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Abstract
The antiviral treatment efficacy varies among chronic hepatitis B (CHB) patients and 
the underlying mechanism is unclear. An integrated bioinformatics analysis was per-
formed to investigate the host factors that affect the therapeutic responsiveness in 
CHB patients. Four GEO data sets (GSE54747, GSE27555, GSE66698 and GSE66699) 
were downloaded from the Gene Expression Omnibus (GEO) database and analysed 
to identify differentially expressed genes(DEGs). Enrichment analyses of the DEGs 
were conducted using the DAVID database. Immune cell infiltration characteristics 
were analysed by CIBERSORT. Upstream miRNAs and lncRNAs of hub DEGs were 
identified by miRWalk 3.0 and miRNet in combination with the MNDR platform. As a 
result, seventy-seven overlapping DEGs and 15 hub genes were identified including 
CCL5, CXCL9, MYH2, CXCR4, CD74, CCL4, HLA-DRB1, ACTA1, CD69, CXCL10, HLA-
DRB5, HLA-DQB1, CXCL13, STAT1 and CKM. The enrichment analyses revealed that 
the DEGs were mainly enriched in immune response and chemokine signalling path-
ways. Investigation of immune cell infiltration in liver samples suggested significantly 
different infiltration between responders and non-responders, mainly characterized 
by higher proportions of CD8+ T cells and activated NK cells in non-responders. The 
prediction of upstream miRNAs and lncRNAs led to the identification of a potential 
mRNA-miRNA-lncRNA regulatory network composed of 2 lncRNAs (H19 and GAS5) 
and 5 miRNAs (hsa-mir-106b-5p, hsa-mir-17-5p, hsa-mir-20a-5p, hsa-mir-6720-5p 
and hsa-mir-93-5p) targeting CCL5 mRNA. In conclusion, our study suggested that 
host genetic factors could affect therapeutic responsiveness in CHB patients. The 
antiviral process might be associated with the chemokine-mediated immune re-
sponse and immune cell infiltration in the liver microenvironment.
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1  | INTRODUC TION

More than 250 million people worldwide are chronically infected 
with hepatitis B virus (HBV), which can progress to chronic hepa-
titis B (CHB), liver cirrhosis, hepatocellular carcinoma and other 
HBV-related complications.1 Despite the availability of antiviral 
drugs, many CHB patients are not thoroughly cured. The efficacy 
of antiviral therapy varies greatly from a complete response (virus 
clearance) to lack of response (persistent high viral load). This re-
sponse variation probably results from the complicated interaction 
of the host immune response with the virus, in which both host fac-
tors and viral factors play important roles.2 Recent studies have led 
to increased attention to the roles of host factors in the antiviral 
treatment response than before. In HBV-infected cell models, the 
cell-intrinsic interferon (IFN) pathway activation of the host was 
found to be more important than the viral genotype in determining 
the antiviral efficacy of IFN-α.3 Compared to responders of antiviral 
treatment, the mRNA and protein levels of IFITM2-a blocker of IFN 
pathway activation were found to be significantly higher in both the 
liver and peripheral blood samples of non-responders.4 In contrast, 
the expression level of ISG20 (an IFN-stimulated gene) in liver biopsy 
samples was found to be significantly lower in non-responders than 
in responders.5 Previous studies suggested that host genetic factors 
and immune status were probably associated with the therapeutic 
responsiveness of CHB, but the underlying mechanism is not well 
understood.

Bioinformatics analysis of gene expression profiles is a promis-
ing method to comprehensively identify different genetic factors 
and pathways of a certain pathophysiological process. Previous 
studies have explored the differentially expressed genes (DEGs) 
of HBV-related liver diseases, including liver fibrosis, liver failure 
and hepatocellular carcinoma, using bioinformatics analysis meth-
ods,6-9 but few studies have explored the factors of anti-HBV 
treatment response.10 Moreover, false-positive rates in a single 
microarray analysis might lead to inaccuracy. To explore the host 
factors and the underlying mechanism leading to suboptimal ther-
apeutic responsiveness, we downloaded 4 gene expression pro-
files (GSE54747, GSE27555, GSE66698 and GSE66699) from the 
Gene Expression Omnibus (GEO) database and performed an inte-
grated bioinformatic analysis.

