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ABSTRACT
The shrimp fishery is one of the most important fisheries in the world, although the
low selectivity from trawling nets has led to the capture of a large number of non-target
species. Shrimp-bycatch species include a large number of fish and invertebrate species,
of which fish species are the most abundant. The present study aims to determine the
community structure as well as the average sizes at first maturity of the fish species from
shrimp-bycatch caught from industrial fisheries in the Mexican Pacific from Sinaloa
to Guerrero, from January to March 2015. The shrimp-bycatch fish diversity value
was found to be 2.22. A total of 37 species of finfish were found, of which five were
considered rare. The fish species with the highest Importance Value Index (IVI) levels
were Pseudupeneus grandisquamis, Paralichthys woolmani, Lutjanus peru and Diapterus
peruvianus. The average size at first maturity was calculated for all species. Of the
analysed organisms, 90% were in the juvenile stage, including species with riverine and
artisanal fisheries. The present study demonstrates the risk within marine populations
to different non-target species due to the poor selectivity of shrimp trawls.

Subjects Biodiversity, Ecology, Marine Biology
Keywords Community structure, Length of maturity, Finfish, Shrimp bycatch

INTRODUCTION
Shrimp, which are among themost traded fishery products in the world, generate numerous
important economic benefits (FAO, 2017), in both riverine and industrial fishery. As with
other fisheries, shrimp fishery is not perfect (Clucas, 1997), especially industrial fishery.
Recent years have seen an on-going emphasis on the impact of this activity on shrimp-
bycatch fauna; the FAO considers this fishery themain source of discarded species (Kelleher,
2004; Kumar & Deepthi, 2006; FAO, 2017). The Gulf of California, widely considered the
‘world’s aquarium’ because of its biological diversity (Enríquez-Andrade et al., 2005) and
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the Mexican Pacific are the most important bodies of water for the Mexican shrimp fishery
(Arvizu-Martinez, 1987; Magallon-Barajas, 1987).

Because shrimp are benthonic organisms, shrimp-bycatch includes a great diversity of
fauna, includingmolluscs, echinoderms, crustaceans and various fishes. Themost abundant
species among shrimp-bycatch fauna are fishes, including more than 100 small-size fish
species (Perez-Mellado & Findley, 1985) such as flatfishes, snappers and pufferfishes, among
others (Aguirre et al., 2008;Gibinkumar et al., 2012;Rábago-Quiroz et al., 2011). More than
114,000 tons of discarded fish are generated per year (Bojorquez, 1998).

Even the term ‘bycatch’ has many definitions and considerations. Shrimp-bycatch
comprises tons of non-target organism catch due to the poor selectivity of the trawls; these
species are often discarded by fishery vessels or become destined for local consumption
(Alverson et al., 1994). The main concern, however, is not only to search for potential uses
of bycatch (Kelleher, 2004), but also to implement more selective trawls in order to reduce
bycatch to a minimum. The poor selectivity of the trawls damages entire ecosystems and
could deplete populations (Alverson et al., 1994), thus affecting even target species.

Tropical shrimp trawl fisheries are often small and have little or no room for bycatch,
which means that bycatch is not cost-effective; this is the main reason that bycatch
is discarded (Kelleher, 2004). At the global level, on-going trawl design innovations
(Boopendranath et al., 2013) have led to greater protection of sea turtles and sea mammals
(Norma Oficial Mexicana, 1996; Morzaria-Luna et al., 2013; Norma Oficial Mexicana,
2013); which, according to the Official Mexican Norm are threatened (Norma Oficial
Mexicana, 2010). Still, less charismatic and less economically important species die either
during or after trawling (Hill & Wassenberg, 1990; Ramírez-Ramírez et al., 2008). These
organisms are then returned to the sea, which leads to environmental contamination
(Ramírez-Ramírez et al., 2008).

In tropical countries each year, shrimp-bycatch corresponds to more than 90% of the
catch (Alverson et al., 1994;Kelleher, 2004). Some of these organisms have greatermarketing
potential. Still, the various biological aspects of shrimp-bycatch fish are not well understood
(Ramos-Santiago et al., 2006; Herrera-Valdivia, López-Martínez & Morales-Azpeitia, 2016).
Because population studies of low-commercial-importance species are not cost-effective,
bycatch studies are an excellent opportunity to examine these seldom-studied species
(Foster & Vincent, 2010).

