
A Probabilistic Spatial Dengue Fever Risk Assessment by
a Threshold-Based-Quantile Regression Method
Chuan-Hung Chiu1, Tzai-Hung Wen2, Lung-Chang Chien3, Hwa-Lung Yu1*

1 Department of Bioenvironmental systems engineering, National Taiwan University, Taipei, Taiwan, 2 Department of Geography, National Taiwan University, Taipei,

Taiwan, 3 Division of Biostatistics, University of Texas School of Public Health at San Antonio Regional Campus, San Antonio, Texas, United States of America; Research to

Advance Community Health Center, University of Texas Health Science Center at San Antonio Regional Campus, San Antonio, Texas, United States of America

Abstract

Understanding the spatial characteristics of dengue fever (DF) incidences is crucial for governmental agencies to implement
effective disease control strategies. We investigated the associations between environmental and socioeconomic factors
and DF geographic distribution, are proposed a probabilistic risk assessment approach that uses threshold-based quantile
regression to identify the significant risk factors for DF transmission and estimate the spatial distribution of DF risk regarding
full probability distributions. To interpret risk, return period was also included to characterize the frequency pattern of DF
geographic occurrences. The study area included old Kaohsiung City and Fongshan District, two areas in Taiwan that have
been affected by severe DF infections in recent decades. Results indicated that water-related facilities, including canals and
ditches, and various types of residential area, as well as the interactions between them, were significant factors that elevated
DF risk. By contrast, the increase of per capita income and its associated interactions with residential areas mitigated the DF
risk in the study area. Nonlinear associations between these factors and DF risk were present in various quantiles, implying
that water-related factors characterized the underlying spatial patterns of DF, and high-density residential areas indicated
the potential for high DF incidence (e.g., clustered infections). The spatial distributions of DF risks were assessed in terms of
three distinct map presentations: expected incidence rates, incidence rates in various return periods, and return periods at
distinct incidence rates. These probability-based spatial risk maps exhibited distinct DF risks associated with environmental
factors, expressed as various DF magnitudes and occurrence probabilities across Kaohsiung, and can serve as a reference for
local governmental agencies.
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Introduction

Dengue fever (DF) is among the most severe vector-borne

infectious diseases spread by mosquitoes in tropical and subtrop-

ical regions; 2.5 billion people in over 100 countries are at risk of

contracting the dengue virus [1–5]. More than 50 million

infections occur annually, particularly in Southeast Asian and

western Pacific regions [5,6]. Several species of mosquito (e.g.,

Aedes aegypti and Aedes albopictus) transmit five distinct dengue

virus serotypes, including DENV-1, DENV-2, DENV-3, and

DENV-4 [7,8]. No commercially available vaccine exists to

mitigate the disease spread, and therefore, determining the

spatiotemporal distribution of DF incidence is among the top

priorities for DF prevention and control [9–13]. Although

numerous DF studies have focused on determining the DF

etiology to facilitate space–time prediction, a risk assessment

framework to account for DF risk factors and provide risk

measures across space (e.g., the probability and magnitude of DF

incidences) must be established to control and manage the disease.

Identifying the major surrogate factors for DF incidence is key

to assessing DF risk. Ideal surrogate factors are risk factors that not

only are closely associated with DF etiology, but also should be

readily available [13], i.e., easier to be accessed or observed For

example, climatic variables are a critical factor characterizing the

temporal patterns of DF incidence [14]. Regarding the spatial

characteristics of DF incidences, previous research has explored

land-use indicators and socioeconomic status to approximate the

local magnitudes of complex interactions between infected and

susceptible human hosts and DF vectors [15–18]. High-risk DF

areas are closely associated with the size and location of

agricultural, forest, and residential areas, which are the preferred

habitats of DF vectors. Populated areas close to vector-preferred

areas exhibit increased DF occurrence risk [15,19–21]. In

addition, previous studies have indicated that high population

densities, residential areas, and areas with low income family

exhibit increased risk of DF transmission [22–25]. The statistical

relationships among DF incidence, land use, and socioeconomic

factors frequently change across the study area because of the

distinct environmental and climatic conditions. Therefore, deter-

mining the associations between DF outbreaks and the environ-

mental factors of each study area is essential. We used quantile

regression to characterize the relationships between risk factors

and DF incidence across the quantiles of the DF incidence

probability distribution.
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Probabilistic risk assessment is a systematic approach to

evaluating the risk of an event in terms of probabilities and their

associated magnitudes [26–28]. Although a probabilistic approach

provides a means to characterize the uncertainties of the events

(e.g., a DF epidemic), interpreting the probability associated with

risks is difficult for the general population and decision makers

[29]. By contrast, frequency analysis is used to estimate the return

period a prespecified event (e.g., extreme rainfall, floods, tornados,

earthquakes) [30]. The return period is the average number of

years between occurrences of the annual event with magnitude

larger than a specified level. The selected and analyzed annual

events should be homogeneous and independent [31]. In other

words, interpreting the probabilities of risks is possible by

estimating their associated return periods, using frequency

analysis.