2  | MATERIAL S AND METHODS

2.1 | Microarray data

The mRNA microarray data sets were downloaded from GEO da-
tabase (http://www.ncbi.nlm.nih.gov/geo/). Our initial aim was to 
explore the key genes involved in therapeutic responsiveness of 
CHB patients. We searched for the potential GEO data sets ac-
cording to the following inclusion criteria: (a) human liver speci-
mens with histological diagnosis; (b) gene expression profiling of 
mRNA; (c) data sets concerning gene expression of liver tissues 

diagnosed as HBV-positive and treated with antiviral therapies; 
(d) data sets enrolling CHB patients with hepatic decompensation, 
hepatocellular carcinoma, liver failure, solid organ or bone mar-
row transplantation, chronic immunosuppression or coinfection of 
other hepatotropic virus were excluded. After screening the titles 
and evaluating the full information of the potential data sets, 4 
GEO data sets (GSE54747, GSE27555, GSE66698 and GSE66699) 
were found.

2.2 | Identification of DEGs

The interactive web tool GEO2R (https://www.ncbi.nlm.nih.gov/
geo/geo2r), provided by the GEO database, was utilized to screen 
DEGs. |log2FC|  >  1 was set as the cut-off standards and P  <  .05 
was considered to indicate statistical significance. The adjustment 
of P-values and the Benjamini and Hochberg method were applied 
to optimize the statistical power and control false discovery rate. 
Using a Venn diagram to overlap the DEGs of the 4 data sets, DEGs 
that commonly existed in more than 2 independent data sets were 
selected.

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses of DEGs.

GO database (http://www.geneo​ntolo​gy.org) contains struc-
tured ontology or vocabularies that annotate genes and the bio-
logical function of these genes.11 KEGG database (http://www.
genome.jp/kegg/) synthesizes information for functions and bio-
logical systems from large-scale molecular data sets generated by 
high-throughput experimental technologies.12 To analyse the func-
tion of DEGs, Database for Annotation, Visualization and Integrated 
Discovery(DAVID; https://david.ncifc​rf.gov/) was utilized to conduct 
GO enrichment analyses (including biological process (BP), cellular 
component (CC) and molecular function (MF)) and identify the most 
enriched KEEG pathways. P < .01 was considered as statistically sig-
nificant for screening. The enrichment analyses were performed for 
up-regulated and down-regulated genes separately.

2.3 | Protein-protein interaction (PPI) Network 
Construction

PPI networks were constructed by Search Tool for the Retrieval of 
Interacting Genes (STRING) online database (http://strin​g-db.org/). 
Interaction with a combined confidence score ≥0.4 was considered 
statistically significant. The result of STRING analysis was imported 
into Cytoscape v.3.7.1 to visualize the molecular interaction net-
works. The plugin Molecular Complex Detection (MCODE) (version 
1.4.2) of Cytoscape was utilized to cluster the PPI network and find 
the densely connected region or hub modules based on topology. 
The criteria of cluster analysis were MCODE scores >5, degree cut-
off = 2, node score cut-off = 0.2, Max depth = 100 and k-score = 2. 
The functional analyses of genes involved in the hub modules were 
performed using DAVID.

http://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/geo2r
https://www.ncbi.nlm.nih.gov/geo/geo2r
http://www.geneontology.org
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
https://david.ncifcrf.gov/
http://string-db.org/
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2.4 | Identification of hub genes

The hub genes were selected using the cytoHubba plugin of 
Cytoscape. By calculating the scores of 5 ranked methods sepa-
rately, including degree, maximum neighbourhood component, ra-
diality centrality, stress centrality and closeness centrality,13 the top 
25 genes of each method were screened out. Then, by overlapping 
the top 25 genes of each method, the hub genes were identified. 
Next, the function of hub genes was analysed using DAVID. Finally, 
the biological process analysis of hub genes was visualized using 
Biological Networks Gene Oncology tool (BiNGO) (version 3.0.3)—a 
plugin of Cytoscape.

