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I n a seminal report in 1997, Asahara and colleagues1 first
described the existence of endothelial progenitor cells

(EPCs) in human peripheral blood (PB) CD34+ mononuclear
cell (MNC) fraction. In a subsequent report,2 they described
the ability of bone marrow (BM)-derived circulating EPCs to
induce neovascularization. The obvious therapeutic potential
of EPCs for ischemic diseases has since driven intense
research focused on vasculogenic cells from diverse sources
with variable phenotypic attributes and biological functions.
Although data from clinical trials have shown a modest
positive impact of circulating progenitor therapy in cardiovas-
cular and peripheral arterial diseases,3–7 new and enhanced
methods for cell isolation, expansion, and characterization are
critically important to improve regenerative outcomes.

Indeed, the rarity of circulating EPCs remains a major hurdle
toward successful and wider clinical application using
autologous cells. The MNC fraction from PB contains primarily
lineage-committed lymphoid and myeloid cells and a very
small percentage of CD34+ or CD133+ stem/progenitor cells.
Accordingly, attempts have beenmade tomobilize EPCs into PB
with repeated administration of granulocyte colony stimulating
factor (G-CSF) followed by apheresis, a common practice in the
setting of BM transplantation. Although several clinical trials of
tissue regeneration have been completed with progenitors
harvested from PB following G-CSF injection, successful
expansion of EPCs from PB would be a preferable approach to
circumvent the need for G-CSF therapy. Moreover, although BM
harvest is a minimally invasive procedure, phlebotomy for PB is
less expensive and tolerated better by patients.

In this issue of JAHA, Masuda and colleagues8 report
successful enrichment of EPCs from human peripheral blood
mononuclear cells (PBMNCs) using a quality and quantity
culture (QQc) method and salvage of ischemic limbs in mice
with injection of expanded cells. Culture of PBMNCs in QQc
medium for 7 days resulted in a 19-fold increase in definitive
EPC (dEPC) colony-forming cells, despite a �50% reduction in
total number of cells. Moreover, these primed dEPCs showed a
2.7-fold greater endothelial differentiation potential. The
frequency of dEPC colony-forming cells correlated positively
with the primitive EPC (pEPC) colony-forming cells in PBMNCs,
indicating that the QQc method effectively transitioned the
pEPC colony-forming cells into dEPC colony-forming cells with
increased potential for new vessel formation. Quality and
quantity cultured mononuclear cells (QQMNCs) also expressed
greater levels of mRNA for angiogenic molecules, including
insulin-like growth factor-1 and interleukin (IL)-8, supporting
the efficacy of QQc in inducing a vasculogenic phenotype in
PBMNCs. Consistent with these favorable alterations in MNC
phenotype, the injection of QQMNCs improved limb salvage
following hindlimb ischemia in mice.8 Multimodality assess-
ments showed increased perfusion, angiogenesis, and
myogenesis and reduced fibrosis in QQMNC-treated mice.
Important from a therapeutic standpoint, compared with
G-CSF–mobilized CD34+ cell transplantation, QQMNC injec-
tion led to equal or greater improvement in outcomes in the
setting of hindlimb ischemia.

With growing clinical need for EPCs in large numbers,
various methods of enrichment and expansion have been
developed by different laboratories for EPCs with diverse
cellular phenotypes. Consistent with an endothelial or angio-
genic theme, the culture medium for this purpose usually
contains an endothelial medium (eg, endothelial basal
medium-29 and endothelial growth medium-210,11) with or
without serum and angiogenic growth factors. These factors
usually include varying combinations and concentrations of
vascular endothelial growth factor, fibroblast growth factor-B,
insulin-like growth factor-1, epidermal growth factor, hydro-
cortisone, ascorbic acid, and heparin.10,12 Somewhat differ-
ently, the QQc medium used in this study by Masuda et al8