Shrimp-bycatch species must be evaluated not only because of their importance to
their ecosystems and their potential commercial value (Clucas, 1997; Pauly et al., 1998;
Foster & Vincent, 2012) but also because it is important to learn their size structure and
reproductive status. Most shrimp-bycatch fauna are under 20 cm (the same size as tropical
adult shrimp) and weigh less than 100 g (Alverson et al., 1994; Foster & Arreguin-Sánchez,
2014); this is because smaller organisms must work harder to escape, so many of them
die from exhaustion in the trawl (Liggins & Kennelly, 1996). Most of these organisms are
juveniles or sub-adults, most of which have not yet reproduced at least once (Hilborn &
Walters, 1991). These factors all significantly affect the recruitment of future generations
(Broadhurst, 2000).
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In addition, the lack of information about the size at first maturity and the reproductive
periods, as well as the minimum sizes of catches of less commercially valuable species, have
all led to an absence of regulations for small fisheries (Foster & Vincent, 2010; Morzaria-
Luna et al., 2013). The aim of this work is thus to determine the population structure and
relative abundance of the fish species present in shrimp-bycatch from industrial shrimp
fishery the northeast and southeast Mexican Pacific, as well as their spatial variability and
potential risk involved in the recruitment of the species. Such information will serve as the
basis for determining the actual status of marine communities and the effect of human
activities in each region.

MATERIALS AND METHODS
This study is based on an analysis of bycatch obtained from an industrial shrimping vessel’s
trawling while operating on the Mexican continental shelf from Sinaloa to Guerrero (to
this work this geographical area is considered Guerrero as the southeast from the Mexican
Pacific and Sinaloa as northeast of the Mexican Pacific and the southeast from the Gulf of
California). The work included the fauna obtained from seven catch sites (from 16.40722
to 24.40010 N and 99.42970 to 108.10895 W; Fig. 1). The catches were made during the
second half of the fishing period, from January 26 to March 20, 2015, using a 70-foot-long
(21.3-m) trawl with a 38-mm net mesh. Each trawl was submerged for two hours at
approximate depths of 20 and 54 m, according to Norma Oficial Mexicana (2013).

After the target species (shrimp)was separated on the vessel, a random10-kg sample from
the bycatch fauna was taken, from which all finfish species were separated and identified
at the species level (Allen & Robertson, 1994). The Total Length (TL) of each organism was
then measured, and gonadal maturity and sex were analysed using morpho-colorimetric
methods (Bucholtz, Tomkiewicz & Dalskov, 2008; Sánchez et al., 2013); the sex was only
determined in organisms with developed gonads.

Community structure
Total abundance and abundance per station of each species were then estimated. The
Shannon-Weaver diversity index (H ′) was calculated at each station:

H ′=−
∑

Pi ln Pi

Pi= ni/N .

The similitude at each pair of stations and each pair of sampling months was calculated
by the Morisita similitude index (I ; Morisita, 1959), with modifications, in order to allow
for interpretation of the results as a percentage of similitude among samples:

I =
2
∑

Xi Yi
(λ1+λ2)(N1 N2)

×100

λ1=
∑
[Xi(Xi−1)]

N1(N1−1)

λ2=
∑
[Yi(Yi−1)]

N2(N2−1)
.
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Figure 1 Location of the seven shrimp catches stations in the northeast and southeast of the Mexi-
can Pacific. The square within the map of Mexico indicates the satellite image. Each station is indicated
in yellow. Black bar represents 10 km. Map data c© Google, INEGI, Data SIO, NOAA, U.S. Navu, NGA,
GEBCO, Image Landsat/Copernicus.

Full-size DOI: 10.7717/peerj.4460/fig-1

In addition, the Relative Density (RD), Relative Frequency (RF) and Importance Value
Index (IVI; Smith & Smith, 2006) were calculated for each species. IVI values indicated the
degree of dominance of each species and their degree of constancy within the ecosystem:

RD=
Total number of individuals of a species
Total number of individuals of all species

×100

RF=
Frequency of one species

Total frequency of all species
×100

IVI=RD+FR.

