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ABSTRACT: In the process industry, fault monitoring related to
output is an important step to ensure product quality and improve
economic benefits. In order to distinguish the influence of input
variables on the output more accurately, this paper introduces a
subalgorithm of fault-unrelated block partition into the prototype
knockoff filter (PKF) algorithm for its improvement. The improved
PKF algorithm can divide the input data into three blocks: fault-
unrelated block, output-related block, and output-unrelated block.
Removing the data of fault-unrelated blocks can greatly reduce the
difficulty of fault monitoring. This paper proposes a feature selection
based on the Laplacian Eigen maps and sparse regression algorithm
for output-unrelated blocks. The algorithm has the ability to detect
faults caused by variables with small contribution to variance and
proves the descent of the algorithm from a theoretical point of view.
The output relation block is monitored by the Broyden−Fletcher−Goldfarb−Shanno method. Finally, the effectiveness of the
proposed fault detection method is verified by the recognized Eastman process data in Tennessee.

1. INTRODUCTION

Fault monitoring is the key to ensure the long-term stable
operation of industrial production processes. Among various
fault detection methods, data-driven fault detection in the
production process has attracted much attention. Partial least
squares (PLS)1 and principal component analysis (PCA) are
widely used. Many algorithms are derived from the basic
algorithm.2−9 Based on the impact on the product output,
faults can be divided into output-related faults and output-
unrelated faults. Output-related fault means that when some
components of input variables deviate from the normal value
range for some reason, the values of the corresponding output
variables are affected and deviate from the normal value range.
On the contrary, output-unrelated fault means that when some
components of input variables deviate from the normal value
range, the output variables are not affected and remain in the
normal value range. There are many output-related fault-
monitoring methods. The basic method is to extract the low-
dimensional load matrix which can represent the data
information from the input data matrix and to make the
orthogonal projection of the load matrix to the direction of the
output variable to get the output-related information. The
problem is that each load vector is a linear combination of all
input data. Even though we can monitor the occurrence of
faults, it will be very difficult to locate specific variables for the

faults. Therefore, this paper puts forward the idea of dividing
the input data into blocks, which is not based on the industrial
process but based on the influence of the input data matrix on
faults and product output. The prototype knockoff filter (PKF)
algorithm10 divides the input variables into output-related and
-unrelated blocks, which is not enough, because when a certain
fault occurs, it generally does not affect the values of all input
variables. The values of some variables do not fluctuate before
and after the fault, which cannot provide any useful
information on fault monitoring and brings difficulties to
numerical solutions. After confirming the occurrence of the
fault, the next fault diagnosis work should determine the
position of the fault, and the fewer the variables are selected,
the better.
In this paper, an improved PKF (IPKF) algorithm is

proposed, which divides the input data matrix into three
blocks: fault-unrelated block, output-related block, and output-
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unrelated block. The flowchart of the IPKF-BFGS-FLMSR
method proposed in this paper is shown in Figure 1.
The PLS method establishes the monitoring model by

maximizing covariance between input variables and output
variables. By projecting the input and output variables into the
corresponding low-dimensional space, the orthogonal eigen-
vectors of the input and output variables can be obtained. The
feature vector emphasizes the interpretation of input variables
to output variables, which not only reduces the dimension of
variables but also eliminates useless noise. From this feature, it
is easy to see that PLS has a weak ability to detect the faults
which are unrelated to output. When the input data contain
orthogonal information, it will have a negative impact on the
predicted output. In addition, the PLS algorithm is easily
disturbed by singular points, so it is not suitable for nonlinear
regression. Here, we want to keep the advantages of the PLS
method and improve its shortcomings. The PLS algorithm
belongs to the conjugate direction method in the optimization
method. The BFGS method is a quasi-Newton algorithm
independently proposed by Broyden, Fletcher, Goldfarb, and
Shanno in 1970 to solve unconstrained optimization problems.
The BFGS method is also a conjugate direction method. The
BFGS algorithm not only satisfies the property of the conjugate
direction but also is the quasi-Newton algorithm with the best
numerical stability so far. The BFGS algorithm not only has
the advantages of the conjugate direction method but also has
the advantages of the quasi-Newton method: fast convergence
and little iteration. The BFGS algorithm has global
convergence and superlinear convergence speed. Therefore,
the BFGS algorithm is widely used in various research fields,
for example, to generate high-fidelity harmonics,11 to classify
files,12 and to train weights in neural networks.13 Because the
BFGS algorithm has more advantages than the PLS algorithm,
this paper uses the BFGS algorithm for the fault detection of
output-related blocks to improve the efficiency of fault
detection.
The PCA method selects principal components for data

