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Intracerebral Haemorrhage 
Segmentation in Non-Contrast CT
Ajay Patel1*, Floris H. B. M. Schreuder2, Catharina J. M. Klijn   2, Mathias Prokop1, 
Bram van Ginneken1, Henk A. Marquering3,4, Yvo B. W. E. M. Roos5, M. Irem Baharoglu5, 
Frederick J. A. Meijer   1 & Rashindra Manniesing   1

A 3-dimensional (3D) convolutional neural network is presented for the segmentation and 
quantification of spontaneous intracerebral haemorrhage (ICH) in non-contrast computed tomography 
(NCCT). The method utilises a combination of contextual information on multiple scales for fast 
and fully automatic dense predictions. To handle a large class imbalance present in the data, a 
weight map is introduced during training. The method was evaluated on two datasets of 25 and 50 
patients respectively. The reference standard consisted of manual annotations for each ICH in the 
dataset. Quantitative analysis showed a median Dice similarity coefficient of 0.91 [0.87–0.94] and 
0.90 [0.85–0.92] for the two test datasets in comparison to the reference standards. Evaluation of a 
separate dataset of 5 patients for the assessment of the observer variability produced a mean Dice 
similarity coefficient of 0.95 ± 0.02 for the inter-observer variability and 0.97 ± 0.01 for the intra-
observer variability. The average prediction time for an entire volume was 104 ± 15 seconds. The 
results demonstrate that the method is accurate and approaches the performance of expert manual 
annotation.

Non-traumatic intracerebral haemorrhage (ICH) is the most deadly stroke subtype1. Accurate segmentation and 
quantification of ICH has become increasingly important, as haemorrhage volume predicts patient outcome and 
haemorrhage features can aid in identifying etiology and guide secondary imaging and treatment decisions2,3.

Computed Tomography (CT) imaging is the preferred modality for the initial assessment of patients pre-
senting with symptoms of stroke in the majority of health care settings because it is readily available, can be 
performed fast and has high sensitivity for haemorrhage4. Generally, the appearance of haemorrhage on CT in 
the acute phase is distinct due to the hyperdensity of blood. However, segmentation of ICH can be challenging 
because of image noise, artefacts and cerebral parenchyma with similar appearance and density. Irregularity of 
the haematoma and different stages of clot formation may further contribute to obscure haemorrhage boundaries 
and internal heterogeneity. These difficulties are illustrated in Fig. 1.

The clinically widely adopted ABC/2 method considers perpendicular diameter measurements of the haem-
orrhage in both axial and coronal planes to estimate the total ICH volume5. Several studies have investigated the 
difference in haemorrhage volume estimation between ABC/2 methods and semi-automatic planimetric soft-
ware6–14. These studies failed to demonstrate the difference in volume estimation in comparison to precise man-
ual annotation, as they used semi-automatic methods requiring user interaction to serve as reference standard. 
Nevertheless, it has been demonstrated that the ABC/2 method is prone to observer variability and imprecise 
and shown to overestimate ICH volume by approximately 20%6,7. Large, irregular shaped haemorrhages are most 
prone to misestimation7. Despite the shortcomings of the ABC/2 method, it remains widely applied. Its continu-
ous use may likely be attributed to its relative ease of use.

Automated evaluation of cranial non-contrast CT (NCCT) exams is a broad topic of interest that has resulted 
in methods for various applications. Recently, several large-scale studies have specifically focused on the detection 
of intracranial haemorrhage in an acute setting, with the aim of optimising clinical workflow and reducing time 
to diagnosis15–18. Related work on segmentation in cranial NCCT has mainly presented methods that operate in 
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2D and are not proposed for a specific subtype of intracranial haemorrhage. Although haemorrhage shape and 
appearance can strongly differ, even more so between subtypes. An overview of related work on cranial CT seg-
mentation is shown in Table 1.

