotransporting polypeptide. TBA, Total bile acid. g-GT, g-Glutamyltranspeptidase. i.g., Intragastric.
i.v., Intravenous injection.
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INTRODUCTION

Since the “one gene, one drug, one disease” concept was challenged,
more and more agents have been confirmed to be multiple targets
and signals rather than a single approach (Hasin et al., 2017).
Several natural products applied for thousands of years in
traditional medicine demonstrate a wide range of pharmacological
activities via multiple pathways (Park and Pezzuto, 2017;
Kunnumakkara et al., 2017; Ren et al., 2019). These natural
products might have potent efficacy in complex human diseases
and display profound medicinal value. Among these natural
compounds, paeoniflorin has gained attention as a promising
compound for drug development.

Paeoniflorin is the major bioactive ingredient derived from
Paeonia suffruticosa Andr., Paeonia lactiflora Pall., or Paeonia
veitchii Lynch, which have been used for cerebrovascular disease,
cardiovascular disease, nervous system disease, and liver disease
in traditional Chinese medicine for more than 2,000 years (Zhao
et al., 2016). Paeoniflorin was first isolated from Paeonia
lactiflora Pall. as a monoterpenoid glycoside in 1963 (Zhang J.
et al., 2018). Since then, an increasing number of studies have
reported the numerous pharmacologic effects of paeoniflorin,
such as cerebrovascular protection, cardiovascular protection,
neuroprotection, antihyperglycemia, tumor inhibition,
immunoregulation, abirritation, and hepatoprotection (Zhang
et al., 2017; Chen et al., 2018; Zhai et al., 2018; Tu et al., 2019).
Paeoniflorin has gained a large amount of attention for its effect
on liver diseases as the growth rate of liver diseases has increased
in recent years (Ma et al., 2020). Hence, this mini-review
provides a comprehensive summary of the pharmacologic
activities of paeoniflorin in liver diseases.
HEPATIC PROTECTION

The liver is a vital organ for metabolic functions and for the
purification of toxic chemicals. However, the liver can be
overloaded (Singh et al., 2016). Once the function of the liver
is dysregulated, liver damage will occur. Under certain
circumstances, liver injuries can be induced by various factors,
including chemical pollutants, drugs, alcohols, and liver ischemia
(Peralta et al., 2013; Wang et al., 2016; Kullak-Ublick et al., 2017).
Liver injury is recognized as a highly complex process
accompanied by extensive apoptosis in hepatic cells. Oxidative
stress and inflammatory reactions are thought to play key roles in
this process (Brenner et al., 2013; Li et al., 2015). Moreover,
immune reactions resulting from immune cells such as Kupffer
cells have also drawn much attention due to the unique
characteristics of hepatic sinusoids (Heymann et al., 2015).

Hepatic Ischemia/Reperfusion Alleviation
Hepatic ischemia/reperfusion (I/R) injury is the major
manifestation after liver transplantation or hemorrhagic shock
with relatively high morbidity and mortality (Go et al., 2015).
Currently, paeoniflorin is considered to be highly effective in
hepatic I/R injury treatment. A study from Xie reported that
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compared with hepatic I/R injury rats, rats pretreated with
paeoniflorin (100 mg/kg) showed significantly decreased serum
alanine aminotransferase (ALT) and aspartate aminotransferase
(AST) activities by 40.3% and 53.8%, respectively. This liver
protection effect is strongly relevant to directly alleviating hepatic
cell apoptosis and decreasing caspase-3 levels. Furthermore, an
inflammatory response was also observed in this study. This
study demonstrated that paeoniflorin pretreatment could inhibit
CD45+/Ly6G+ neutrophils and the production of proinflammatory
cytokines [tumor necrosis factor alpha (TNF-a) and interleukin-1
beta (IL-1b)]. Therefore, a reduction in the innate immune response
might contribute to this process. This research finally found that
inhibiting the HMGB1‐TLR4 signaling pathway is the crucial
mechanism of paeoniflorin in hepatic I/R injury (Xie et al., 2018).
Another study also supported this conclusion. Tao's study
demonstrated that treatment with paeoniflorin at a dose of 5 to
20 mg/kg could markedly reduce the expression levels of
inflammatory mediators, including nuclear factor kappa-B
(NF‐kB), TNF-a, IL-1b, and IL-6. At the same time, the
apoptosis marker caspase‐3 was decreased after paeoniflorin
treatment (Tao et al., 2016). Therefore, antioxidative, anti‐
inflammatory, and antiapoptotic activities are clearly involved in
the mechanism of paeoniflorin treatment.