2.5 | Immune cell infiltration evaluation

CIBERSORT is an analytical tool designed to predict the relative 
levels of 22 immune cell types from gene expression.14 Normalized 
gene expression data were uploaded to the CIBERSORT web por-
tal (https://ciber​sort.stanf​ord.edu). ‘Signature gene file’ was set as 
‘LM22(22 immune cell types)’, the number of permutations was set 
to 100, and the analyses were performed under relative mode. The 
CIBERSORT P-value reflects the statistical significance of the de-
convolution results across all cell subsets and immune cell profiles 
of samples with a CIBERSORT P < .5 was considered to have signifi-
cant fitting accuracy and was included in further analyses. Student's 
t test or LSD-t test was used to analyse the differences of immune 
cell fractions between responders and non-responders. Correlation 
analysis of immune cell proportions in all samples was performed 
using the HIPLOT web tool, which is a free online platform for data 
analysis (https://hiplot.com.cn/basic). Pearson correlation matrix 
was then constructed.

2.6 | Prediction of related non-coding 
RNAs(ncRNAs)

The DEGs were input into miRWalk3.0 database (http://mirwa​
lk.umm.uni-heide​lberg.de/) to predict their targeted miRNAs. The 
searching conditions were set as follows: P < .05, experimentally vali-
dated and 3′UTR as the target gene binding region. Then, the selected 
miRNAs were uploaded to miRNet (https://www.mirnet.ca/miRNe​t/
home.xhtml) to predict their upstream lncRNAs. The searching con-
ditions were set as ‘Organism-H.sapies’ and ‘targets-lncRNAs’. Next, 
to verify the accuracy of the above prediction, Mammal ncRNA-
disease repository (MNDR) database was used to do an intersection 
with the above results. The MNDR online platform (http://www.
rna-socie​ty.org/mndr/home.html) was designed for efficient brows-
ing the associations between ncRNA (including lncRNA, miRNA, 
piRNA, snoRNA) and diseases in mammals.15 By browsing the mesh 
terms or the disease ontology ‘hepatitis B/hepatitis B, chronic’, the 
disease-related ncRNAs were downloaded from MNDR v3.1. In this 
study, we restricted the ‘species’ to ‘Homo sapiens’ and only included 

ncRNA-disease associations that were evaluated as ‘Strong Evidence’ 
by MNDR v3.1 platform. The final result obtained from the intersec-
tion was further processed with Cytoscape.

2.7 | Chemokine secretion assays by quantibody® 
array kit

Five potential serum biomarkers for predicting CHB treatment re-
sponse, including CCL4, CCL5, CXCL9, CXCL10 and CXCL13, were 
selected for further confirmation in CHB patients receiving antiviral 
therapy. Therapeutic response was defined as HBeAg negativity, 
serum HBV DNA undetectable (<400 IU/mL), and normalization of 
serum ALT at the end of follow-up in this study. CHB patients who 
were regularly followed up in Chongqing Children's Hospital were 
enrolled, excluding those with hepatic decompensation, hepato-
cellular carcinoma, liver failure, chronic immunosuppression or co-
infection of other hepatotropic virus. A total of 27 CHB patients, 
consisting of 15 responders and 12 non-responders to antiviral 
treatment, were included. Twelve patients completed 48 weeks of 
PegIFNα-2a treatment and another 48 weeks of follow-up (96 weeks 
of follow-up in total). Fifteen patients received entecavir (ETV) mon-
otherapy for 96 weeks.