In recent years, the use of convolutional neural networks (CNNs) in medical image analysis has shown a rapid 
increase19. For image segmentation, multiple CNN architectures have recently been presented, which show a 
general similarity and employ a combination of context information integration from multiple scales for simulta-
neous volumetric dense prediction20–22. In the field of medical image analysis, CNNs have already shown to rival 
or even surpass the performance of experienced medical professionals23–25.

We employed a state-of-the-art 3D CNN that combines multi-scale information with a 3D fully convolutional 
architecture for fast, automatic segmentation of ICH in cranial CT exams. The method was evaluated on two 
manually annotated datasets comprised of both supra- and infra-tentorial ICH.

Results
Observer variability.  The quantitative evaluation of the inter-observer variability, intra-observer variability 
and performance of the method in comparison to each observer independently for a subset of five patients is 
shown in Tables 2 and 3. Results are reported for Dice similarity coefficient (DSC), Hausdorff Distance (HD), 
95 percentile HD (95% HD), modified HD (MHD), contour mean distance (CMD) and absolute volume differ-
ence (AVD)26–28. The median and interquartile range are reported for non-normal distributions. A mean DSC of 
0.95 ± 0.02 was recorded for the inter-observer variability. The performance of the method was at a comparable 
level to the observer variability, with mean DSC values of 0.91 ± 0.05 and 0.92 ± 0.05. No statistically significant 
difference (p < 0.05) in all metrics was found between the method and the inter-observer variability for the subset 
of patients. The results for DSC of all experiments are depicted in the box plots in Fig. 2.

Quantitative evaluation.  Radboudumc.  Table 3 shows the results of the quantitative evaluation of the 
Radboudumc test dataset consisting of 25 patients. A median DSC of 0.91 [0.87–0.94] was reported. The results 
for DSC are depicted in a box plot in Fig. 3. The average prediction time for a single volume was 104 ± 15 seconds.

In general, the method was capable of segmentation of complex haemorrhages affected by image noise, het-
erogeneity due to varying stages of localised clotting and common imaging artefacts that may appear as haem-
orrhagic regions and cause false positive results, as shown in Figs. 1 and 4. However, two outliers that negatively 
affected the overall quantitative results could be identified. The first was a cerebellar haemorrhage located close 
to the occipital bone. This haemorrhage was affected by high intensity streaking artefacts causing heterogeneity 
with high intensity spots within the lower parts of the haemorrhage that resembled the surrounding skull. This 
artefact proved too severe for the method, resulting in a substantial undersegmentation in the final result. The 
second was a small intracerebral haemorrhage in the right precentral gyrus. A slight undersegmentation of the 
final result had a large impact on the quantitative measures because of the small volume of the haemorrhage. Both 
outlier results are depicted in Figs. 5 and 6.

PATCH.  Table 4 shows the results of the quantitative evaluation of the separate PATCH test dataset consisting 
of 50 patients. A median DSC of 0.90 [0.85–0.92] was reported.

Discussion
We have presented a method for fast and accurate automatic 3D segmentation of ICH in cranial NCCT. The 
method utilises a state-of-the-art deep learning approach that combines multi-scale context integration with a 
3D fully convolutional architecture. This architecture allows for fast training and complex feature learning from 
volumetric data and negates the use of handcrafted features.

The method has proven to be accurate, with a median DSC of 0.91 [0.87–0.94] reported for the Radboudumc 
test dataset. The calculated median 95% HD of 0.79 [0.48–1.83] mm and median MHD of 0.17 [0.09–0.35] mm, 
further indicate that the segmentations produced by the method closely resemble the manually annotated ref-
erence standard with few erroneous over-segmented regions present elsewhere. Quantitative evaluation of the 

Figure 1.  Sagittal, coronal and axial view of intracerebral haemorrhage with internal heterogeneity and 
irregular boundaries. Linear high density regions are caused by streaking artefacts as a result of beam hardening 
(red arrows). Intracranial calcifications and structures such as the falx cerebri share similar density values (white 
arrows). Haemorrhage boundary manually defined by a trained observer (right).