reduction according to the order of variance from large to
small, and variables with little variance contribution basically
do not affect principal components.
Therefore, when faults occur in variables with little variance

contribution, it is difficult for PCA to detect faults, and the

detection efficiency will be very low. Based on this
phenomenon, an important dimension reduction method
which is called feature selection appears. The feature selection
method can remove redundant features from original data and
process a large number of high-dimensional data in a short
time.14 The advantage of feature selection is that it can identify
the representative features of the original data set and make
further calculations easier; subspaces can be classified to
enhance the robustness of the algorithm to noise15 and
overfitting of calculation can be prevented.16 The most interest
has been arisen in many scholars because of the advantages of
feature selection methods. At present, many methods of feature
selection have been created.15−19 In addition, feature selection
methods are being widely used, such as biomedical,20

commodity recommendation and safety monitoring,21 speech
recognition,22 text mining,23 and so on. In the meantime, the
feature selection method is divided into three categories:
supervised,24 semisupervised,16,25,26 and unsupervised.27−29

Among them, the supervised feature selection method is of
high accuracy,30 and the semisupervised feature selection
method can be used when the information is incomplete and
only a part of the label information is available. The
unsupervised feature selection method cannot provide prior
information, so it requires large scales of computation. Inspired
by the above methods, this paper proposes a new supervised
feature selection method for data dimension reduction
(FLMSR). In this method, the influence of variables with
small variance contribution on principal components is
improved by adding weights, such that faults caused by these
variables can be monitored in time. A joint framework of
feature selection is introduced into the objective function in
the method. The framework integrates the local geometric
features in the data retained by Laplacian Eigen maps, and the
idea of the linear discriminant analysis (LDA) algorithm can
increase the distance between data groups, reduce the distance
within data groups, and improve the data recognition ability
and L2,1-norm regularization. Furthermore, the updating rules
of the algorithm and the proof of its descent are given. The
FLMSR model is used to monitor the faults of output-
unrelated blocks; simulation experiments show that the
algorithm in this paper can overcome the disadvantage that
the PCA algorithm has a high false alarm rate for faults caused

Figure 1. Flowchart of the proposed IPKF-BFGS-FLMSR approach.
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by variables with little variance contribution and has stronger
fault detection capability.
The main contributions of this paper are as follows:

1. The PKF algorithm is improved, and the idea of dividing
variables into three blocks is put forward to reduce the
difficulty of fault location.

2. FLMSR is proposed to reduce the dimension of data.
The method integrates Laplacian Eigen maps, LDA
algorithm, and L2,1-norm regularization; a brand-new
feature selection framework is formed, which not only
preserves the geometric structure of data but also
improves the recognition ability of data. The updating
rules and descent proof of the algorithm are given.

3. The quasi-Newton algorithm BFGS with the best
numerical stability is directly applied to fault detection
for the first time.

The rest of this paper is as follows. In Section 2, the PKF
algorithm is briefly reviewed. The problem description,
algorithm, and optimization process are also explained in this
section. Section 3 studies the convergence of the algorithm.
Section 4 applies the proposed IPKF-BFGS-FLMSR method to
the operation evaluation of TEP and verifies the effectiveness
of the proposed method. The fifth part gives the conclusion
and outlines the future research work.

2. PROPOSED METHODOLOGY
2.1. Review. The knockoff filter algorithm is quoted in

order to divide the input data into disjoint blocks and detect
faults, respectively, in this paper. The knockoff filter is a
method where a variable is selected by controlling the error
discovery rate.31 After the proposal, furthermore, the author
applied it to high-dimensional data.32 In the same year, sparse
regression and marginal testing were used to create cluster
prototypes.33 Then, the knockoff filter for grouping selection
was proposed.10 The basic idea of the knockoff filter is to
construct a knockoff matrix with the same dimension and a
covariance matrix as the original data matrix according to some
rules, and then, a large augmented matrix is formed together
with the original matrix. The output variables are subjected to
sparse regression on the augmented matrix, and variables with
nonzero regression coefficients corresponding to the original
data matrix are output-related variables defined in this paper,
and the remaining variables are output-unrelated variables. The
reason for grouping selection is that the original data columns
have strong correlation and cannot fit the requirements of no
singularity. Therefore, the original data columns are grouped to
ensure strong correlation within groups and weak correlation
between groups. Then, group representatives are selected for
each group, and the knockoff filter is run on the data matrix
composed of group representatives. If the group representa-
tives are output-related, then the whole group is output-related
variables, and other variables are output-unrelated variables.
2.2. Output-Related and -Unrelated Fault Monitoring