The 12 fish species with the highest IVI were then selected for an evaluation of the size
structure per station. The sizes of the organisms were analysed to determine the normality
and homoscedasticity of the sample. A one-way ANOVA at α< 0.05 was used to find any
significance among the data. Finally, the differences among stations were calculated via
Tukey-Kramer multiple comparison tests with a 95% confidence level using the NCSS
2007 statistical programme.

Length at maturity (TLm)
In order to facilitate estimation of Lm in the absence of suitable data, an empirical rela-
tionship based on linking Lm with L∞was used, as proposed by Froese & Binohlan (2000).
The resulting values were compared with the size structure among the sampled stations:

log L∞= 0.044+0.9841∗ log(TLmax).

TLm= 0.8979∗ log(L∞)−0.0782.

TLmax was then obtained for each species in the sample from FishBase.org.
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Table 1 Species richness, Shannon-Weaver diversity andMorisita similitude from shrimp-bycatch
species from the northeast and southeast Mexican Pacific. (A) Species richness and Shannon-Weaver di-
versity at each station. (B) Morisita similitude index from each peer of stations. (C) Morisita similitude in-
dex from each peer of sampled months. J, January; F, February; M, March.

1 Table 1. Species richness, Shannon-Weaver diversity and Morisita similitude from shrimp-

2 bycatch species from the northeast and southeast Mexican Pacific.

3 A) Species richness and Shannon-Weaver diversity at each station. B) Morisita similitud index 

4 from each peer of stations. C) Morisita similitud index from each peer of sampled months. J: 

5 January, F: February, M: March.

6

A) Station

1 2 3 4 5 6 7 Global

Species Richness (S) 16 15 15 13 16 16 17 37

Diversity (H´) 1.947 2.024 2.118 1.568 2.085 2.236 1.581 2.218

B) Station

1 2 3 4 5 6 7

1  75.37 62.07 65.75 53.91 69.49 93.37

2 75.37  57.38 96.78 49.70 56.59 55.66

3 62.07 57.38  47.46 54.14 79.52 60.98

4 65.75 96.78 47.46  41.29 39.24 47.81

5 53.91 49.70 54.14 41.29  80.32 44.33

6 69.49 56.59 79.52 39.24 80.32  62.80

S
ta

ti
o
n

7 93.37 55.66 60.98 47.81 44.33 62.80  

C) Month

J F M

J  83.25 76.35

F 85.25  75.22

M
o
n
th

M 76.35 75.22  

7
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Manuscript to be reviewed

RESULTS
Community structure
All fish species analysed in this study belong to the superclass Osteichthyes. The specific
richness (S) was found to be among 13 and 17 species (Table 1). The total abundance of
the study was 1,414 fish from 37 species, belonging to 28 families and 35 genera. The global
Shannon-Weaver diversity value was found to be 2.22, with the highest diversity at station
3 (2.118). The stations’ similitudes were among 39% and 93%, with the highest similitude
among stations 1 and 7, which were the most geographically distant stations. Otherwise,
the month similitudes were among 75% and 83%.

To this research, species with one individual (i.e., it only appeared in one station)
were considered rare; these species corresponded to 16% of fish species (Table 2). The
rare species were Bagre pinnimaculatus, Bairdiella ronchus, Brotula clarkae, Ancylopsetta
dendrítica and Sphyraena guachancho. Only 13 species had an IVI of greater than 50.
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Table 2 Fishes IVI from shrimp bycatch from the northeast and southeast Mexican Pacific.

Family Specie Freq RD RF IVI TLmax (cm) TLm (cm)