Blood samples were obtained from the 27 patients at baseline 
and from 21 of them at 16 weeks of treatment. Serum samples were 
prepared by centrifugation at 1006.2  g for 20  minutes and stored 
at −80°C. A human chemokine quantibody® array kit (Raybiotech)—a 
multiplexed sandwich ELISA-based quantitative array platform, was 
used per the manufacturer's instructions. InnoScan 300 Microarray 
Scanner (Innopsys, arc d'Activités Activestre, 31 390 Carbonne-
France) was used for fluorescence detection. The Quantibody® 
array quantitatively measured the expression of a series of chemo-
kines including CCL4, CCL5, CXCL9, CXCL10, and CXCL13. The lev-
els of chemokines expression were compared between responders 
and non-responders at baseline and at 16 weeks of treatment. Data 
were analysed with SPSS 26.0 (SPSS, Inc Chicago, IL, United States). 
Comparisons between the 2 groups were performed using Student's 
t test or Mann-Whitney test for continuous variables and Fisher's 
exact test for categorical variables. Written informed consent was 
obtained from all patients prior to beginning the study. This study was 
approved by the ethics committee of Chongqing Medical University.

3  | RESULTS

3.1 | Identification of DEGs

According to the search criteria for gene expression microar-
rays, 4 GEO data sets (GSE54747, GSE27555, GSE66698 and 
GSE66699) were included in our study. The GSE54747 data set 
contained 9 liver biopsy samples of responders and 6 samples of 
non-responders obtained before peginterferon (PEG-IFN) com-
bined with adefovir therapy.16 The GSE27555 data set contained 

https://cibersort.stanford.edu
https://hiplot.com.cn/basic
http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
https://www.mirnet.ca/miRNet/home.xhtml
https://www.mirnet.ca/miRNet/home.xhtml
http://www.rna-society.org/mndr/home.html
http://www.rna-society.org/mndr/home.html
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7 samples of responders and 6 samples of non-responders ob-
tained before IFN-α therapy.17 The GSE66698 data set contained 
10 pre-treatment samples and 7 post-treatment samples from 10 
IFN-α therapy responders.18 The GSE66699 data set contained 

2 pooled samples of 11 responders and 11 non-responders be-
fore IFN-α therapy.18 After differential expression analysis con-
ducted by GEO2R, a total of 1,164 DEGs (44 in GSE54747, 85 in 
GSE66698, 164 in GSE66699 and 958 in GSE27555, respectively) 

F I G U R E  1   A, Venn diagram: 
differential expressed genes (DEGs) were 
selected with a fold change >1 and P-
value <0.05 among the mRNA expression 
profiling sets GSE66698, GSE66699, 
GSE54747 and GSE27555. The 4 data 
sets showed an overlap of 77 DEGs. B, 
Heat map of the selected 77 DEGs:blue 
indicates a relatively low expression, and 
red indicates a relatively high expression
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were identified. After overlapping the DEGs among the 4 data 
sets, 77 DEGs shared by ≥2 data sets were identified, as shown in 
the Venn diagram (Figure 1A). The 77 overlapping DEGs consist-
ing of 58 down-regulated DEGs and 19 up-regulated DEGs were 
selected for the subsequent analyses. After standardization, gene 
expression microarray data of the selected DEGs in each sample 
are shown in the heat map (Figure 1B). Table S1 shows the details 
of the selected 77 DEGs of the 4 data sets.

3.2 | Enrichment analyses of DEGs

To predict the biological functional and pathways of DEGs, enrich-
ment analyses were performed using DAVID. The significantly en-
riched gene sets were set at a default cut-off as P < .01. To determine 
the most significant GO terms and KEGG pathways, all enriched 
terms were sequenced by P-value. The top 10 terms with the lowest 
P-values are shown in Figure 2. Then, the down-regulated and up-
regulated DEGs were analysed separately. The down-regulated DEGs 
were most significantly enriched in immune response (GO:0006955); 
KEGG pathway analysis showed that the down-regulated DEGs 
were most significantly enriched in Chemokine signalling pathway 
(hsa04062) apart from some auto-immune diseases and infectious 
diseases (Figure 2A and B). The up-regulated DEGs were most sig-
nificantly enriched in muscle filament sliding (GO: 0030049) and hy-
pertrophic cardiomyopathy (hsa05410; Figure 2C and D). Next, the 