This paper proposes a threshold-based quantile regression

approach to investigate the functional relationships between the

spatial distributions of environmental risk factors, including land

use and socioeconomic factors, and DF incidence. The functional

relationship was characterized using estimations at prespecified

quantiles of DF incidence (i.e., 0.1, 0.2,…, 0.9) that comprise the

spatially varying nonparametric probability distribution of DF risk

associated with the spatial factors. The spatial distributions of DF

risk were estimated and expressed as return periods for ease of

interpretation.

Materials

Study area
For decades, the DF annual incidence rate has been among the

highest for infectious diseases in Taiwan [32] and is particularly

high in old Kaohsiung City (Fig. 1), the second largest city in

Taiwan with a population of 2.9 million distributed over 11

districts and an area of 154 km2. Fongshan District, located to the

southeast of Kaohsiung City and covering an area of 26 km2, was

the former capital of Kaohsiung County and has a population of

approximately 36 000. Figure 1 depicts the area covered in this

study: old Kaohsiung City and Fongshan District, which both

include major commercial, residential, and political areas of

Southern Taiwan. This area comprises 535 li (the smallest

administrative unit in Taiwan) with population sizes ranging from

160 to 37 000 and an average population density of approximately

950 people per square kilometer (Fig. 1). The study area is located

in a tropical region that has a clear distinction between dry and

wet seasons. The wet season typically lasts for half a year, from

mid-May to mid-October, during which time the daily rainfall can

exceed 500 mm during typhoon periods. The dry season

comprises the rest of the year, during which time there is little

to no rain. The average annual rainfall of this area is

approximately 1884.9 mm. The daily temperature exceeds 20uC
for most of the year, with minimum and maximum average

monthly temperatures of 19.3uC in January and 29.2uC in July,

respectively. Because of the limited area (i.e., 180 km2) and

topographical changes of the study area, the variability of climatic

variables (e.g., temperature) across the study area was relatively

small.

Data
We investigated DF cases based on surveillance data obtained

from the Centers for Disease Control (CDC) in Taiwan. Data was

obtained by following the standard data request procedure on the

CDC website [33]. The dataset included total DF cases in the 353-

li area, including both local and imported cases, from 2004 to

2011. Only 2% of the total reported DF cases were considered

imported in the dataset, and no significant distribution patterns of

imported cases across space and time were observed. Figure 2

illustrates the spatial distribution of the average annual incidence

of DF. The DF risk factors considered in this study included a

various land uses and socioeconomic attributes. Land-use data

were obtained from the Taiwan National Land Surveying and

Mapping Center (NLSC) [34]. This analysis included 103 land-use

factors, including agriculture, forest, public utility, and residential

areas. The NLSC website lists a detailed description and definition

of every land-use factor [35,36]. Figure 3 shows various land-use

factors (i.e., canals, ditches, and residential areas). The land-use

factors for each li are expressed according to area ratio and size,

i.e., the percentage and areal size of a land-use factor in the li’s.
Socioeconomic data were collected from the Fiscal Information

Agency of the Ministry of Finance in Taiwan in 2009. This dataset

comprises the spatial distributions of 12 socioeconomic attributes,

such as per capita income, and average population density across

the 535 li.

Method

Koenker and Bassett [37] first introduced quantile regression

specifically to estimate the relationship between covariates and the

quantile of response variable distribution. The regression is

flexible, allowing covariates to exert various effects at distinct

points of the distribution, and the estimation is robust to

nonnormality and skewed tails of the data distribution [38]. We

adopted quantile regression to investigate the underlying relation-

ships between average annual DF incidence rate Y (i.e., average

cases per 10 000 people) and potential risk factors x (i.e., land use

and socioeconomic attributes). Unlike conventional regression

approaches, quantile regression not only considers the central

tendency of the response variable regarding covariate changes, but

also determines the covariate effect conditional on specific

quantiles of the response variable.

Let t within the range of 0,1½ � be a quantile level of the Y
distribution. The relationship between t and Y is denoted as

qY tð Þ~F{1
Y tð Þ, where F{1

Y tð Þ is an inverse of the cumulative

distribution function (CDF) of Y . Given li location si, i~1, � � � ,n,

Y and x are rewritten as Y sið Þ and x sið Þ, respectively. In addition,

Y sið Þ~N sið Þ=Z sið Þ, where N sið Þ and Z sið Þ are average dengue

cases and population size si, respectively. Thus, the relationship

between Y sið Þ and x sið Þ in selected quantile t can be written as

qY sið Þ tDx sið Þ½ �~
Xm

j~0

~bbj tð Þxj sið Þ; ð1Þ

where ~bb0(t),~bb1(t), � � � ,~bbm(t) denotes the estimated intercept and

coefficients in a prespecified quantile level t, and m is the number

of x sið Þ. The DF dataset indicated the absence of DF incidence in

some li during the study period, implying that the relationship

between the covariate changes and dengue incidence quantiles

were not linear; specifically, thresholds existed for the risk factors

above which the factors significantly affected the DF risk change.