https://doi.org/10.1038/s41598-019-54491-6


3Scientific Reports |         (2019) 9:17858  | https://doi.org/10.1038/s41598-019-54491-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

performance of the method using the PATCH dataset also showed a high DSC of 0.90 [0.85–0.92]. Although 
minor alterations to the network architecture and some retraining was necessary, the method has shown to be 
applicable to different datasets and produced good results. The variability of manual annotation between observ-
ers was investigated and showed a high degree of overlap, with a mean DSC of 0.95 ± 0.02. The method has 
shown to closely approach this level of human performance whilst reducing the time to perform the laborious 
task of segmentation. Statistical analysis showed no significant difference between the proposed method and the 
inter-observer variability. However, the small subset of five CT exams used is too small to draw definitive conclu-
sions from. Nevertheless, the presented results provide an indication of the overall performance of the method.

We experienced difficulties with the method in two patients in the Radboudumc test dataset, as shown in Figs. 5 
and 6. One of the patients had a total haemorrhage volume of less than 0.5 mL. In this case, a minor error in seg-
mentation had a large impact on relative quantitative measures such as the DSC and AVD. Therefore, this negatively 
affected the overall quantitative results of the test dataset, as shown in Fig. 3. Another case was affected by image 

Author Year Method nD Pathology Reference standard
Observer 
variability

Test set (N)

Patients Scans Slices

Bardera et al.29 2009 Semi-automated region 
growing and level set — ICH and 

edema Slice-based manual† Inter 18 18 —

Liao et al.30 2009 Multi-resolution binary 
level set 2D ICH, SDH and 

EDH Manual† No 48 48 48

Prakash et al.31 2012 Modified distance regularised 
level set evolution 2D ICH and IVH Slice-based manual No — 50 —

Prakash et al.32 2012 Modified thresholding, 
clustering, and graph theory 2D ICH and IVH Slice-based manual No — 51 —

Bhadauria et al.33 2013 Fuzzy C-mean clustering and 
active contour 2D ICH, SDH and 

EDH Manual† No 20 — 100

Boers et al.34 2014 Atlas registration and region 
growing 2D SAH Manual Inter 30 30 —

Gillebert et al.38 2014 Template registration and 
statistical analysis 2D Stroke lesions Slice-based manual No 24 24 —

Scherer et al.39 2016 Random forest classifier — ICH Manual/Semi-automatic Inter 30 30 —

Shahangian et al.35 2016 Modified distance regularised 
level set evolution 2D

ICH, IVH, 
SDH and 
EDH

Manual† No — — 627

Gautam et al.36 2018 Fuzzy clustering and distance 
regularized level set evolution 2D ICH Manual† No — — 60

Chang et al.37 2018 Convolutional neural 
network† 2D

ICH, SDH, 
EDH and 
SAH

Semi-automatic† No — 862 (82) 23,668 
(—)

Muschelli et al.40 2017 Random forest classifier 3D† ICH Manual/Semi-automatic No 102 102 —

This work 2019 Convolutional neural network 3D ICH Manual Inter & Intra 30/— 30/50 —

Table 1.  Overview of related work on segmentation in cranial NCCT. Information that has not explicitly been 
specified in the cited publication is indicated by —. Information that has not clearly been explained in detail 
is indicated by †. The size of the test set is shown as the total number of 2D slices or 3D scans taken from a 
specified number of unique patients that was used for quantitative evaluation of the method. For example, Liao 
et al. included a single scan for each unique patient and from each scan a single slice was taken for evaluation. 
Numbers in parentheses indicate the number of cases containing pathology in a test set also containing healthy 
subjects.