Protection From Toxic Chemical-Induced
Liver Injury
There are a variety of toxic chemicals, including carbon
tetrachloride (CCl4) , concanaval in A (Con-A), D-
galactosamine (GalN), bacillus Calmette-Guérin (BCG), and
lipopolysaccharide (LPS), that can induce liver injury (Zhang
H.Y. et al., 2018). Toxic chemical-induced liver injury is mainly
characterized by an immune response and inflammation.
Moreover, hepatic tissue apoptosis is a key outcome. A large
amount of evidence indicates that paeoniflorin has a profound
effect on toxic chemical-induced liver injury. Paeoniflorin at a
dose of 100 mg/kg was able to decrease liver injury, significantly
decrease ALT and AST, and alleviate the histopathological
changes induced by CCl4. Moreover, the significant
pharmacological effect was related to the reduction of HO-1
mRNA expression and proinflammatory cytokine (TNF-a and
IL-6) excretion (Guo et al., 2018). Other studies have indicated
the protective effect of paeoniflorin on Con A-induced hepatitis
with immune regulation. Chen's results suggested that
intravenous paeoniflorin pretreatment could attenuate plasma
levels of ALT and AST and diminish apoptosis or necrosis of
liver tissue. These results demonstrated a protective effect of
paeoniflorin against Con A-induced liver injury in mice. The
mechanism may at least in part be the suppression of CD4+,
CD8+, and NKT cell infiltration in the liver. Moreover, the
downregulation of TLR4 expression and the inhibition of NF-kB
activation are key signaling pathways in this process (Chen M.
et al., 2015). In vitro research from primary human hepatic
sinusoidal endothelial cells (HHSECs) also confirmed this result.
Paeoniflorin at doses from 50 to 800 mMmost likely contributed
to the alleviation of Con-A-induced inflammation in HHSECs.
Preincubation with paeoniflorin caused a concentration-
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dependent downregulation of IL-8. Furthermore, paeoniflorin
was able to inhibit IL-8 release by 52.8% at a dose of 800 mM. The
mechanism might be closely related to blocking IL-8 secretion
via the downregulation of ERK1/2 and Akt phosphorylation
(Gong et al., 2015). In addition, GalN/TNF-a-induced apoptosis
of human L-02 hepatocytes was decreased by paeoniflorin in a
dose-dependent manner. The antiapoptotic effect was further
evidenced by the inhibition of caspase-3/9 activities and by the
suppression of ER stress activation in L-02 cells. These results
revealed that paeoniflorin might target ER stress and calcium,
leading to mitochondria-dependent pathway regulation (Jiang
et al., 2014). A study of immunological liver injury based on BCG
combined with LPS was also performed in 2006. Paeoniflorin
administration was able to protect against immunological liver
injury by ameliorating TNF-a and IL-6 secretion and
downregulating LPS receptor expression (Liu et al., 2006).
CHOLESTASIS ALLEVIATION

Cholestasis is characterized by decreased bile flow and bile acid
accumulation. It is one of the most common but devastating liver
diseases. Hepatocyte injury and cholangitis will ultimately occur
with cholestasis progression. Furthermore, portal myofibroblast
and hepatic stellate cell activation rapidly result in biliary fibrosis
or even cirrhosis without prompt treatment (Ghonem et al.,
2015). It is currently believed that the pathogenesis of cholestasis
involves multiple signaling pathways with the simultaneous
activation of inflammation, dysregulation of hepatocyte
transporters, and oxidative stress injury in liver tissue (Copple
et al., 2010; Allen et al., 2011; Trauner et al., 2017).