Based on IPKF-BFGS-FLMSR. There is no change in the
values of some variables before and after the failure, and any
useful information cannot be provided for fault detection, but
numerical obstacles are brought to fault detection. Therefore,
the following algorithm is proposed to select this part of the
variables in this paper (see Table 1). Here, we use Pauta
Criterion in statistics to judge the fault data.
As for the data with the fault-unrelated variable deleted,

variables with an impact on output or without are only

concerned. If the remaining variables are divided into output-
related and output-unrelated parts, the subsequent fault
location would be easier. Combined with the previous create
fault-unrelated block subalgorithm and the knockoff filter
algorithm, the following IPKF algorithm is given (see Table 2),

which can divide the input variables corresponding to the
original data into three disjoint blocks, which are fault-
unrelated block, output-related block, and output-unrelated
block.
Because of the different types of faults and ways of dividing

blocks, the following fault detection model is given for the ith
fault (see Table 3).
Here, the calculation of statistics T2 and SPE used in fault

detection is given by the following formula
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When a significance level of α is given, the threshold value of
statistical information is given by the following formula

= −
− α−J
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Here, n is the number of sampled samples and l is the number
of remaining principal components.

χ= αJ g hth,SPE ,
2

(4)

Here, g = ρ2/2μ, h = 2μ2/ρ2 and μ and ρ2 are the mean and
variance of the statistics of the sample, respectively.
Next, aiming at the existing fault data block, run the offline

submodel, collect the way of block partition, load matrix and
fault control line, and establish a general fault database
following steps are given for online monitoring (see Table 4).
During online monitoring, create a fault-unrelated block for

the newly generated sample points and compare it with the
fault-unrelated blocks in the fault library. Determine the fault
type to which it belongs. Furthermore, determine whether the

Table 1. Create Fault-Unrelated Block Subalgorithm

algorithm: create fault-unrelated block

1. Input normal data X0 ∈ RN×m and one fault data as X1 ∈ Rn×m, where N, n,
and m represent the number of normal samples, fault samples, and variables,
respectively. Column mean vector μ and column standard deviation vector σ
of normal data X0.

2. Remember that the number of data whose value is not in the interval (μ(i)
− 3σ(i), μ(i) + 3σ(i)) (i = 1, 2, ..., m) in the ith column of fault data X1 is
s(i), and all s(i) constitutes a vector s.

3. The vector s component smaller than k(k ≪ n) is defined as a fault-
unrelated variable, and the subscript of the fault-unrelated variable is put
into the fault-unrelated block C.

Table 2. IPKF Algorithm

algorithm: improvement prototype knockoff filters

1. Input normal data X0 and fault data X1.
2. Run the create fault-unrelated block subalgorithm to get invariant variable
subscript block C3 and the remaining variable subscript block C;

3. Run the PKF algorithm on the fault data corresponding to block C;
4. Blocks C1 and C2 are determined by the regression coefficients obtained in
the third step. C1 is the subscript block of output-related variable
components, and C2 is the subscript block of output-unrelated variable
components.
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value of its statistics exceeds the control line of the
corresponding statistics and judge whether a fault occurs. If
the block obtained is different from any known block of fault-
unrelated blocks, it means that a new fault occurs, and it is
necessary to collect fault data and update the fault database.
The following steps are given for online monitoring (see Table
5).
In order to illustrate the effectiveness of the algorithm, the

following three evaluation indicators are introduced in the
paper.

=FAR
no. of false alarms

total normal samples (5)

=FDR
no. of effective alarms

total faulty samples (6)

=
+

SDR
no. of effective alarms in normal data no. of false alarms in the fault data

total samples
(7)

Here, FDR represents the monitoring result of fault samples,
FAR represents the monitoring result of normal samples, and
SDR represents the monitoring result of all samples.
The three evaluation indices are used to evaluate the

performance of the algorithm. In the process of running the
above algorithm, the BFGS algorithm should be applied to the
fault detection of output-related variables, but it cannot be
applied to fault detection directly by itself. Therefore, the

BFGS algorithm is improved and introduced for fault diagnosis
in the paper.
The objective function constructed from the input matrix X

∈ Rn×l and the output matrix Y ∈ Rn×1 is as follows.

= −

= + −

f b Y Xb

Y Y b X Xb Y Xb

min ( )
1
2
1
2

( 2 )T T T T

2

(8)

Gradient of objective function f(b) is as follows.

∇ = −f b X Xb X Y( ) T T
(9)

Mark gk = ∇f(bk) = XTXbk − XTY (see Table 5). The
detailed steps of the BFGS algorithm in fault detection are
given in Table 6.