Mullidae Pseudupeneus grandisquamis HF 28.15 100 128.15 30 18.5
Paralichthyidae Paralichthys woolmani HF 22.63 100 122.63 80 44
Lutjanidae Lutjanus peru HF 15.06 100 115.06 95 51.2
Gerreidae Diapterus peruvianus HF 8.91 100 108.91 30 18.5
Tetraodontidae Sphoeroides pachygaster HF 5.16 85.71 90.87 40.5 SL 24.1 SL
Haemulidae Pomadasys panamensis HF 4.81 85.71 90.52 39 23.3
Carangidae Chloroscombrus orqueta HF 1.13 85.7 86.83 30 18.5
Synodontidae Synodus scituliceps F 2.26 71.42 73.68 42 24.9
Triglidae Prionotus horrens F 0.85 71.42 72.27 35 21.2
Fistulariidae Fistularia corneta F 0.78 71.42 72.2 106 56.3
Serranidae Diplectrum macropoma F 2.83 57.14 59.97 18 11.7
Achiridae Achirus mazatlanus F 0.28 57.14 57.42 20 12.9
Batrachoididae Nautopaedium porosissimum F 0.24 57.14 57.42 32 19.5
Ophichthidae Ophichthus triserialis F 0.28 42.85 43.13 122 63.8
Balistidae Balistes polylepis LF 0.21 42.85 43.06 76 42
Sciaenidae Larimus argenteus LF 0.21 42.85 43.06 35 21.2
Carangidae Selene brevoortii LF 0.85 28.57 29.42 38 FL 22.8 FL
Ophidiidae Lepophidium prorates LF 0.42 28.57 28.99 29.5 SL 18.2 SL
Sciaenidae Isopisthus remifer LF 0.35 28.57 28.92 36 21.7
Clupeidae Opisthonema libertate LF 0.28 28.57 28.85 30 18.5
Carangidae Caranx otrynter LF 0.21 28.57 28.78 60 34.1
Bothidae Bothus constellatus LF 0.14 28.57 28.71 15.7 10.4
Cynoglossidae Symphurus prolatinaris LF 0.14 28.57 28.71 16.1 SL 10.6 SL
Carangidae Trachinotus kennedyi LF 0.14 28.57 28.71 90 48.8
Tetraodontidae Sphoeroides testudineus LF 1.27 14.28 15.55 38.8 23.2
Polynemidae Polydactylus opercularis LF 0.92 14.28 15.2 50 29
Scorpaenidae Scorpaena sonorae LF 0.42 14.28 14.7 15.8 SL 10.5 SL
Tetraodontidae Sphoeroides annulatus LF 0.21 14.28 14.49 44 25.9
Chaetodontidae Chaetodon humeralis LF 0.21 14.28 14.49 25.4 15.9
Engraulidae Anchoa walkeri LF 0.21 14.28 14.49 14.5 9.7
Gobiidae Bollmannia stigmatura LF 0.14 14.28 14.42 14 SL 9.4
Haemulidae Xenichthys xanti LF 0.14 14.28 14.42 24 15.2
Ariidae Bagre pinnimaculatus R 0.07 14.28 14.35 95 51.2
Sciaenidae Bairdiella armata R 0.07 14.28 14.35 30 18.5
Bythitidae Brotula clarkae R 0.07 14.28 14.35 115 60.6
Paralichthyidae Ancylopsetta dendritica R 0.07 14.28 14.35 35 21.2
Sphyraenidae Sphyraena guachancho R 0.07 14.28 14.35 200 98

Notes.
RD, Relative Density; RF, Relative Frequency; IVI, Importance Value Index; from highest to lowest IVI; Freq, Frequency; R, Rare; LF, Low frequent; F, Frequent; HF,
High Frequent; TLmax, Maximum length (FishBase.org); TLm, Length of maturity; SL, Standard length; FL, Fork length.

The most frequent species were the bigscale goatfish, Pseudupeneus grandisquamis;
speckled flounder, Paralichthys woolmani; Pacific red snapper, Lutjanus peru; and the
Peruvian mojarra, Diapterus peruvianus (Table 3); these four species presented the greatest
abundances of the study, with 398, 327, 213 and 126 individuals, respectively.
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Table 3 Abundance per station of fish species with highest IVI.

Species S1 S2 S3 S4 S5 S6 S7

C. orqueta 1 2 1 3 6 3
D. peruvianus 13 9 3 15 49 26 11
D. macropoma 8 6 3 23
F. corneta 1 5 2 2 1
L. peru 21 61 11 91 8 7 14
P. woolmani 24 24 44 22 36 74 96
P. panamensis 7 9 3 2 13 34
P. horrens 1 6 2 1 2
P. grandisquamis 67 31 19 36 12 36 197
S. pachygaster 6 5 36 6 17 3
S. scituliceps 2 2 6 17 5

From the 12 fish species with higher IVI, only P. grandisquamis (IVI = 128.15),
P. woolmani (IVI = 122.63), L. peru (IVI = 115.06) and D. peruvianus (IVI = 108.91)
were present at all stations (Table 3), with maximum abundances per station of 197, 96,
91 and 49 individuals, respectively. The remainder of the species were absent from at least
one station, with an average abundance of among two and 10 individuals per station.