A series of studies from Zhao's group indicated that paeoniflorin
exerts a dose-dependent (50–200 mg/kg) protective effect on alpha-
naphthylisothiocyanate (ANIT)-induced cholestasis in rats by
decreasing serum ALT, AST, TBIL, DBIL, total bile acid (TBA), g-
glutamyltranspeptidase (g-GT), and alkaline phosphatase (ALP).
Moreover, the extremely suppressed bile flow induced by ANIT
was also increased by paeoniflorin treatment. Themechanism of this
activity is partially related to attenuating oxidative stress with
reactive oxygen species (ROS) inhibition by suppressing
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4
expression and the mitochondria-dependent pathway (Zhao et al.,
2013; Zhou et al., 2017). In addition, an alternative antioxidative
mechanism was also investigated. The results indicated that
paeoniflorin could regulate glutathione (GSH) and its related
synthase glutamate-cysteine ligase catalytic subunit (GCLc) and
glutamate-cysteine ligase modifier subunit (GCLm). The
enhancement of GSH synthesis was further proven to increase
Nrf2 through the PI3K/Akt-dependent pathway (Chen Z. et al.,
2015). Regarding inflammation, histological examination revealed
that paeoniflorin-treated rats demonstrated less neutrophil
infiltration. The research suggested that paeoniflorin could
remarkably reduce the overexpression of NF-kB and IL-1b
induced by ANIT in liver tissue (Zhao et al., 2017). Moreover, a
study focusing on Paeonia lactiflora Pall., one of the sources of
paeoniflorin, was in accordance with the previous result showing the
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suppression of the inflammatory response (Ma et al., 2018). Another
study further revealed that paeoniflorin could mainly regulate
primary bile acid biosynthesis by serum metabolomic profiling
analysis (Chen et al., 2016)]. Therefore, transporters might be the
central regulatory process. In 2017, Zhao reported that ANIT-
induced dysregulated hepatocyte transporters, such as Na+/
taurocholate-cotransporting polypeptide (NTCP), bile salt export
pump (BSEP), and multidrug resistance-associated protein 2
(MRP2), were restored by paeoniflorin treatment (Zhao et al., 2017).
LIVER FIBROSIS ATTENUATION

Liver fibrosis is the process of chronic liver injury caused by
hepatitis B and C, alcohol consumption, fatty liver disease,
cholestasis, and autoimmune hepatitis (Seki and Brenner,
2015). Hepatic stellate cell (HSC) activation plays a key role in
myofibroblasts that produce extracellular matrix (ECM) in the
liver (Tsuchida and Friedman, 2017). Currently, a variety of
inflammatory and fibrogenic pathways are thought to participate
in liver fibrosis (Seki and Schwabe, 2015; Higashi et al., 2017;
Wree et al., 2018).

In the CCl4-induced liver fibrosis model, paeoniflorin was
proven to effectively attenuate serum ALT, AST, HA, IV-C, and
liver tissue Hyp at the doses of 20, 40, 80, and 200 mg/kg (Min
et al., 2011). This result indicated that paeoniflorin could
significantly decrease liver fibrosis development. Moreover, the
inhibition of HIF-1a expression partly through the mTOR
pathway might be the crucial mechanism (Zhao et al., 2014).
This pharmacologic effect was also confirmed in two other liver
fibrosis models. Hu reported that paeoniflorin treatment from 20
to 80 mg/kg for 26 consecutive weeks was able to inhibit
radiation-induced hepatic fibrosis. The expression levels of
TGF-b1, Smad3/4, and Smad7 were significantly lower in the
paeoniflorin-treated groups than in the model group. This result
indicated that paeoniflorin alleviated fibrosis via the TGF-b1/
Smad signaling pathway (Hu et al., 2018). In addition to the
radiation model, dimethylnitrosamine (DMN) was also used to
induce liver fibrosis. Paeoniflorin treatment demonstrated an
antifibrosis effect in rats with less collagen fiber deposition and
gentle centrilobular necrosis observed in paeoniflorin-treated
rats compared with DMN-induced model rats. These results
were at least in part due to restored macrophage disruption and
reduced inflammatory cytokines (Chen et al., 2012).