For a newly measured sample data xnew ∈ Rl. Calculate the
value of new sample point statistics = Λ−t x P P xB,new

2
new B

1
B
T

new
T ,

where Λ = =− − P X XP
n n

T TT T
1

1
1 B B

T

and statistics speB,new =

∥xnew(I − PBPBT)∥. Therefore, we can compare the value of

Table 3. Offline Submodel

model: offline submodel of ith fault

1. Input normal data X0 and fault data as Xi ∈ Rn×m of type i fault together as training data, where n and m represent the number of fault samples and variables,
respectively.

2. Use prototype knockoff filters for data Xi′ after removing invariant variables. The variables are further divided into an output-related part Ci1 and an output-
unrelated part Ci2. For convenience, we write them as blocks Ci1, Ci2, and Ci3. The corresponding data blocks of corresponding data X0 and Xi are denoted as X01,
X02, X03, Xi1, Xi2, and Xi3.

3. (1) Use the BFGS algorithm on the data block composed of X01 and Xi1 to get PBi which is the loading matrix of X01 and the threshold Jth,T2
,Bi, Jth,SPE,Bi of the

corresponding statistic TBi
2, SPEBi.

(2) Use the FLMSR algorithm on the data block composed of X02 and Xi2 to get PFi which is the loading matrix of X02 and the threshold Jth,T2
,Fi, Jth,SPE,Fi of the

corresponding statistic TFi2, SPEFi.

Table 4. Total Offline Model

model: total offline model

Assuming that there are k fault data blocks, establish a fault database:
For i = 1:k
Execute offline submodel on fault data Xi to obtain data Ci1, Ci2, Ci3, PBi, PFi,
Jth,T2

,Bi, Jth,SPE,Bi, Jth,T2
,Fi, Jth,SPE,Fi of recorded in fault database.

End

Table 5. Online Monitoring Process

model: online monitoring process

1. For each new observation xnew, statistics xi
new belongs to subscript block Cnew of interval (μ(i) − 3σ(i), μ(i) + 3σ(i)) (i = 1, 2, ..., m). Compare Cnew with Ci3 in the

fault data block to judge the fault data type i to which xnew belongs.

2. Using the load matrix PBi and PFi of the corresponding ith fault, calculate four statistics t spe t spe, , ,Bnew Bnew F new F new
2

,
2

, and then compare them with the
corresponding threshold Jth,T2

,Bi, Jth,SPE,Bi, Jth,T2
,Fi, Jth,SPE,Fi.

(1) If tBnew
2 > Jth,T2

,Bi, then an output-related fault occurs, and the fault location appears in the variables contained in Ci1. If speB,new > Jth,SPE,Bi, an output-unrelated fault
occurs, and the fault location appears in the variables contained in Ci1.

(2) If one of the two inequalities tF new,
2 > Jth,T2

,Fi, speF,new > Jth,SPE,Fi becomes true, then an output-unrelated fault occurs and the fault location appears in the variables
contained in Ci2.

3. If it is judged in step 1 that some variables of xnew are out of the value range, but they are not consistent with the existing fault types, the fault data can be further
collected to form a new fault data matrix, and the offline submodel can be executed to update the fault database.

Table 6. BFGS Algorithm for Fault Diagnosis

algorithm: BFGS

1. Point out the initial point b0 ∈ Rl, the initial quasi-Newton matrix H0 ∈
Rl×l, and the termination limit ε > 0, k ≔ 0.

2. If ∥gk∥ ≤ ε, stop and output the optimal solution bk.
3. Calculate dk = −Hkgk.
4. Calculate wk = dk/∥dk∥, score vector tk = Xwk, and load vector pk = XTtk/
tkTtk, where tk is the kth column of TB and pk is the kth column of PB;

5. Find the step factor αk by linear search and make bk+1 = bk + αkdk;

6. Correct Hk to produce Hk+1, = − − ++
i
k
jjjj
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zzzz
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k
jjjj
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k
.

Make quasi-Newton condition Hk+1yk = sk hold, where yk = gk+1 − gk,sk = bk+1
− bk;

4. k ≔ k + 1, return to step 2.
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statistics with the corresponding control limit to judge whether
there is a fault.
For the unrelated part of the output in the paper, a new

FLMSR (feature selection based on Laplacian Eigen maps and
sparse regression) method is proposed. A joint framework of
feature selection into the objective function is introduced in
the method. It combines the local geometric features among
Laplacian Eigen maps data and ideas of the LDA algorithm,
increases the distance between data groups, reduces the
distance within groups, improves the ability of data recognition
and L2,1-norm regularization term, and increases the sparsity of
variables. Therefore, the FLMSR algorithm is introduced as
follows.
As the known condition that X ∈ Rn×t is normal data, and Y