Based on this assumption, the general quantile regression formula

shown in Eq. (1) was transformed into a threshold-based quantile

regression to account for the threshold values for each identified

covariate. To obtain the model thresholds, the original dataset was

classified into two sets, Y 0 sið Þ,x0
j sið Þ

h i
and Y 1 sið Þ,x1

j sið Þ
h i

, where

Y 0 sið Þ and Y 1 sið Þ represent the observed average incident rate

equal to zero and larger than zero, respectively, and x0
j sið Þ and

x1
j sið Þ are their corresponding risk factors at location si. The
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proposed threshold-based quantile regression model can be

expressed as

q
Y1 sið Þ tDu sið Þ½ �~

Xm

j~0

b̂bj tð Þ uj sið Þ ð2Þ

where uj sið Þ~ x1
j sið Þ{�xx0

j sið Þwhile x1
j sið Þw�xx0

j sið Þ; and 0 while
n

x1
j sið Þƒ�xx0

j sið Þg; b̂bj tð Þ, j = 1, …, m are the estimated coefficients

for threshold-adjusted covariates uj sið Þ; and b̂b0 tð Þ is the intercept.

To determine the influential variables, a two-stage variable

selection process (i.e., variable screening and stepwise variable

selection) was employed. In the first stage, variables were removed

as long as they are closely linear correlated with other variables

and, based upon literature review, not evident to be a risk factor of

DF incidence. In the variable screening process, before performing

a quantile regression, a Pearson correlation, r, was implemented

to evaluate collinearity among the risk factors, where

xj sið Þ, j~1, � � � ,m, with absolute correlation coefficients larger

than 0.35 with other covariates were removed before further

analysis. For example, the variables of road areal ratio and

population density were highly correlated (rw0:35). Road areal

ratio was removed because population density exerted a greater

influence on DF in studies [22,24,39]. In the variable selection

process, the covariate selection in Eq. (2) followed the stepwise

selection technique [40], based on Akaike’s information criterion

(AIC) [41] (i.e., the lower the AIC, the better the performance of

the model is). The optimal thresholds �xx0
j sið Þ for each covariate

Figure 1. Map of Kaohsiung city and Fongshan district.
doi:10.1371/journal.pone.0106334.g001
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Figure 2. Spatial distribution of average DF incidence rate in 535 Li’s during 2004–2011.
doi:10.1371/journal.pone.0106334.g002
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Figure 3. Spatial distribution of landuse factors important to DF across Kaohsiung-Fongshan area.
doi:10.1371/journal.pone.0106334.g003
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were estimated by maximizing the pseudo R2 (pR2). The pR2 of

the optimal models at various quantile levels were calculated

separately to assess their performances. The analyses of the

quantile regression models were performed using the quantreg

package in R [42].

The semiparametric CDF for Y sið Þ was estimated with respect

to tand uj sið Þ by using Eq. (2). The quantile-based CDF can be

used to estimate the exceedance probability (EP) of Y sið Þ,
p~Pr Y sið Þwyð Þ, where y is a selected annual DF incidence

rate. In frequency analysis, a distinct perspective of EP can be

obtained by using return period due to the close relationship

between the probability distribution and return period of an event.

Assuming the yearly DF cases during the study period were

independent, the return period of a specified annual incidence rate

would be equal to the reciprocal of its EP (i.e., 1=p) based on

frequency analysis. For example, a 10-year DF outbreak has a 1/

10 = 0.1 or 10% chance of being exceeded in one year. This

approach facilitated a probabilistic risk assessment of DF

epidemics by estimating the full CDFs of DF risk across the study

area without distributional assumptions. DF risk spatial distribu-

tions can be expressed as DF incidence statistical characteristics

(e.g., mean and median) or EP and return periods regarding the

prespecified EP and incidence rates. Based on risk maps, areas of

dense DF incidence (e.g., locations with high average incidence

rates or short return periods) can be identified. This approach can

encourage public health authorities to prioritize DF prevention.