No significant differences were found in the TL size structure in the majority of species
according to latitudinal distribution; only Synodus scituliceps showed highly significant
differences (p< 0.01), which were found in station 1 relative to station 2 (Fig. 2). The
average sizes from D. peruvianus, L. peru, P. woolmani and P. grandisquamis were 12 cm
(±2.77 cm), 12.71 cm (±2.81 cm), 11.51 cm (±3.17 cm) and 12.11 cm (±2.17 cm),
respectively.

Fish sex proportion and sexual maturity
The TLm for the species with the highest IVI values were 18.5 cm for both P. grandisquamis
and D. peruvianus, 44 cm for P. woolmani and 51.2 cm for L. peru (Table 2; Fig. 2). For
all analysed species, fewer than 10% of fish presented developed gonads (Fig. 3); only the
species Scorpaena sonorae presented 100% mature individuals (although individuals from
this species were only found at station 6). The absence of developed gonads did not allow
for sex determination from 23 of the 37 fish species analysed. From the remaining 14
species, 90% of the organisms were found to be female, and males were found in only three
species: Diplectrum macropoma, D. peruvianus and Larimus argenteus. In this last species,
the proportion of males (75%) was higher than females (Fig. 4).

DISCUSSION
The shrimp-bycatch in Mexico, as in other tropical countries, is composed of a wide
diversity of molluscs, echinoderms, crustaceans and fish species (Herrera-Valdivia, López-
Martínez & Castillo-Vargasmachuca, 2015), which are located principally in the nation’s
coastal areas (Lucano-Ramírez et al., 2001). The present study is the first to analyse the
sizes at first maturity of the fish species present in shrimp-bycatch (using both inferring
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Figure 2 Fishes size structure at each sampling station. (A) A. mazatlanus. (B) C. orqueta. (C) D. pe-
ruvianus. (D) D. macropoma. (E) F. corneta. (F) L. peru. (G) P. woolmani. (H) P. panamensis. (I) P. hor-
rens. (J) P. grandisquamis. (K) S. pachygaster. (L) S. scituliceps. The bars represent the average total length
± standard deviation. The gray line indicates the calculated length of maturity. ∗Represents significant dif-
ferences in total length from each species among different sampled stations (p< 0.01).

Full-size DOI: 10.7717/peerj.4460/fig-2

and direct methods) as well as community structure. The diversity values from this work
correspond to other works from the Gulf of California and other subtropical areas (Barreto,
Polo & Mancilla, 2001; Mora, Jurado & Mendívez, 2010; Herrera-Valdivia, López-Martínez
& Castillo-Vargasmachuca, 2015). The diversity index helps to estimate the health of an
ecosystem (Jennings & Reynolds, 2000). It is important to note that the diversity found
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Figure 3 Juvenile andmature fish’s proportion.Ma, mature (developed gonad); Im, immature (unde-
veloped gonad). Bars represent 100% of organisms. Gray bar, percentage of immature individuals; Black
bar, percentage of mature individuals.

Full-size DOI: 10.7717/peerj.4460/fig-3

Figure 4 Sex proportion of fishes from shrimp bycatch. F, female; M, male. Bars represent 100% of or-
ganisms. Gray bar, percentage of females; Black bar, percentage of males.

Full-size DOI: 10.7717/peerj.4460/fig-4

in this study only corresponds to a subsample of shrimp-bycatch fauna, all of which are
discarded as waste.

Although any variation in the trophic chain (i.e., the interrelations among prey-predator
species) could play a primary role in the distribution and abundance of each species, these
kinds of studies are scarce due to the generally low level of interest in less charismatic species.
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Shrimping vessels do not consider variables such as temperature, dissolved oxygen, salinity
and substrate, among others, and it does not seem feasible to establish these variables
for better management strategies (Foster & Arreguin-Sánchez, 2014). This situation is
mostly due to differences in the biometrics, behaviour, physiology and life history of
each species (Loverich, 1995; Clucas, 1997; Eayrs, 2007). Most importantly, no single
management/measurement solution fits all species (Foster & Arreguin-Sánchez, 2014).