Inter- observer 
(n = 5)

Intra- observer 
(n = 5)

Method vs. observer 
1 (n = 5)

Method vs. observer 
2 (n = 5)

DSC 0.95 ± 0.02 0.97 ± 0.01 0.91 ± 0.05 0.92 ± 0.05

HD (mm) 6.14 [3.36–22.96] 6.59 [2.92–22.25] 8.03 ± 4.28 13.51 ± 13.29

95% HD (mm) 0.32 ± 0.30 0.00 [0.00–0.45] 1.69 ± 1.81 1.61 ± 1.79

MHD (mm) 0.07 ± 0.04 0.03 ± 0.01 0.26 ± 0.26 0.24 ± 0.23

CMD (mm) 0.28 ± 0.14 0.12 [0.12–0.18] 0.68 ± 0.52 0.57 ± 0.41

AVD (%) 5.49 ± 5.50 2.34 ± 1.92 11.64 ± 11.28 10.57 ± 9.76

Table 2.  Quantitative evaluation of inter-, intra-observer variability, method in comparison to each 
independent observer and final test dataset reported as mean ± standard deviation or median and interquartile 
range for non-normal distributions. Metrics reported are Dice similarity coefficient (DSC), Hausdorff distance 
(HD), 95 percentile HD (95% HD), modified HD (MHD), contour mean distance (CMD) and absolute volume 
difference (AVD). p-values were computed with a Wilcoxon signed-rank test between the inter-observer 
variability and method in comparison to the independent observers for each evaluation measure (columns 3 
and 4). * indicates a significantly different result (p < 0.05).
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artefacts that largely impacted the appearance of the haemorrhage in terms of heterogeneity, leading to underseg-
mentation. However, the test dataset consisted of a variety of haemorrhages with differing shapes, internal heteroge-
neity and volumes, as shown in Table 5. Overall the method has proven to be robust to these varying factors.

DSC 0.91 [0.87–0.94]

HD (mm) 5.28 [3.80–12.11]

95% HD (mm) 0.79 [0.48–1.83]

MHD (mm) 0.17 [0.09–0.35]

CMD (mm) 0.49 [0.30–0.98]

AVD (%) 11.18 [7.30–17.89]

Table 3.  Quantitative evaluation of method in comparison to the reference standard for the Radboudumc test 
dataset reported as median and interquartile range. Metrics reported are Dice similarity coefficient (DSC), 
Hausdorff distance (HD), 95 percentile HD (95% HD), modified HD (MHD), contour mean distance (CMD) 
and absolute volume difference (AVD).

Figure 2.  Box plots of Dice similarity coefficient (DSC) for inter-, intra-observer variability, method in 
comparison to each independent observer and final test dataset. Corresponding mean standard deviation 
values are listed in Table 2. The central lines show the median values, the box edges depict the 25th and 75th 
percentiles and the whiskers indicate the extremes at 1.5 interquartile range.

Figure 3.  Box plots of Dice similarity coefficient (DSC) for method in comparison to the reference standard 
for the Radboudumc test dataset. Corresponding data are listed in Table 3. The central lines show the median 
values, the box edges depict the 25th and 75th percentiles and the whiskers indicate the extremes at 1.5 
interquartile range excluding the two outliers, depicted as +.

https://doi.org/10.1038/s41598-019-54491-6


5Scientific Reports |         (2019) 9:17858  | https://doi.org/10.1038/s41598-019-54491-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