Figure 4. Variations of Pseudo R-square across quantile levels of (a) the two most significant risk factors, and (b) the four most
significant interaction effects.
doi:10.1371/journal.pone.0106334.g004

Figure 5. Comparison of pseudo R-squares across quantile levels among 1) conventional quantile regression model (CQR), 2)
threshold-based quantile regression model (TBQR), and 3) threshold-based quantile regression considering interaction effects
(TBQRI).
doi:10.1371/journal.pone.0106334.g005
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Figure 6. The 95% confident interval at the significant quantile levels for (a) canal (b) ditch, and (c) per capita income, respectively.
doi:10.1371/journal.pone.0106334.g006
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Results

Associations between the spatial distributions of DF incidence

rates and risk factors (i.e., land use and socioeconomic attributes)

were estimated using quantile regression for every selected

quantile level, t~0:1,0:2, � � � ,0:9. Before analysis, Pearson’s rho

was used to evaluate collinearity instead of the PCA because the

pR2 was below 10%. Following the covariate selection procedure,

major DF risk factors for all quantiles were identified, including

area ratios of canals, ditches, purely residential areas, residential

areas with businesses, residential areas with other uses, warehous-

es, government agencies, elementary schools, high schools, and the

socioeconomic factor, per capita income. Among these risk factors,

the most significant were ditches and per capita income, indicating

that the effect on DF risk can change among various quantiles

(Fig. 4a). Spatial distributions of ditches and per capita income

explained approximately 1% to 1.5% and 1% to 2% of DF

variations, respectively.

Furthermore, we considered interactions between the risk

factors. Figure 4b shows the four most significant interaction

factors, among which the interactions between ditches and

residential areas contributed to changes in DF risk. Specifically,

interactions between ditches and residential-business mixed areas

and ditches and residential-other purpose mixed areas accounted

for approximately 2% to 5% and 2% to 4%, respectively, of the

DF spatial variability among quantile levels. Figure 5 depicts the

pR2 values in the selected quantile levels for the optimal models

with three distinct settings (i.e., conventional quantile regression

model, threshold-based quantile regression model, and threshold-

based quantile regression that considers interaction effects).

Consideration of the covariate threshold and interactions among

risk factors can significantly improve the explanatory power of the

model. In addition, all three models performed more effectively at

higher quantile levels (i.e., areas of higher DF risk).

Figure 6 depicts the estimated coefficients and their corre-

sponding 95% confidence intervals for the factors of canals,

ditches, and per capita income, which significantly affected DF

occurrence at various quantile levels. Among them, canals and

ditches were critical to DF incidence in areas with lower incident

rates (i.e., 0:1ƒtƒ0:4). These land-use effects at the identified

quantile levels were approximately constant, that is, a 1% increase

in land-use ratios of canals or ditches elevated DF incidence rates

by approximately 0.005%. By contrast, per capita income was

negatively associated with DF, particularly at relatively high

incidence rate quantile levels (t~0:8,0:9). Figure 7 illustrates the

identified critical interactions for DF incidence. Generally, the

interactions between water-related utilities and residential areas

were vital to the DF incidence rate spatial distribution and

nonlinearly affected DF occurrence across the entire range of

quantile levels, implying that the relationships between these

interaction factors and DF risk can change significantly with the

DF incidence rate level. Among the interactions, canal-related

interactions with ditches, residential–business mixed areas, and

residential–other-purposes mixed areas exerted significant effects

at low-median quantile levels, (i.e., 0:1ƒtƒ0:6). The ditch-

related interactions with residential–business mixed areas and

residential–other-purposes mixed areas exerted increasing effects

when the DF incidence rate quantile levels increased. When

residential–business areas were combined with purely residential

areas, higher DF risk in relatively high quantile levels occurred

compared with when they were combined with residential–other-

purpose areas. Conversely, areas with high residential area per

capita income reduced the effects of residential–business areas on

DF risk, particularly at the high quantile levels.

The semiparametric CDF of DF incidence rates in the studied

535 li were estimated using the threshold-based quantile regression

results. Figure 8 depicts the expected DF incidence rates across the

area, based on the CDFs, similar to the observed average incident

rates in Figure 2. In addition, Figures 9a–c show the incidence

rate spatial distributions when the three selected exceedance

probabilities were 0.9, 0.5, and 0.1, regarding the return periods

(i.e., 1.11, 2, and 10 years). When the return period was 1.11 years,

higher DF incidence rates occurred in areas close to canals or

ditches. When return periods increased, the high risk areas shifted

to areas with a mix of residential areas, canals, and ditches. Spatial

distributions of the return periods at the three selected DF

incidence cases are shown in Figures 10a–c. Approximately80% of

the li had return periods shorter than 2 years when the annual DF

incidence rate was one. As the selected annual DF cases increased,

the li return periods also increased. The li with shorter return

periods (i.e., 2–5 years) were located in areas with a mix of

residential areas, canals, and ditches.

Discussion

This paper proposed a novel probabilistic risk assessment

approach to determine the DF risk spatial distributions, using

quantile regression. Although quantile regression has been widely

applied to analyze nonlinear functional relationships between

quantities of concerns and covariates, according to an extensive

review of the literature, this study is the first to integrate quantile

regression and frequency analysis in probabilistic disease risk

assessment. We further accounted for the potential threshold

effects of DF occurrence risk factors and expanded conventional

quantile regression into a threshold-based model. Using the

threshold approach allows for the assumption that risk factors only

take effect when they are larger than preselected values [43,44]

and is useful in environmental management and policy making

[45,46]. The proposed threshold-based quantile regression

approach allowed for nonlinearities in both the relationships and

predictor values. We not only provided probabilistic-based DF risk

maps, but also identified the major risk factors affecting the spatial

distribution of DF incidence rates, which were expressed as various

return periods that presented the occurrence frequency of

prescribed magnitudes. This presentation of DF risk can be

interpreted and used to inform the general public and decision

makers [29].