In this study, the species richness, the similitude among stations and the size structure
were not significantly found to be affected by the latitude or the month of sampling. As
proof of this finding, the stations with the highest similitude were stations 1 and 7, which
suggests a minimum effect of temperature on these variables. Temperature-related changes
in distribution and abundance could be seen in northerly latitudes, where greater changes
in temperature are generally found (Foster & Arreguin-Sánchez, 2014). Previous reports
have established the sea bottom as one of the major determinants of the abundance of
each species (Torres & Vargas, 2007; Nieto-Navarro et al., 2013). The species of fish found
within shrimp-bycatch are typical of the sandy substrates of lagoon-estuarine systems
where shrimp fishing is usually carried out (Rábago-Quiroz et al., 2011), with the exception
of species associated with rocky and coral environments, such as Chaetodon humeralis and
Balistes polylepis, both of which are considered low frequent.

The most representative families found in this study—Sciaenidae, Tetraodontidae,
Haemulidae and Paralichthyidae, among others—are typical catches from tropical regions
(Gibinkumar et al., 2012). Only 38% of these species were considered abundant and
frequent, this suggests that most species were caught during the hauling or lifting of
the nets, which also led to the low similitude among some of the sampled stations.
The great majority of analysed species corresponded to benthopelagic species (Caranx
otrynter, Chloroscombrus orqueta, S. pachygaster and Isopisthus remifer) and pelagic-neritic
species (Fistularia corneta, L. argenteus and Opisthonema libertate), which coincides with
the findings of previous reports from the Gulf of California and the Mexican Pacific
(López-Martínez et al., 2010; Nieto-Navarro et al., 2013; González-Sansón et al., 2014).

The dominant species of the study—those with an IVI greater than 50—contributed
more than 92% of the total abundance, which is typical of catches from the Gulf of
California, Mexican Pacific and east Pacific (Allen & Robertson, 1994; González-Sansón et
al., 2014; Rábago-Quiroz et al., 2011). Some studies have even reported that bycatch may
be of greater volumes than those of the target fisheries (Barreto, Polo & Mancilla, 2001;
Gibinkumar et al., 2012). The analysed organisms from previous studies have presented a
large variety of size classes; most have been found to be juvenile organisms (Alverson et al.,
1994; Liggins & Kennelly, 1996). A few authors have reported that shrimp-bycatch from the
Gulf of California and the Mexican Pacific includes more than 100 small-size fish species
(Perez-Mellado & Findley, 1985; Allen & Robertson, 1994; Alverson et al., 1994). For most
fish species, no reports have been conducted to date on many of their biological aspects;
such studies have only been conducted on the species A. mazatlanus, L. peru, P. woolmani
and P. grandisquamis (Amezcua-Linares & Castillo-Rodriguez, 1992; Ramos-Santiago et al.,
2006; Herrera-Valdivia, López-Martínez & Morales-Azpeitia, 2016; FishBase, 2017).
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From the above discussion, we can see that it is necessary to seek strategies for the
management and use of these species, since the vast majority of species have potential
for commercialisation, and several of these species even have their own fisheries (FAO,
2017). One of the three fisheries indicators is the percentage of mature fish in a catch,
which is an especially useful value for assessing eventual risks in fish stocks (Froese, 2004).
In the literature, information on sexual maturity comes in various categories, including
concepts (Froese & Pauly, 2000), symbols and definitions (Ragonese & Bianchini, 2014), all
of which are closely related. The mean length at which fish of a given population become
sexually mature for the first time (Lm) is an important management parameter that is used
to monitor whether a sufficient number of juveniles in an exploited stock can mature and
spawn (Beverton & Holt, 1959; Ault, Bohnsack & Meester, 1998; Jennings, Reynolds & Mills,
1998).