In addition, schistosomiasis is a kind of special chronic
disease leading to liver fibrosis. A recent study demonstrated
that paeoniflorin at 50 mg/kg/d improved parasitological
parameters, such as decreased worm burden, immature eggs,
and mature eggs, in a schistosomiasis mansoni-induced hepatic
fibrosis model. Meanwhile, paeoniflorin treatment also
significantly decreased the hepatic mean granuloma diameter
and fibrosis area. The mechanism was partially recognized as
targeting the apoptosis pathway by regulating caspase-3 and P53
expression (Abd El-Aal et al., 2017). Moreover, the key role of IL-
13 was also explored in this model. Three other studies
confirmed that paeoniflorin had a significant suppressive effect
April 2020 | Volume 11 | Article 531
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on the establishment of the ECM. Paeoniflorin could not only
directly inhibit the alternative activation of macrophages by
inhibiting the JAK2/STAT6 signaling pathway but also
indirectly suppressed macrophages by decreasing IL-13
secretion (Li et al., 2009; Li et al., 2010; Chu et al., 2011).
NONALCOHOLIC FATTY LIVER DISEASE
PREVENTION

Nonalcoholic fatty liver disease (NAFLD) has been the most
common chronic liver disease worldwide in recent years. More
than 40% of the population is affected in some countries. NAFLD
has attracted concern worldwide since becoming a public health
burden (Neuschwander-Tetri et al., 2010; Estes et al., 2018).
NAFLD includes a wide range of liver disorders extending from
nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis
(NASH). Fibrosis, cirrhosis, and hepatocellular carcinoma will
ultimately occur without treatment (Lebeaupin et al., 2018).

Paeoniflorin is a potential NAFLD prevention compound
according to many studies. Zhang revealed that paeoniflorin
attenuated NAFLD by restoring serum ALT, AST, TC, TG, HDL,
and LDL. At the same time, paeoniflorin alleviated high-fat diet-
induced hepatic adipose infiltration by decreasing steatosis,
inflammation, ballooning degeneration, and necrosis. The
potential mechanism might be cardiovascular protection by
decreasing body weight and hyperlipidemia, blocking
inflammation, and inhibiting lipid deposition (Zhang et al.,
2015). Further research indicated that paeoniflorin ameliorated
hepatic steatosis and inhibited CD68 and TGF-b1 expression.
Downregulation of the ROCK/NF-kB signaling pathway might
be relevant to the effect of paeoniflorin on NAFLD (Ma et al.,
2016). Ma's investigation indicated that 20 mg/kg paeoniflorin
remarkably inhibited lipid ectopic deposition via the lipid
metabolism pathway. On the other hand, paeoniflorin
treatment also exerted insulin sensitizing effects via IRS/Akt/
GSK3b and antioxidation (Ma et al., 2017). In addition, a recent
study also confirmed that paeoniflorin significantly reduced
serum insulin and glucagon levels, enhanced insulin sensitivity,
restored serum lipid profiles, and attenuated hepatic steatosis. All
these effects should be relevant to the activation of the LKB1/
AMPK and Akt signaling pathways in NAFLD (Li et al., 2018).
HEPATOCELLULAR CARCINOMA
INHIBITION

Hepatocellular carcinoma (HCC) is believed to be the most
common and malignant type of tumor. HCC is the third most
common cancer-related cause of death due to poor prognosis.
Over 700,000 HCC cases are diagnosed every year (Robinson
et al., 2019). The situation is particularly concerning in China.
China accounts for 55% of HCC cases worldwide (Su et al.,
2016). HCC is recognized to involve multiple signaling cascades
in cell adhesion, cell migration, and extracellular matrix
Frontiers in Pharmacology | www.frontiersin.org 4
proteolysis (Brown and Murray, 2015). Therefore, potential
agents for HCC treatment should efficiently address multiple
aspects of this process.