We considered land use and socioeconomic factors as proxies

for DF disease modeling, because both of these factors are closely

associated with DF vector habitats [47–49]. Land use patterns can

indicate whether the environmental conditions of surrounding

areas are favorable to vector breeding [50], and socioeconomic

factors can signal human behavior and activities in the areas; both

of these factors have been widely used for DF modeling

[19,20,51,52]. Unlike conventional approaches, linear models

have been used extensively to identify significant risk factors

Figure 7. The 95% confident intervals at the significant quantile levels for interaction effects between (a) canal and ditches, (b)
canal and residential-business area, (c) canal and residential-other use area, (d) ditch and residential-business area, (e) ditch and
residential-other use area, (f) pure residential area and residential-business area, (g) residential-business area and residential-
other use area, and (h) residential-business area and per capita income, respectively.
doi:10.1371/journal.pone.0106334.g007
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Figure 8. Spatial distribution of expected average incidence rates in the study area.
doi:10.1371/journal.pone.0106334.g008
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[15,16,21,53]. However, the associations between DF incidence

and risk factors are not necessarily linear; the magnitudes of these

associations depend on the levels of risk factors. We determined

the varying associations between significant risk factors and DF

incidence in areas with various epidemic conditions, using quantile

regression. This study is the first to use quantile regression to

analyze the functional relations between DF risk factors and

incidence. A two-stage variable selection process (i.e., variable

screening and stepwise variable selection) was used to reduce

collinearity issues and identify the most influential and explainable

factors in each DF quantile. Although other variable selection or

reduction methods are available (e.g., principle component

analysis), the proposed variable selection process was used to

provide direct relationships between landuse and socioeconomic

patterns and DF risk. Therefore, these findings can serve as a

reference for governmental agencies when implementing disease

control practices in the study area.

Areas including both residential areas and open water channels

(e.g., canals and ditches) exhibited elevated DF risk, which is

consistent with previous findings [14,16,22,24,39]. The findings in

Figure 9. Spatial distribution of DF risks in terms of estimated incidence rates at return period of (a) 1.111 years, (b) 2 years, and (c)
10 years.
doi:10.1371/journal.pone.0106334.g009

Figure 10. Spatial distribution of DF risks in terms of the estimated return periods that incidence rate is greater than (a) 2 cases/
10,000 persons, (b) 1 case/10,000 persons, and (c) 8 case/10,000 persons.
doi:10.1371/journal.pone.0106334.g010
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this study indicated that Aedes aegypti is the primary vector

responsible for DF epidemics in Taiwan, even though both Aedes
aegypti and Aedes albopictus coexist in the country [54,55]. Studies

have revealed that water-related facilities are closely associated

with an abundance of Aedes aegypti [56,57], particularly in areas

with numerous water-holding containers [55,58]. In addition,

urban areas are generally the preferred habitat of Aedes aegypti
[59,60], an observation that supports the finding in this study that

urbanization level was a highly influential factor that elevated DF

risk [24]. The results further determined that residential areas with

small businesses had higher DF risk than other types of residential

area (e.g., purely residential areas; Fig. 7), possibly because of the

relatively high water storage requirements for business activities

(e.g., open-air food and grocery markets) [35,36]. DF risk was

further elevated by the existence of ditches in the area (Fig. 7). By

contrast, high per capita income mitigated DF risk, particularly in

residential–business areas in which banks or business offices were

located on the lower floors of buildings. The approach used in this

study emphasized the nonlinear contributions of environmental

factors to DF occurrence that can be overlooked when using

conventional regression methods. For example, the significance of

water-related facilities to DF occurrence in the study area was only

observed in lower quantiles (Figs. 6 and 7), a phenomenon that is

easily overlooked when using conventional regression.

Distinct spatial patterns of DF incidence rates regarding various

return periods indicated that areas close to ditches and

downstream of major canals, (i.e., the Ai river) are generally DF

epidemic foci. Figure 9 illustrates the areas with high DF incidence

rates in the three selected return periods (i.e., 1.11, 2, and 10

years). These areas were exposed to high DF risk nearly every

year, whereas downtown areas, such as Cianjhen District, have

longer return periods (i.e., a high DF incidence in this area was

observed only once every several years). These results suggested

that open water channels in the city increase DF transmission,

particularly in the areas downstream of the Ai river where both

high-density residential and business areas are mixed. Clustered

infections can easily occur in the high-density downtown

residential areas once a DF epidemic has occurred. These finding

provide insight into previous results that determined that

urbanization in Kaohsiung City can increase the DF risk [24].