∈ R2n1×t is data synthesized by normal data and fault data
according to the ratio of 1:1 and unitized by the mean and
variance of normal data, the constraint minimization problem
is defined as follows

∑

α β

−

+ − +

= ≥ =

=
C XP C XWP

tr W Y L L YW W

W W I W P P I

min

( ( ) ) ,

s. t. , 0,
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n n

T T

T T

1
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2

w b 21

(10)

Here, Cn = In − (1/n)1n1n
T , 1n = (1, 1, ..., 1)T. The regular

term tr(WTYT(Lw − Lb)YW) in the objective function can
keep the geometrical structure of the data and enhances the
discriminative capability. Here, α is a positive regularization
parameter. We introduce the L2,1-norm regularization β∥W∥21
to 10 to enforce the sparsity among rows of the transformation
matrix W. The Gaussian similarity matrix of sample Y is

defined as = − =
σ
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Using the external penalty function method, we write the
augmented objective function of eq 9 as follows

α β
μ

ϕ

= −

+ − +

+ − + −

+

F P W C XP C XWP
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Here, μ is the penalty factor (μ is big enough that the
algorithm converges) and ϕ is the Lagrange multiplier for

constraining W to be nonnegative. We consider the following
situations

(1) Considering W to be fixed, we can rewrite eq 11 as a
function of P.

μ= − + ‐F P C XP C XWP P P Imin ( )
2n n
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1 F
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The first and second derivatives of L1 with respect to P are
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Here, Pk is the kth column of matrix P. Diagonal matrix D is
composed of Dii as diagonal elements. The auxiliary function of
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function of W.
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Here, = = ( )diagW W UW U,T
W21
1

2 i
2

and wi is the ith

row of matrix W. With P and U fixed, calculate the first and
second derivatives of F2(W) with respect to W as follows
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Define the following by the second derivative.

α β μ
=
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Here, wk is the kth column of matrix W. Diagonal matrix D1 is
composed of Dii

1 as the diagonal element. The auxiliary
function of creating F2(W)with diagonal matrix D1 is

= + − ∇

+ − −

G F FW W W W W W

W W D W W

( , ) ( ) ( ) ( )
1
2

( ) ( )

k k k k

k T k

1 2 2
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The update rule generated by =+ GW W Warg min ( , )k

p

k1
1

is as follows
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The following FLMSR algorithm is given by the above
analysis process (see Table 7).
The load matrix obtained by the FLMSR algorithm above is

denoted as PF. For a newly measured sample data xnew ∈ Rt.
Calculate the value of new sample point statistics

= Λ−t x P P xF,new
2

new F
1

F
T

new
T , where Λ = =− − P X XP

n n
T TT T

1
1

1 F F
T

and statistics speF,new = ∥xnew(I − PFPF
T)∥. We compare the

value of statistics with the corresponding control limit to judge
whether there is a fault.

3. CONVERGENCE OF FLMSR

The convergence of the FLMSR algorithm is discussed as
follows.
Theorem 1. Minimization problem12 is nonincreasing

under the update rules

μ

μ
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(20)

Proof. According to the definition and the construction
method of the auxiliary function in ref 34, it is concluded that
the function G(P, Pk)defined above is the auxiliary function of
function F1(P). According to ref 34, Lemma 1 finds the

minimum =+ GP P Parg min ( , )k

p

k1 for the auxiliary function

G(P, Pk), and the generated update rule is obtained as follows.
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The update rule satisfies in output L1(P
k+1) ≤ G(Pk+1, Pk) ≤

G(Pk, Pk) = L1(P
k).

According to equations L(Pk+1, Wk) = L1(P
k+1) and L(Pk,

Wk) = L1(P
k), in output L(Pk+1, Wk) ≤ L(Pk, Wk) can be

obtained.
Theorem 2. Minimization problem16 is nonincreasing

under the update rules
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Proof. Similar to the proof of theorem 1, the function
G1(W,Wk) is an auxiliary function of the function F2(W). Find
the minimum =+ GW W Warg min ( , )k

p

k1
1 for the auxiliary

function G1(W,Wk), and the generated update rule is obtained
as follows.
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The update rule satisfies in output

≤ ≤ =+ +L G G LW W W W P W( ) ( , ) ( , ) ( )k k k k k k
2

1
1

1
2

According to equations =+ + +L LP W W( , ) ( )k k k1 1
2

1 and

=+L LP W W( , ) ( )k k k1
2 , in output L(Pk+1, Wk+1) ≤ L(Pk+1,

Wk) can be obtained.
In output L(Pk+1, Wk+1) ≤ L(Pk+1, Wk) ≤ L(Pk, Wk) is

obtained by theorems 1 and 2, which show that the algorithm
proposed in the paper is a descent iterative algorithm.