In an in vitro study, paeoniflorin at the doses of 6.25–200 mM
was found to significantly inhibit the growth of HepG2 and Bel-
7402 cell lines. Proteolysis could reduce the invasion, metastasis,
and adhesion of HCC cell lines. In addition, paeoniflorin was
able to decrease MMP-9 and ERK levels and increase E-cad
expression in HepG2 and Bel-7402 cells (Lu et al., 2014).
Moreover, another study also indicated paeoniflorin as a
promising agent in the treatment of liver cancer. Its
mechanism might be partially related to apoptosis induction in
hepatocellular carcinoma cells by downregulating prostaglandin
E receptor EP2 levels, increasing the Bax/Bcl-2 ratio and thus
upregulating the activation of caspase-3 (Hu et al., 2013).
OUTLOOK AND CONCLUSION

As evidenced by the numerous studies that have focused on the
mechanism in-depth, many attempts have been made to
investigate the efficacy of natural compounds such as
paeoniflorin in liver disease treatment. This mini-review
summarizes the pharmacologic activities and liver protection
provided by paeoniflorin and demonstrates that paeoniflorin
from the dosage of 5–200 mg/kg in vivo is an important
compound for hepatic protection, cholestasis alleviation, liver
fibrosis attenuation, NAFLD prevention, and HCC inhibition
(Table 1). It is also crucial to reveal the mechanism to
determine how paeoniflorin exerts its pharmacological effect.
Paeoniflorin displays remarkable anti-inflammation effects via
the TLR4-NF‐kB and ROCK/NF-kB signaling pathways during
liver injury and NAFLD. Antioxidation signals such as HO-1,
mitochondria-dependent pathways, and immune regulation
containing HMGB1‐TLR4 are closely correlated. Moreover,
paeoniflorin also alleviates cholestasis through an antioxidative
mechanism by downregulating ROS and NOX4 and upregulating
the PI3K/Akt/Nrf2 pathway. The anti-inflammatory effects of
NF‐kB and IL-1b and the regulation of NTCP, BSEP, and
MRP2 are mainly relevant to the anti-cholestatic effects of
paeoniflorin. Several important signaling pathways, such as
mTOR/HIF-1a, TGF-b1/Smads, and JAK2/STAT6, are involved
in the effect of paeoniflorin on activated HSC and ECM inhibition
during liver fibrosis. Macrophage regulation is also considered the
crucial mechanism for the antifibrotic effect. The reduction in
invasion, metastasis, and adhesion and the induction of apoptosis
signals, including Bax, Bcl-2, and caspase-3, are related to the effect
on hepatocellular carcinoma (Figure 1).

The common mechanisms could be summarized from the
current literature. The anti-inflammation, anti-oxidative and anti-
apoptosis in hepatocytes are the core functions for its effect on
liver diseases. Moreover, the immune and macrophage regulation
are also important for its special effect on liver damage and liver
fibrosis. The effect of paeoniflorin on liver diseases has been vastly
developed, accompanied by deep insight into mechanistic
April 2020 | Volume 11 | Article 531
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TABLE 1 | The pharmacological activities of paeoniflorin in liver diseases.

Disease
Treatment

Experimental model Doses (Route) Targets/Pathways Reference

Liver injury Hepatic I/R-induced injury 100 mg/kg (i.g.) HMGB1-TLR4 pathway Xie et al., 2018
Hepatic I/R-induced injury 5–20 mg/kg (i.v.) NF-kB signaling pathway and caspase-3 Tao et al., 2016
CCl4-induced liver injury 10–100 mg/kg (i.g.) HO-1, TNF-a, IL-6, and caspase-3 Guo et al., 2018
Con A-induced liver injury 50 mg/kg (i.v.) TLR4-NF-kB pathway Chen M. et al., 2015
Con A-treated HHSECs 50–800 mM (in vitro) ERK1/2 and Akt phosphorylation Gong et al., 2015
GalN/TNF-a-treated L02 1–100 mM (in vitro) ER stress and mitochondria-dependent pathway Jiang et al., 2014
BCG/LPS-induced immunological liver injury 25–100 mg/kg (i.g.) TNF-a, IL-6, and LPS receptor Liu et al., 2006

Cholestasis ANIT-induced cholestasis 100–200 mg/kg (i.g.) ROS-related NADPH and NOX4 Zhao et al., 2013
ANIT-induced cholestasis 50–200 mg/kg (i.g.) Apoptosis-related Bax, Caspase-9, and caspase-3 Zhou et al., 2017
ANIT-induced cholestasis 50–200 mg/kg (i.g.) PI3K/Akt/Nrf2 pathway Chen Z. et al., 2015
ANIT-induced cholestasis 50–200 mg/kg (i.g.) NF-kB, IL-1b and the hepatic transporters NTCP, BSEP,

and MRP2
Zhao et al., 2017

ANIT-induced cholestasis 50–200 mg/kg (i.g.) Primary bile acid biosynthesis Chen et al., 2016
Liver
fibrosis