Related work concerning automatic methods has been limited to few studies in recent years. Eight methods 
shown in Table 1 employ region growing, level set evolution or clustering29–36. Region growing algorithms require 
selected intensity limits to constrain the final segmentation. Level set methods are sensitive to heterogeneity and 
the sharpness of lesion boundaries. These methods do not integrate surrounding context feature information for 
classification and are sensitive to image quality, haemorrhage appearance and artefacts. Six related works state 
that the reference standard for the quantitative evaluation was obtained by manual or semi-automatic annotation 
performed by an experienced observer, but neglect to provide details of how this was performed or which tools 
were used29,30,33,35–37. Furthermore, six studies only report the number of cases that were used for evaluation of 
the method and fail to clearly explain which data was used to develop the method29,30,33,35,36,38. Also, only three of 
the presented methods were evaluated in comparison to the variability of manual annotation29,34,39. One method 
employs voxel-wise classification using Random Forests that incorporates 3D neighbourhood information40. 
However, such an approach requires the selection and crafting of features that sufficiently describe the problem at 
hand. Therefore it is limited to the extent of the definition of those features. On the other hand, a CNN is capable 
of broad generalisation as a result of automated feature extraction and optimisation based on the data presented 
during training. Recent work using a CNN for intracranial haemorrhage detection and segmentation reported a 
DSC of 0.931 for ICH in subset of 23 patients37. However, the main focus of the work is the ROI-based backbone 
CNN architecture and no information is given about how the reference standard and final segmentations were 

Figure 4.  Sagittal, coronal and axial view of segmentation result of the proposed method for a patient with 
intracerebral haemorrhage with internal heterogeneity and irregular boundaries also depicted in Fig. 1. Three 
dimensional rendering of haemorrhage segmentation (right).

Figure 5.  Sagittal, coronal and axial view of outlier of the test dataset depicted in Fig. 3. Patient with cerebellar 
haemorrhage close to the skull with high density streaking artefacts and internal heterogeneity. Manual 
annotation of ICH boundary (top) and segmentation result of the proposed method (bottom).
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obtained. Contrarily, our work clearly details all aspects of the methodology and evaluation and is compared to 
the inter- and intra-observer variability of manual annotation.

This work has a number of limitations. First, only patients with an isolated ICH were included in this study and 
those with extension of haemorrhage into the subarachnoid and intraventricular compartment were excluded. 
However, obtaining high-quality manually annotated reference standards is costly and laborious. Although the 

Figure 6.  Sagittal, coronal and axial view of outlier of the test dataset depicted in Fig. 3. Patient with small 
haemorrhage in the right precentral gyrus. Manual annotation of ICH boundary (top) and segmentation result 
of the proposed method (bottom).

DSC 0.90 [0.85–0.92]

HD (mm) 14.83 [5.38–53.10]

95% HD (mm) 0.43 [0.43–1.03]

MHD (mm) 0.12 [0.07–0.27]

CMD (mm) 0.24 [0.10–0.50]

AVD (%) 7.02 [3.07–15.69]

Table 4.  Quantitative evaluation of method in comparison to the reference standard for the PATCH dataset 
reported as median and interquartile range. Metrics reported are Dice similarity coefficient (DSC), Hausdorff 
distance (HD), 95 percentile HD (95% HD), modified HD (MHD), contour mean distance (CMD) and absolute 
volume difference (AVD).

Training and 
validation (n = 21)

Testing (n = 30)

Observer 
study (n = 5)

Evaluation 
(n = 25)

Male 10 2 15

Mean age (±SD) 65.2 ± 17.2 62.8 ± 23.4 66.8 ± 12.8

Median volume [IQ range] 13.7 [8.3–44.0] 20.6 [6.4–47.3] 4.1 
[1.6–18.3]

Homo-/Heterogeneous 10/11 2/3 15/10

Regular/Irregular 8/13 1/4 14/11

Deep/Lobar 11/10 2/3 13/12

Table 5.  Overview of included patient data and haemorrhage characteristics divided into separate datasets for 
training and validation, and testing.

https://doi.org/10.1038/s41598-019-54491-6
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dataset for this study is limited, it has enabled the creation and validation of methodology for accurate ICH 
quantification in NCCT. Second, the method has shown to be capable of producing a volumetric segmentation 
in approximately 100 seconds. However, the method requires a pre-calculated segmentation of the cranial cavity 
to focus predictions within the diagnostically relevant region, which takes approximately six minutes. With a 
different training approach that also includes extracranial structures, the use of a cranial cavity segmentation may 
be circumvented in the future.