4. RESULTS AND DISCUSSION
The TEP was first developed by Downs and Vogel (J. J. Downs
1993) and has become a benchmark platform for process
monitoring and diagnosis technique validation, which contains
five major parts (i.e., a reactor, a vapor−liquid separator, a
product condenser, a recycle compressor, and a product
stripper). Furthermore, there are 41 measured variables, that is,
XMEAS (1−41), and 12 manipulated variables, that is, XMV
(1−12), in the TE process. The simulation data blocks in this
paper are widely recognized in process monitoring.
By using the preprogrammed faults (faults 1−21), 21 testing

blocks were generated. Fault 0 (with no faults) was generated
under NOC. The testing data block for each fault contains 960
observations. Each data block starts with no faults, and the
faults come across after the 160th sample. For process
monitoring, 41 measurable variables XMEAS (1-41) and 11
manipulated variables XMV (1−11) are selected to construct
the past data vector. Among them, the process measurements
XMEAS (1−34, 36−41) and the manipulated variable XMV
(1−11) together constitute the input matrix X, and XMEAS
(35) indicates the product quality of ingredient G, which
represents the output matrix Y. The following selection criteria
of simulation experiment parameters are as follows: the
FLMSR, PLS, and PCA. Taking the number of principal
components according to the cumulative contribution rate of
80%, the number of iterations of BFGS is 80% of the number
of input data columns, and KICA retains 12 independent
components. The false alarm rates are maintained at the same
level (99%) comparing FAR and FDR in different circum-
stances throughout the study.
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Figure 2. Fault detection results of IDV (5) by three methods. (a) Fault detection on Y, (b) KICA, (c) IPKF-PLS-PCA, and (d) IPKF-BFGS-
FMLSR.
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First, the performances in fault detection of KICA, IPKF-
PLS-PCA, and IPKF-BFGS-FMLSR are judged by distinguish-
ing whether the fault occurred has an influence on the output
or not. The simulation results of the faults IDV (5), IDV (10),
and IDV (14) by KICA, IPKF-PLS-PCA, and IPKF-BFGS-
FMLSR are shown in Figures 2−4, respectively.
IDV (5) is a step change of condenser cooling water inlet

temperature. Figure 2a shows the influence on the output
caused by fault IDV (5), which takes effect from the 161st
sample. It will return to a steady state after the 480th sample. It
can be seen from Figure 2b,c that IDV (5) has a slight
influence on the output, and the fault disappears after a period
of time. The result of the BFGS block in Figure 2d indicates
that IDV (5) has an influence on the output only in a very
limited time. The result of the FLMSR block indicates that the

TE process is still in the abnormal operation state defined by
IDV (5), even if the output is not affected. The IPKF-BFGS-
FLMSR method proposed in this paper is the only method to
provide correct monitoring for IDV (5).
IDV (10) occurs in the random disturbance of C feed

temperature of stream 2. It can be seen from Figure 3a that
IDV (10) is a fault with a slightly related output. Figure 3b−d
describes the detection effects of three methods on IDV (10).
It can be seen from the figure that only the FLMSR algorithm
can detect faults near 161 sample points in time. Compared
with other methods, the fault diagnosis rate is obviously
improved. It further proves that IPKF-BFGS-FMLSR has good
fault detection capability.
IDV (14) is the reactor cooling water valve sticking. Figure

4a shows that IDV (19) is an output-unrelated fault. The fault

Figure 3. Fault detection results of IDV (10) by three methods. (a) Fault detection on Y, (b) KICA, (c) IPKF-PLS-PCA, and (d) IPKF-BFGS-
FMLSR.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c00506
ACS Omega 2021, 6, 10828−10839

10835

https://pubs.acs.org/doi/10.1021/acsomega.1c00506?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c00506?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c00506?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c00506?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c00506?rel=cite-as&ref=PDF&jav=VoR


detection of IDV (14) was carried out using IPKF-BFGS-
FMLSR, and it is found that the output-related block is empty.
After the fault-unrelated block is removed, all variables become
output-unrelated variables, and its monitoring results are
shown in Figure 4b. It can be seen that there is no false report
in the IPKF-BFGS-FMLSR method, and the fault diagnosis
rate can be 100%. Therefore, the IPKF-BFGS-FMLSR method
can track the output-unrelated faults much better, which
further proves that the IPKF-BFGS-FMLSR method can
identify the output-related and output-unrelated faults
correctly.
IDV (19) is an unknown fault. Figure 5a shows that IDV