Another presentation shows the spatial distributions of return

periods according to selected DF incidence rates. Most parts of the

study area exhibited at least mild DF transmission (i.e., morbidity

rate of 1/10000) every 3 years, except for Sinsing District. Areas

with short return periods (e.g., 1–2 years), were restricted to areas

downstream of the Ai river and those in Cianjhen District once the

DF risk level increased, (e.g., 2/10000). The return period map

can provide an alternative view for governmental agencies when

estimating the frequency of and contributions to DF occurrence in

the area. Canals and ditches are critical factors in the lower

quantiles of DF occurrence in Kaohsiung City (Figs. 6 and 7), and

therefore, are major risk factors for annual DF outbreaks. By

contrast, residential areas were identified as the major factors in

extreme DF outbreaks.

Risk analysis based on full probability densities of DF across the

entire city can provide a multifaceted view of the associations

between spatial distributions of environmental conditions and DF

risk. This analysis can be used to emphasize the importance of

considering nonlinear functional associations between environ-

mental conditions and DF incidence at various quantile levels.

Nonlinearity is crucial to the interpretation of the DF risk spatial

distribution. However, the environmental conditions considered in

this study (i.e., land use and socioeconomic factors) only partially

explained the spatial characteristics of DF occurrence. More

specifically, the factors considered in this study were only proxies

to characterize the vector habitats and the interactions between

humans and vectors. DF incidence can also depend on other direct

or indirect risk factors, such as climatic variables, virus serotypes,

imported cases, clustered transmissions, and disease control

interventions [58,61]. Consequently, the pR2 of quantile regres-

sion models only accounted for approximately 25% of the space-

time variations in the disease data. The spatial variation of climatic

variables within the study area should have been limited, because

of the small size and topographical changes. Other limitations

resulting from data uncertainty should also be considered (i.e., the

space-time observation scales varied between DF data and proxy

factors). Land-use data for Taiwan were only available during

2007, and therefore, no land-use change was considered in this

analysis during the study period. In addition, only country-scale

socioeconomic data were available; therefore, this study did not

include smaller-scale data (i.e., li). According to these data

uncertainties, the probability and return period maps presented

in this study can only provide spatial distribution patterns of DF

risk rather than estimations of DF epidemic magnitude.

Author Contributions

Conceived and designed the experiments: CHC HLY. Performed the

experiments: CHC HLY. Analyzed the data: CHC HLY. Contributed

reagents/materials/analysis tools: CHC THW LCC HLY. Wrote the

paper: CHC THW LCC HLY.

References

1. Aldstadt J (2007) An incremental Knox test for the determination of the serial

interval between successive cases of an infectious disease. Stochastic Environ-

mental Research and Risk Assessment 21: 487–500.

2. WHO (1997) Dengue haemorrhagic fever: diagnosis, treatment, prevention, and

control: World Health Organization.

3. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, et al. (2013) The

global distribution and burden of dengue. Nature.

4. Whitehorn J, Farrar J (2010) Dengue. British medical bulletin 95: 161–173.

5. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, et al. (2012)

Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-

Based Consensus. Plos Neglected Tropical Diseases 6.

6. WHO (2009) Dengue and dengue haemorragic fever. Fact sheet no 117.

7. Normile D (2013) Surprising New Dengue Virus Throws a Spanner in Disease

Control Efforts. Science 342: 415–415.

8. Rodenhuis-Zybert IA, Wilschut J, Smit JM (2010) Dengue virus life cycle: viral

and host factors modulating infectivity. Cellular and molecular life sciences 67:

2773–2786.

9. Maidana NA, Yang HM (2008) Describing the geographic spread of dengue

disease by traveling waves. Mathematical Biosciences 215: 64–77.

10. Rotela C, Fouque F, Lamfri M, Sabatier P, Introini V, et al. (2007) Space-time

analysis of the dengue spreading dynamics in the 2004 Tartagal outbreak,

Northern Argentina. Acta Tropica 103: 1–13.

11. Wen T-H, Lin NH, Lin C-H, King C-C, Su M-D (2006) Spatial Mapping of

Temporal Risk Characteristics to Improve Environmental Health Risk

Identification: A Case Study of a Dengue Epidemic in Taiwan. The Science

of the Total Environment 367: 631–640

12. Yu HL, Yang SJ, Yen HJ, Christakos G (2011) A spatio-temporal climate-based

model of early dengue fever warning in southern Taiwan. Stochastic

Environmental Research and Risk Assessment 25: 485–494.

13. Stewart-Ibarra AM, Lowe R (2013) Climate and Non-Climate Drivers of

Dengue Epidemics in Southern Coastal Ecuador. American Journal of Tropical

Medicine and Hygiene 88: 971–981.

14. Lifson AR (1996) Mosquitoes, models, and dengue. Lancet 347: 1201–1202.

15. Vanwambeke SO, Lambin EF, Eichhorn MP, Flasse SP, Harbach RE, et al.

(2007) Impact of land-use change on dengue and malaria in northern Thailand.