The focus of this work has been the accurate segmentation of ICH and the quantification of total haemorrhage 
volume. This is a fundamental step in haematoma characterisation. The segmentation of ICH may further aid 
in the identification of patients at high risk of ICH expansion, an independent predictor of early neurological 
deterioration and functional outcome. Several promising NCCT biomarkers have been investigated that could 
be used for patient stratification in clinical practice and trials, including margin irregularity, internal density 
heterogeneity and intrahaematoma fluid levels41. Therefore, future work may consist of extending current meth-
odology to incorporate such features in the automated analysis. Furthermore, our method may form the basis of 
a method for automated detection of blood in cranial NCCT, which may aid in clinical practice to easily detect 
small amounts of blood that may otherwise be overlooked.

In conclusion, we presented an accurate and fast method for the automatic segmentation and quantification of 
ICH in NCCT using a 3D convolutional neural network that has been well validated in comparison to a manually 
annotated reference standard. The performance of the method approaches the variability of expert manual anno-
tation, making it suitable for use in clinical studies requiring accurate volumetric analysis.

Methods
Network architecture.  A schematic overview of the CNN architecture is shown in Fig. 7.

The proposed network architecture consists of two distinct pathways integrating contextual information on 
four different scales21. The first pathway is comprised of repeated units of convolutional filters and non-linearities 
followed by a regional intensity pooling operation to decrease the dimensionality of the feature maps and increase 
complexity in the lower scales of the network. A unit in the first pathway is made up of two layers of 3 × 3 × 3 
convolutional filters, followed by a 2 × 2 × 2 pooling operation that takes the maximum value in that region and 
decreases the input feature map by a factor of eight. The number of filters is doubled between the first and second 
layer. This unit is repeated three times to create four separate scales within the architecture.

The purpose of the second pathway is twofold; it is an integrative path that incorporates feature information 
from all scales and it adds complexity and further features to the model through different units of convolutional 
filters that process the combined multi-scale information. The units of the second pathway are comprised of 
a 2 × 2 × 2 upscaling operation that increases the dimensionality of the input feature map by a factor of eight 
by regional repetition of the underlying values. This information is concatenated with the feature map on the 
same scale from the first pathway to combine both local and global feature information. The combined informa-
tion from both pathways passes through two layers of 3 × 3 × 3 convolutional filters. The final combination of 
multi-scale feature information is transformed into an output probability map by a softmax function.

Differing from the original method, we implement leaky rectified linear units (ReLu) activation functions to 
prevent neuron saturation and sparse activations within the network21,42.

Pre-processing.  All images were normalised in the same manner. Intensity values below and above the rel-
evant range were set to the scaled minimum and maximum values respectively. Values in the range [−200, 200] 
HU were normalised to the range [0, 1] to serve as input for the CNN. To aid in training the network and to 
prevent false positive predictions during the test phase, the diagnostically relevant cranial cavity was isolated. The 
cranial cavity is defined as all soft tissues and cerebrospinal fluid, including the meninges, cerebrum and ventri-
cles, cerebellum and brain stem. This was segmented for each CT study using multi-atlas registration and levelset 
refinement43. Errors in the cranial cavity segmentation were manually corrected in nine cases.
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2x2x2 Max pooling
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2

Figure 7.  Schematic overview of CNN architecture. Arrows represent layers of filters. Numbers define 
the number of feature maps produced by the corresponding filter layer. The final softmax layer produces a 
probability map of the prediction for a given input at voxel level.
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Training.  The cranial cavity segmentation was combined with a manual annotation of each haemorrhage as 
described in Section Reference standard, to produce a full annotation mask for each CT image in the training set. 
Random coordinates were equally sampled from the annotated mask for haemorrhage (foreground) and cranial 
cavity (background) and used as centre point to extract volumetric patches of 124 × 124 × 124 voxels in the CT 
images and patches of 36 × 36 × 36 voxels in the annotated binary masks. The difference in dimensions between 
the input and output patches is a result of the accumulation of operations in the CNN architecture and is equal to 
the receptive field of a single voxel. This combination of tiles was used as input for the CNN during the training 
process.