For teleosts, Froese & Binohlan (2000) have examined the use of maximum length
to predict the length at first maturity (Foster & Vincent, 2004) because their asymptotic
length is highly correlated with maximum length. Froese & Binohlan (2000) also found the
correlation among asymptotic length and first maturity length to be 85–91% across 265
bony fish species. For teleosts, the size at first maturity is estimated as the size at which 50%
of the organisms have reached sexual maturity, the size at which ovaries appear (Kanou &
Kohno, 2001), the size of the smallest recorded female with hydrated eggs (Nguyen & Do,
1996), the size of the smallest recorded first breeding, and the minimum size of a recorded
female to release her eggs (Froese, 2004).

In this regard, it is important to emphasise that both first-maturity sizes and reproductive
periods are not static but are subject to environmental variations and various analytical
methods (Rodríguez-Domínguez et al., 2015). Even overfishing plays a leading role in
population reductions by increasing food availability and growth rates, both of which
may affect the size at first maturity (Froese & Binohlan, 2000). Furthermore, in adverse
environmental conditions, some species tend to undergo gonadal resorption (Babin, 1987;
Thomé et al., 2009), which is why the sex proportion and the size at first maturity are
often underestimated. The present study analysed the sizes at first maturity of fish species
present in shrimp-bycatch, of which more than 90% were found to be outside the limits of
sustainable fisheries, that is, well below the size of first maturity.

Although some species have well-established fisheries, such as L. peru and P. woolmani,
such species have no official regulations for minimum catch sizes; a minimum catch size
has only been proposed for L. peru, at 31 cm TL (Ramos-Cruz, 2001; COFEMER, 2017).
Foster & Vincent (2010) reported among several fish species from the Gulf of California
an increase in reproductive activity from winter to spring, with possible peaks in summer,
which coincides with the seasonal closing of the shrimp fishery. But the excessive capturing
of juveniles in the spring will have a negative effect on that summer’s reproductive
period and could result in more rapid depletion of small fish populations. Differences in
sex proportion also indicate asynchronous maturation periods. The above evidence all
demonstrates the problem of using generalised management strategies.

The National Commission of Aquaculture and Fisheries (Comision Nacional de
Acuacultura y Pesca: CONAPESCA) is the Mexican governmental institution responsible
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for monitoring all shrimp vessels, both industrial and riverine, and enforces compliance.
However, the primary problem is that trawling is conducted in shallow waters near the
coast (Kelleher, 2004; Nieto-Navarro et al., 2013), which is where most species’ spawning
and nesting areas are located (Lucano-Ramírez et al., 2001). On the other hand, since 2013
all Mexican shrimp vessels must have a fish excluder in their nets (Norma Oficial Mexicana,
2013); however, the abundance of fish species in shrimp-bycatch is still alarming. None
of the analysed species in the current study, however, indicated a ‘hazard’ status or were
threatened according to various conservation standards (Norma Oficial Mexicana, 2010;
COFEMER, 2017;CONABIO, 2017), whichmay have been due to the scarcity of population
and reproductive studies.

The inferring size at first maturity works as a first approach for creating management
regulations until the specific data for each species becomes available (Froese & Binohlan,
2000). This study shows thatmany of the species present in shrimp-bycatch are at imminent
risk because of their small sizes at catch and the large percentage of immature organisms
within the catches; this situation not only affects the populations themselves but also causes
damage to the whole trophic chain.

CONCLUSIONS
The shrimp fishing industry is one of the most important global industries. This study,
using data from northeast and southeast Mexican Pacific, the shrimp fishery found an
impact on a total of 37 fish species, with an average of 15 species per sampled station, which
negatively affects marine diversity. Diversity from fish species from shrimp-bycatch was
found to be medium-low. There were no significant differences in specific richness and
abundance of individuals among latitude and sampling month.

The dominant species were P. grandisquamis, P. woolmani, L. peru and D. peruvianus,
with an IVI greater than 100 and a TLm of 18.5, 43.9, 51.2, and 18.5 cm, respectively.
The shrimp fishery was found to have a negative impact on reproduction of at least 12
fish species. Of the analysed fish, only 10% had developed gonads, of which 93% were
found to be female. This work highlights the potential impact of the shrimp fishery on fish
population dynamics and the need to improve the selectivity of shrimp trawls, and the
imminent risk that marine communities face.
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