Ecohealth 4: 37–51.

16. Mondini A, Chiaravalloti-Neto F (2008) Spatial correlation of incidence of

dengue with socioeconomic, demographic and environmental variables in a

Brazilian city. Science of the Total Environment 393: 241–248.

Spatial Dengue Fever Risk Assessment by Quantile Regression Method

PLOS ONE | www.plosone.org 12 October 2014 | Volume 9 | Issue 10 | e106334



17. Gubler DJ, Clark GG (1995) Dengue Dengue Hemorrhagic-Fever - the

Emergence of a Global Health Problem. Emerging Infectious Diseases 1: 55–57.

18. Dowling Z, Armbruster P, LaDeau SL, DeCotiis M, Mottley J, et al. (2013)

Linking Mosquito Infestation to Resident Socioeconomic Status, Knowledge,

and Source Reduction Practices in Suburban Washington, DC. Ecohealth 10:

36–47.

19. Van Benthem BHB, Vanwambeke SO, Khantikul N, Burghoorn-Maas C,

Panart K, et al. (2005) Spatial patterns of and risk factors for seropositivity for

dengue infection. American Journal of Tropical Medicine and Hygiene 72: 201–

208.

20. Raju K, Sokhi B (2008) Application of GIS modeling for dengue fever prone

area based on socio-cultural and environmental factors–a case study of Delhi city

zone. Int Arch Photogramm Remote Sens Spat Inf Sci 37: 165–170.

21. Braga C, Luna CF, Martelli CM, Souza WVd, Cordeiro MT, et al. (2010)

Seroprevalence and risk factors for dengue infection in socio-economically

distinct areas of Recife, Brazil. Acta tropica 113: 234–240.

22. Gharbi M, Quenel P, Gustave J, Cassadou S, La Ruche G, et al. (2011) Time

series analysis of dengue incidence in Guadeloupe, French West Indies:

Forecasting models using climate variables as predictors. Bmc Infectious

Diseases 11.

23. Gubler D (1998) The global pandemic of dengue/dengue haemorrhagic fever:

current status and prospects for the future. Annals of the Academy of Medicine,

Singapore 27: 227–234.

24. Wu PC, Lay JG, Guo HR, Lin CY, Lung SC, et al. (2009) Higher temperature

and urbanization affect the spatial patterns of dengue fever transmission in

subtropical Taiwan. Science of the Total Environment 407: 2224–2233.

25. Hales S, Weinstein P, Souares Y, Woodward A (1999) El Niño and the dynamics

of vectorborne disease transmission. Environmental Health Perspectives 107: 99.

26. Kumamoto H, Henley EJ, Henley EJ (1996) Probabilistic risk assessment and

management for engineers and scientists. New York: IEEE Press. xvii, 597 p. p.

27. Bari RA (2003) Probabilistic risk assessment: Springer.

28. Vesely WE (2011) Probabilistic Risk Assessment. System Health Management:

With Aerospace Applications: 253–263.

29. O’Hagan A (2006) Uncertain judgements : eliciting experts’ probabilities.

London ; Hoboken, NJ: Wiley. xiii, 321 p. p.

30. Mays LW (2010) Water resources engineering:Wiley. com.

31. Benjamin JR (1970) Probability, statistics, and decision for civil engineers.

32. Wu PC, Guo HR, Lung SC, Lin CY, Su HJ (2007) Weather as an effective

predictor for occurrence of dengue fever in Taiwan. Acta Tropica 103: 50–57.

33. Taiwan CDC (2013) Procedures of data application. In: Welfare MoHa, editor.

Governmental Data Taipei, Taiwan: Centers of Disease Control, Taiwan.

34. NLSC (2013) Land Use Investigation of Taiwan.

35. National Land Surveying and Mapping Center (2007) Construction use land

taxonomy table. In: Center NLSaM, editor. Landuse Investigation of Taiwan.

Taichung, Taiwan: Ministry of Interior.

36. National Land Surveying and Mapping Center (2012) Land use classification

system doubt casebook. In: National Land Surveying and Mapping Center,

editor. Taichung, Taiwan: Ministry of Interior.

37. Koenker R, Bassett G (1978) Regression Quantiles. Econometrica 46: 33–50.

38. Mata J, Machado JA (1996) Firm start-up size: A conditional quantile approach.

European Economic Review 40: 1305–1323.

39. Hales S, Weinstein P, Souares Y, Woodward A (1999) El Nino and the dynamics

of vectorborne disease transmission. Environmental Health Perspectives 107:

99–102.

40. Montgomery DC, Peck EA, Vining GG (2012) Introduction to linear regression

analysis: Wiley.

41. Akaike H (1987) Factor analysis and AIC. Psychometrika 52: 317–332.

42. Koenker R, Koenker MR (2013) Package ‘quantreg’.

43. Kozlowski J (1985) Threshold approach in environmental planning. Ekistics 52:

146–153.