(19) is an output-unrelated fault. In order to verify the
monitoring effect of the FLMSR algorithm on the faults of
different sizes, we take the average value of normal data
subtracted from fault data as the fault size and construct
monitoring data of different fault sizes by adjusting the fault
size. Figure 5b,c,d shows the monitoring results of the original
fault data, reducing the fault to half of the original fault, and
enlarging the fault to 1.5 times of the original fault,
respectively. It can be seen from the results that FLMSR is
highly sensitive to the size of faults, and all fault data can be
monitored if the faults are slightly enlarged. The fault
monitoring effect is very good. Figure 5e,f shows the
monitoring results of original fault data and 5 times fault
data when the PCA algorithm acts on the same data block. It
can be seen from the figure that although the amplifying fault
has a certain effect on fault detection, it is far less sensitive to
the fault size than the FLMSR algorithm.
Table 8 lists the monitoring effects of different methods. The

first 21 lines reflect the fault detection rate, and line 22 reflects
the average fault detection rate. Here, strictly according to
whether the output exceeds the Pauta Criterion control line
and whether the fault is output-related is defined. The first
block in the table is the output-related fault. From the
corresponding columns of BFGS and PLS algorithms in this
block, it can be seen that the detection rate of the BFGS
algorithm is higher than that of the PLS algorithm except IDV
(10). In the whole first block, except IDV (7−8) and IDV(21),
the highest monitoring rate is given by the FLMSR algorithm

proposed in this paper. The second block is the output-
unrelated fault. According to the corresponding columns of
BFGS and PLS algorithms in this block, it can be seen that the
fault detection rate of the FLMSR algorithm proposed in this
paper is higher than that of the PCA algorithm when the
cumulative contribution rate is 80%. Except IDV (3) and
IDV(9), the highest monitoring rate is given by the FLMSR
algorithm proposed in this paper. The KICA algorithm is a
very good algorithm for fault detection. The fault detection
rate of IPKF-BFGS-FLMSR proposed in this paper is better
than that of the KICA algorithm in most cases. In addition,
obviously, the lowest false alarm rate of IPKF-BFGS-FLMSR
can be observed in the last row of the table. Generally
speaking, by comparing the fault detection rate and false alarm
rate, IPKF-BFGS-FLMSR is found to be superior to the other
two methods.
We further compare the SDR of the IPKF-BFGS-FLMSR

method with that of the KICA method in Figure 6. The SDR
of the IPKF-BFGS-FLMSR method is obtained by taking the
maximum SDR of BFGS and FLMSR. For 21 faults, the
performance of the method based on IPKF-BFGS-FLMSR is
better than that based on KICA (except fault 9 and fault 12).
The fault detection performance of fault 9 and fault 12 is very
close, but there is still a slight difference. Taking fault 5 as an
example, the SDR of the IPKF-BFGS-FLMSR method is 0.998
while that of KICA is 0.406, which shows that the SDR of the
IPKF-BFGS-FLMSR method is 2.46 times higher than that of
KICA. Taking fault 18 as an example, the SDR of the IPKF-
BFGS-FLMSR method is 0.926 while that of KICA is 0.383,
which shows that the SDR of the IPKF-BFGS-FLMSR method
is also 2.4 times higher than that of KICA. The average SDR of
the IPKF-BFGS-FLMSR method is 0.845 while that of KICA is
0.689, which shows that the average SDR of the IPKF-BFGS-
FLMSR method is 1.2 times higher than that of KICA. This
shows that FLMSR method has stronger data recognition
ability. SDR results further illustrate the superior performance
of the proposed method based on IPKF-BFGS-FLMSR in
detecting process faults.

Figure 4. Fault detection results of IPKF-BFGS-FMLSR for IDV (14). (a) Fault detection on Y and (b) IPKF-BFGS-FMLSR.
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Figure 5. Fault detection results of IPKF-BFGS-FMLSR and PCA for IDV (19). (a) Fault detection on Y, (b) 0.5 times the fault, (c) 1.0 times the
fault, (d) 1.5 times the fault, (e) 1.0 times the fault, and (f) 5 times the fault.
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5. CONCLUSIONS
In this paper, a new output-related and -unrelated monitoring
scheme based on modeling strategies of the IPKF algorithm,
BFGS algorithm, and FLMSR algorithm is proposed. The
proposed modeling program first uses IPKF to divide the input
variables into fault-related blocks, output-related blocks, and

output-unrelated blocks to obtain output-related and -un-
related changes, respectively. The output-related blocks are
monitored by the BFGS algorithm with better numerical
stability, and the output-unrelated blocks are monitored by the
FLMSR algorithm proposed in this paper. With TEP data, the
IPKF-BFGS-FLMSR method, the IPKF-PLS-PCA method,
and the most advanced KICA method are compared. The
results show that the IPKF-BFGS-FLMSR method proposed in
this paper can achieve better fault-monitoring results in output-
related and -unrelated fault monitoring.
When faults occur in the industrial process, the algorithm

can greatly reduce the fault range. It is not necessary to
consider all variables and only need to detect output-related
blocks or output-unrelated blocks to find the fault root.
However, the specific fault location needs further study.