The number of voxels that represented the background far exceeded the number of voxels representing haem-
orrhage within each image. Therefore, there was a class imbalance within the training data. If not taken into 
account, this may result in the model overfitting on the most prevalent class and becoming insensitive to the 
class of interest. To combat this problem, a weight map was used to balance the influence of both classes present 
in the data. For each training patch, the number of foreground voxels was determined and an equal number of 
background voxels was randomly selected within the patch. In this manner, a weight map was created for each 
patch that determined which voxels contributed to the calculation of the categorical cross entropy loss function. 
If the number of foreground voxels exceeded half of the training patch or the patch was solely comprised of back-
ground, all weights were set to one.

Data augmentation was used to increase the diversity of samples generated for training and thereby introduce 
a locational invariance to the network. During sampling, an augmentation probability of 50% was set. Augmented 
patches were either mirrored or rotated in the axial plane with a randomly selected angle in the range of [−15, 
15] degrees.

Stochastic gradient descent was used to minimise the loss with a learning rate of 10−3 and Nesterov momen-
tum of 0.9. Dropout44 of 50% was used in the lowest scale for regularization, as shown in Fig. 7. The network was 
trained on a total of 50000 training patches on an NVIDIA TitanX GPU. All network hyper-parameters were 
optimised during pilot experiments performed on the training and validation dataset. The method was developed 
using the Theano and Lasagne libraries45,46.

Post-processing.  For each case in the test dataset a segmentation of the haemorrhage was obtained by pro-
cessing consecutive input tiles extracted from the image using the GPU described in Section Training. The final 
segmentation for the ICH was acquired by thresholding the output probability map at 0.5 and removing all clus-
ters smaller than 0.1 mL in volume, as ICH comprises larger volumes. This threshold was determined by pilot 
experiments performed on the separate validation dataset.

Patient data
Radboudumc.  This study was approved by the committee on ethics and research involving human subjects of 
the Radboud University Medical Center, Nijmegen, the Netherlands, and the requirement for informed consent 
was waived. All methods were performed in accordance with the relevant guidelines and regulations associ-
ated with the use of this data. Anonymised data was obtained by retrospectively searching our clinical-research 
image database for all adult patients with a supra- or infratentorial ICH that received a NCCT of the head at the 
Radboud University Medical Center, Nijmegen, the Netherlands between January 1st 2012 and December 31st 
2016.

All images were visually inspected for quality. Exclusion criteria were the presence of blood outside of the 
brain parenchyma, ICH resulting from trauma, macrovascular lesions or malignancy and images with severe 
artefacts as a result of motion or presence of foreign objects. In total 51 patients were included, of which 21 were 
used for training and validation of the CNN. Of the remaining 30 scans, 25 were used to test the method and 5 
were used to assess the observer variability. Haemorrhage characteristics were visually assessed by an experienced 
observer. ICH involving the deep nuclei or periventricular white matter was defined as deep ICH, haemorrhage 
involving the cerebral cortex was defined as lobar ICH. ICH was deemed heterogeneous when multiple clear 
patches of hypoattenuation were visible within the hyperattenuating haemorrhage. ICH with multiple protuber-
ances and lacking a smooth lesion edge were deemed irregular. An overview of all study data, patients’ age and 
gender distributions, and haemorrhage characteristics is shown in Table 5.

PATCH.  An additional dataset consisting of 120 scans of Dutch patients and manual reference standard that 
were included in the Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral 
haemorrhage associated with antiplatelet therapy (PATCH) trial in the period February 2009–October 2015 was 
obtained from the Amsterdam Medical Center, Amsterdam, the Netherlands47. Twenty cases with extension of 
haemorrhage into the intraventricular space or other compartments were excluded. The remaining cases in the 
dataset were divided into training, validation and test sets containing 40, 10 and 50 scans respectively.