44. Kozlowski J, Rosier J, Hill G (1988) Ultimate environmental threshold (UET)

method in a marine environment (Great Barrier Reef Marine Park in Australia).
Landscape and urban planning 15: 327–336.

45. Kim SY, Lee JT, Hong YC, Ahn KJ, Kim H (2004) Determining the threshold

effect of ozone on daily mortality: an analysis of ozone and mortality in Seoul,
Korea, 1995–1999. Environmental Research 94: 113–119.

46. Daniels MJ, Dominici F, Samet JM, Zeger SL (2000) Estimating particulate
matter-mortality dose-response curves and threshold levels: An analysis of daily

time-series for the 20 largest US cities. American Journal of Epidemiology 152:

397–406.
47. Lei H-Y, Huang J-H, Huang K-J, Chang C (2002) Status of dengue control

programme in Taiwan-2001. Dengue Bulletin 26: 14–23.
48. Vanwambeke SO, Bennett SN, Kapan DD (2011) Spatially disaggregated

disease transmission risk: land cover, land use and risk of dengue transmission on
the island of Oahu. Tropical Medicine & International Health 16: 174–185.

49. Sarfraz MS, Tripathi NK, Tipdecho T, Thongbu T, Kerdthong P, et al. (2012)

Analyzing the spatio-temporal relationship between dengue vector larval density
and land-use using factor analysis and spatial ring mapping. BMC public health

12: 853.
50. Vanwambeke SO, Somboon P, Harbach RE, Isenstadt M, Lambin EF, et al.

(2007) Landscape and land cover factors influence the presence of Aedes and

Anopheles larvae. Journal of Medical Entomology 44: 133–144.
51. Kienberger S, Hagenlocher M, Delmelle E, Casas I (2013) A WebGIS tool for

visualizing and exploring socioeconomic vulnerability to dengue fever in Cali,
Colombia. Geospatial health 8: 313–316.

52. Hagenlocher M, Delmelle E, Casas I, Kienberger S (2013) Assessing
socioeconomic vulnerability to dengue fever in Cali, Colombia: statistical vs

expert-based modeling. International journal of health geographics 12: 36.

53. Almeida MCD, Caiaffa WT, Assuncao RM, Proietti FA (2007) Spatial
vulnerability to dengue in a Brazilian urban area during a 7-year surveillance.

Journal of Urban Health-Bulletin of the New York Academy of Medicine 84:
334–345.

54. Chang SF, Huang JH, Shu PY (2012) Characteristics of dengue epidemics in

Taiwan. Journal of the Formosan Medical Association 111: 297–299.
55. Tuan Y-C, Hung M-N, Lin L-J, Shin W-Y, Huang C-C, et al. (2009) Analysis on

Dengue Vector Density Survey in Kaohsiung and Pingtung Areas of Southern
Taiwan, 2004–2008. Taiwan Epidemiology Bulletin 25: 462–485.

56. Saifur RG, Hassan AA, Dieng H, Salmah MRC, Saad AR, et al. (2013)
Temporal and Spatial Distribution of Dengue Vector Mosquitoes and their

Habitat Patterns in Penang Island, Malaysia. Journal of the American Mosquito

Control Association 29: 33–43.
57. Hiscox A, Kaye A, Vongphayloth K, Banks I, Piffer M, et al. (2013) Risk Factors

for the Presence of Aedes aegypti and Aedes albopictus in Domestic Water-
Holding Containers in Areas Impacted by the Nam Theun 2 Hydroelectric

Project, Laos. The American journal of tropical medicine and hygiene 88: 1070–

1078.
58. Shang CS, Fang CT, Liu CM, Wen TH, Tsai KH, et al. (2010) The Role of

Imported Cases and Favorable Meteorological Conditions in the Onset of
Dengue Epidemics. Plos Neglected Tropical Diseases 4.

59. Tsuda Y, Suwonkerd W, Chawprom S, Prajakwong S, Takagi M (2006)
Different spatial distribution of Aedes aegypti and Aedes albopictus along an

urban-rural gradient and the relating environmental factors examined in three

villages in northern Thailand. Journal of the American Mosquito Control
Association 22: 222–228.

60. Hiscox A, Kaye A, Vongphayloth K, Banks I, Piffer M, et al. (2013) Risk Factors
for the Presence of Aedes aegypti and Aedes albopictus in Domestic Water-

Holding Containers in Areas Impacted by the Nam Theun 2 Hydroelectric

Project, Laos. American Journal of Tropical Medicine and Hygiene 88: 1070–
1078.

61. Knerer G, Currie CS, Brailsford SC (2013) Impact of combined vector-control
and vaccination strategies on transmission dynamics of dengue fever: a model-

based analysis. Health care management science: 1–13.

Spatial Dengue Fever Risk Assessment by Quantile Regression Method

PLOS ONE | www.plosone.org 13 October 2014 | Volume 9 | Issue 10 | e106334