contained Stemline� II (Sigma-Aldrich), a hematopoietic stem
cell expansion medium, which did not contain any cytokine or
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serum. In addition to the angiogenic molecule vascular
endothelial growth factor, the supplements in QQc medium
included stem cell factor, thrombopoietin, IL-6, and Flt-3
ligand, molecules that are known to play important roles in
the regulation of hematopoiesis and have been used
extensively for expansion of cord blood– or peripheral
blood–derived CD34+ cells.13–15 The success of this largely
hematopoietic cocktail was documented by a nearly 6-fold
increase in CD34+ cells and a 3.5-fold increase in CD133+

cells in QQMNCs after 7 days of culture.
Interestingly, careful phenotypic characterization of

cultured cells in the current study also revealed that QQc
could promote an antiinflammatory phenotype in MNCs.
Specifically, gene expression of the proinflammatory cytokine
IL-1b was lower and expression of the antiinflammatory
molecule IL-10 was higher in QQMNCs. Further, QQc
increased the proportion of CD206+ alternatively activated
M2 macrophages with antiinflammatory properties by 5-fold
and reduced the CCR2+ classical M1 population known to
exert proinflammatory effects. Importantly, QQc also induced
a decrease in CD19+ lymphoid B cells and CD56+ natural
killer cells, while inducing a nearly 6-fold increase in both
CD4+/interferon-c–/IL-4+ T helper 2 (Th2) type T cells and
regulatory T cells in response to phorbol 12-myristate 13-
acetate and ionomycin. Considering the prominent roles
played by regulatory T cells, natural killer cells, and other
immune cell subsets in transplant tolerance,16,17 these
changes in immunological composition of MNCs have
profound implications for survival of transplanted EPCs,
especially in the context of allogeneic off-the-shelf products.

While the molecular regulation of immune cells and
inflammation in vivo is extremely complex, the ingredients of
this QQc medium may potentially exert antiinflammatory and
immune-tolerant actions by altering the T helper 1 (Th1)/Th2
cell balance. In this regard, IL-6 has been shown to promote
the generation of the Th2 subset,18 and human PBMNCs
produce Th2 cytokines in response to vascular endothelial
growth factor.19 In humans, Flt-3 ligand increases both
CD11c+ and CD11c– dendritic cells,20 which promote the
generation of Th1 and Th2 cytokines, respectively. Moreover,
recent evidence indicates that Th1 cytokines induce classical
M1 macrophage activation, while Th2 cytokines favor the M2
characteristics. Thus, IL-6 and stem cell factor, components of
the QQc medium, may favorably modulate the activation of
macrophages,21,22 which may serve to quench inflammation
and promote tissue repair in an ischemic milieu in vivo.
Nonetheless, to further improve this culture technology, the
precise molecular signaling that produces these phenotypic
shifts in QQMNCs should be elucidated in greater detail
in future studies. Whether adding other agents known to
augment antiinflammatory attributes of EPCs23 to QQc
medium would further enhance its efficacy should also be

explored. Finally, there remains a possibility that the current in
vivo data with human cells in athymic mice that are unable to
produce T cells may not faithfully predict the results of
QQMNC transplantation in immunocompetent human recipi-
ents. Additional in vitro characterization of immunogenicity of
QQMNCs and in vivo testing in relevant preclinical models will
be prudent before clinical translation.

The formulation of a serum-free culture process that
transforms human PBMNCs into vasculogenic cells has major
translational relevance. In conjunction with the authors’
previous report with umbilical cord blood–derived CD133+

cells,24 the current observations support the efficacy of the
QQc method to produce vasculogenic cells from multiple
sources with a significant increase in dEPC colonies and the
induction of an antiinflammatory and immune-tolerant phe-
notype in expanded cells. These results also indicate that
after in vivo transplantation, QQc products are able to
improve outcomes in the setting of myocardial infarction24 as
well as limb ischemia.8 If replicated successfully in clinical
trials, the QQc method may lead to a cellular product that will
effectively alleviate ischemic diseases in humans, fulfilling the
primary goal of regenerative research.
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