Acquisition protocol.  All Radboudumc images were acquired using a 320-row Canon Aquilion ONE CT 
scanner manufactured by Canon Medical Systems Corporation, TMSC, Otawara, Japan. The CT protocol con-
sisted of one head scan at 120 kV. CT image reconstruction was done with a FC25 or FC26 reconstruction kernel. 
The image sizes were 512 × 512 voxels and the number of slices was in the range [281–534] with voxel sizes of 
0.43 × 0.43 × 0.5 mm.

The PATCH dataset primarily consisted of images acquired using a Siemens Sensation 64 at 120 kV. CT image 
reconstruction was performed with a H31s reconstruction kernel. The image sizes were 512 × 512 voxels and the 
number of slices was in the range [30–40] with voxel sizes of 0.53 × 0.53 × 5 mm.
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Reference standard.  Manual annotations for the Radboudumc dataset were obtained to serve as a reference 
standard to train and validate the method. For each CT exam, the complete haemorrhage volume was annotated 
using a volumetric annotation tool VCAST, that utilises regional intensity clustering on multiple scales to expe-
dite the laborious annotation process48. The local clustering allows for fast annotation of large volumes of similar 
intensity within the image. Haemorrhage boundaries were annotated on a voxel level to preclude bias or error 
introduced by the clustering algorithm of the annotation tool.

All manual annotations were performed by trained observers with a window width and level setting of 80/40 
HU, supervised by a neuroradiologist (FJAM) with over ten years of experience.

Evaluation metrics.  All segmentations were evaluated by comparison to the manually annotated reference 
standard using the following metrics: Dice similarity coefficient (DSC), Hausdorff Distance (HD), 95 percentile 
HD (95% HD), modified HD (MHD), contour mean distance (CMD) and absolute volume difference (AVD). The 
mean and standard deviation for each measure was taken over all patients.

Experiments
Observer variability.  A subset of the test data consisting of five CT exams was used to assess the variability 
of manual annotation between two trained observers. The five CT exams were annotated by both observers. 
Furthermore, the second observer annotated the same subset on a second occasion, two weeks apart, to estimate 
the intra-observer variability. The metrics described in Section Evaluation metrics were reported for the inter-ob-
server variability, intra-observer variability and the performance of the method in comparison to each observer 
independently. Paired statistical tests were performed to test if the performance of the proposed method for the 
aforementioned evaluation metrics was significantly different (p < 0.05) from the inter-observer variability. A 
paired sample t-test was performed if the data was normally distributed according to the Shapiro-Wilk test. If not 
normally distributed, a Wilcoxon signed-rank test was performed.

Quantitative evaluation.  Radboudumc.  For each of the 25 patients in the Radboudumc test dataset the 
final segmentation was compared to the manual reference standard. For each segmentation the metrics described 
in Section Evaluation metrics were reported.

PATCH.  In order to perform quantitative evaluation on the additional PATCH dataset, some minor modifi-
cations were made to the original training scheme. The original training and validation data shown in Table 5 
was resampled to an axial slice thickness of 5 mm. The network architecture shown in Fig. 7 was modified by 
removal of the max pooling and upsampling operations in the z-direction. The modified architecture was sub-
sequently trained according to Section Training using the resampled training data and an input patch size of 
124 × 124 × 40 voxels. Once an optimal performance on the resampled validation data was reached, training was 
suspended.

All scans and corresponding reference standards in the additional PATCH dataset were resampled to 
0.43 × 0.43 × 5 mm voxel size. The training of the modified architecture was continued using the PATCH training 
data subset until an optimal performance was reached on the validation subset.

For each of the 50 scans in the PATCH test subset the final segmentation was compared to the manual refer-
ence standard. For each segmentation the metrics described in Section Evaluation metrics were reported.
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