■ AUTHOR INFORMATION
Corresponding Author

Cuiping Xue − College of Science, Northeastern University,
Shenyang 110819, China; orcid.org/0000-0002-7764-
5240; Phone: +86-0-18642090501; Email: xuecuiping@
mail.neu.edu.cn

Table 7. FLMSR Algorithm

algorithm: FLMSR

1. Input data X ∈ Rn×t, Y ∈ R2n1×t parameters α, β, σ, and μ are assigned with an initial value, maximum iteration number K, and iteration number counter k = 1.
2. Assign an initial random matrix between (0, 1) to the matrices P and W and calculate Lw, Lb, and U.

3. Update the P matrix. ←
μ

μ
+

− − + −
P Pij

k
ij

k P

I W X C C X I W P PP I P
1 (2 )

(( ) ( ) (3 ) )

k
ij

T T
n

T
n

k T k
ij

4. Update the W matrix.

←
μ

α β μ
+ +

+ − + + −
W Wij

k
ij

k X C C XPP W

X C C XPP Y L L Y U WW I W
1 (2 4 )

((2 2 ( ) 2 2 (3 )) )

T
n

T
n

T
ij

T
n

T
n

T T T k
iw b

5. Update =
i
k
jjjj

y
{
zzzzdiagU

W

1

2 i
2
, judging that if the maximum iteration number K is reached, then stop iteration, otherwise, block k = k + 1 and return to step 3.

Table 8. FDRs of the 21 Faults in the TE Benchmark (%)

IPKF-BFGS-FLMSR IPKF-PLS-PCA KICA

Fault TB
2 SPEB TF

2 SPEF Tpls
2 SPEpls Tpca

2 SPEpca T2 SPE

1 36.25 8.25 100 99.50 36.50 36.25 99.25 99.75 99.63 99.86
2 98.25 95.25 98.75 98.75 69.63 81.75 98.75 97.00 98.63 98.75
5 23.25 12.13 100 34.50 19.00 19.00 23.63 21.50 22.13 26.88
6 99.00 98.75 100 100 94.75 94.75 99.13 100 100 100
7 100 97.63 43.63 46.00 32.50 32.50 44.75 24.00 100 100
8 97.75 89.88 97.75 96.88 80.75 80.75 96.25 75.38 99.25 98.38
10 23.86 1.38 90.25 63.13 30.13 30.13 31.63 34.38 63.00 86.88
12 70.75 83.75 96.88 94.50 67.88 67.88 93.25 64.75 94.88 95.88
13 95.25 90.63 96.25 95.88 83.00 83.00 94.16 88.63 95.50 95.38
16 10.13 2.63 90.25 15.88 6.13 6.13 6.88 19.75 24.88 19.38
17 15.63 0.50 97.38 92.00 13.50 13.00 80.88 94.75 82.75 96.00
18 89.25 23.75 90.88 90.25 87.88 88.25 89.16 90.25 24.00 25.25
20 17.88 2.00 91.25 67.25 1.25 1.25 45.63 47.63 44.00 57.88
21 52.50 32.50 4.16 1.00 23.63 23.63 16.75 1.75 45.75 39.38
3 1.63 1.38 5.63 3.00 1.88 1.88 1.16 1.63 13.50 0.38
4 3.36 2.50 100 99.88 9.13 9.38 100 10.38 69.25 100
9 0.63 0.88 6.25 0.75 0.875 0.88 0.75 1.25 19.13 20.50
11 5.00 0.50 82.25 69.38 19.38 17.25 53.88 66.25 46.63 77.13
14 0 0 100 100 0 0 100 99.88 99.38 100
15 25.63 1.00 15.00 8.75 24.25 24.25 10.25 1.50 2.75 3.50
19 0 0 89.38 19.63 0 0 21.63 8.63 18.13 51.88
AVG 41.24 30.73 76.00 61.76 33.43 33.90 57.51 49.95 60.15 66.35
AVG-FAR 0.744 0.804 0.595 0.655 0.863 0.833 0.714 0.863 5.149 2.708

Figure 6. IPKF-BFGS-FLMSR and KICA are used for the SDR
histogram of detection results of all 21 faults.
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