CCl4-induced liver fibrosis 20–80 mg/kg (i.g.) IV-C, LN, and Hyp reduction Min et al., 2011

CCl4-induced liver fibrosis 80–200 mg/kg (i.g.) mTOR/HIF-1a signaling pathway Zhao et al., 2014
Radiation-induced liver fibrosis 20–80 mg/kg (i.g.) TGF-b1/Smads signaling pathway Hu et al., 2018
DMN-induced liver fibrosis 20 mg/kg (i.g.) Macrophage disruption Chen et al., 2012
Schistosomiasis mansoni-induced liver fibrosis 50 mg/kg (i.g.) Apoptosis pathway related to caspase-3 and P53 Abd El-Aal et al.,

2017
Schistosomiasis japonica-induced liver fibrosis 60 mg/kg (i.g.) JAK2/STAT6 signaling pathway and IL-13 Chu et al., 2011
Schistosomiasis japonica-induced liver fibrosis/
Hepatic stellate cells

30 mg/kg (i.g.)
/30–120 mg/L (in vitro)

SOCS-1, STAT6, and IL-13 Li et al., 2010

Schistosomiasis japonica-induced liver fibrosis 30 mg/kg (i.g.) IL-13 and IL-13Ra2 Li et al., 2009
NAFLD AIN76A diet-induced NAFLD 0.05% (in diet) Lipid synthesis, inflammation, and hyperglycemia pathway Zhang et al., 2015

HCF diet-induced NAFLD 20–100 mg/kg (i.g.) ROCK/NF-kB signaling pathway Ma et al., 2016
2% cholesterol and 15% lard diet-induced NAFLD 20 mg/kg (i.g.) IRS/Akt/GSK3b, antioxidation, and insulin sensitizing Ma et al., 2017
Fructose-induced insulin resistance and hepatic
steatosis

10–40 mg/kg (i.g.) LKB1/AMPK and Akt signaling pathway Li et al., 2018

HCC Human HCC Bel-7402 and HepG2 cell lines 6.25–200 mM (in vitro) MMP-9, ERK, and E-cad Lu et al., 2014
Human HCC HepG2 and SMMC-7721 cell lines 10−8–10−5 mol/L (in vitro) Prostaglandin E receptor EP2, Bax, Bcl-2, and caspase-3 Hu et al., 2013
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ANIT, alpha-naphthylisothiocyanate; BCG, bacillus Calmette-Guérin; CCl4, carbon tetrachloride; Con-A, concanavalin A; DMN, dimethylnitrosamine; HCC, hepatocellular carcinoma; HCF, High-
fat; HHSECs, human hepatic sinusoidal endothelial cells; i.g., intragastric; I/R, ischemia/reperfusion; i.v., intravenous injection; LPS, lipopolysaccharide; NAFLD, Nonalcoholic fatty liver disease.
FIGURE 1 | The pharmacological effect of paeoniflorin on liver diseases through multiple targets.
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investigation. Even so, two essential aspects ought to be noted
based on this mini-review. First, most of the signals mentioned
above are the downstream targets in various liver diseases. The
upstream of signals which paeoniflorin targets directly will be
drawn with special attention. Second, particular focus should also
be paid to the ‘from bench to bedside' concept for further clinical
discovery. The clinical conversion with rigorous randomized
controlled trial is the golden index to check the efficacy and
medicinal value of paeoniflorin. Therefore, the deeper mechanistic
investigation and the further clinical confirmation seem as the two
key processes in the future development.

In summary, paeoniflorin demonstrates multiple effects on
liver diseases correlating with complex and complicated
signaling pathways. Therefore, paeoniflorin might be a
potential agent to treat liver disease and alleviate liver damage.
Frontiers in Pharmacology | www.frontiersin.org 6
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