enrichment analyses of GO and KEGG pathway were sorted by the 
counts of involved genes, as shown in Table S2. For the 58 down-
regulated DEGs, changes in BP were mainly enriched in immune 
response(GO:0006955) and inflammatory response(GO:0006954); 
changes in CC were mainly enriched in extracellular space 
(GO:0005615), and extracellular exosome (GO:0070062); changes 
in MF were mainly enriched in chemokine activity (GO:0008009) 
and heparin binding (GO:0008201); changes in KEGG pathways 
were mainly enriched in Chemokine signalling pathway (hsa04062) 
and Cytokine-cytokine receptor interaction (hsa04060). For the 19 
up-regulated DEGs, changes in BP were mainly enriched in muscle 
filament sliding (GO:0030049); changes in CC were mainly enriched 
in cytosol (GO:0005829); changes in MF were mainly enriched in 
calcium ion binding (GO:0005509); changes in KEGG pathways were 
mainly enriched in hypertrophic cardiomyopathy (hsa05410).

3.3 | PPI network construction and module analyses

Based on the data from STRING database analysis, the PPI network 
of the DEGs was visualized using Cytoscape (Figure  3A). The hub 
modules in the network were identified using MCODE, and the 
genes involved in the hub modules were analysed using DAVID. 
Table 1 shows that genes in these hub modules were mainly enriched 
in the following BPs: muscle filament sliding, chemokine-mediated 
signalling pathway and immune response.

F I G U R E  2   Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of up-regulated 
and down-regulated differential expressed genes(DEGs). A, Top 10 enriched GO terms of downregulated DEGs ranked by P-value. B, Top 10 
enriched KEEG pathways of down-regulated DEGs ranked by P-value. C, Top 10 enriched GO terms of up-regulated DEGs ranked by P-value. 
D, Enriched KEEG pathways of up-regulated DEGs ranked by P-value
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3.4 | Hub genes identification and analyses

The top 25 genes were selected by the 5 classification methods in 
cytoHubba (Table S3). Finally, 15 hub genes were obtained by over-
lapping the top 25 genes of each method, as shown in Figure 3B. The 
15 hub genes were sequenced according to the overall rankings of 5 
classification methods: CCL5 (C-C motif chemokine ligand 5), CXCL9 
(C-X-C motif chemokine ligand 9), MYH2 (myosin heavy chain 2), 
CXCR4 (C-X-C motif chemokine receptor 4), CD74 (CD74 molecule), 
CCL4 (C-C motif chemokine ligand 4), HLA-DRB1 (major histocom-
patibility complex, class II, DR beta 1), ACTA1 (actin, alpha 1, skeletal 
muscle), CD69 (CD69 molecule), CXCL10 (C-X-C motif chemokine 
ligand 10), HLA-DRB5 (major histocompatibility complex, class II, DR 
beta 5), HLA-DQB1 (major histocompatibility complex, class II, DQ 
beta 1), CXCL13 (C-X-C motif chemokine ligand 13), STAT1 (signal 
transducer and activator of transcription 1) and CKM (creatine ki-
nase, M-type). The primary enriched GO terms and KEEG pathways 
analysed by DAVID were summarized in Table 2. Hub genes involved 
in the top 3 GO terms and KEEG pathways were all down-regulated 
genes. The BP analysis of the hub genes using BiNGO is shown in 
Figure 3C. The most significant BPs of hub genes were immune re-
sponse, antigen processing and presentation of peptide or polysac-
charide antigen via MHC class II, immune system process, response 
to stimulus, antigen processing and presentation, inflammatory re-
sponse, response to wounding, response to external stimulus, taxis 
and chemotaxis.

3.5 | Immune cell infiltration characterization

Considering the above results, we speculated that the immune re-
sponse was crucial in the DEGs pathway. Therefore, we decided to 
further explore the immune cell infiltration characterization of the 
liver samples. We investigated the liver samples that matched the 
requirements of the CIBERSORT algorithm, including 45 samples of 
26 responders (including 26 samples before treatment and 6 sam-
ples after treatment) and 13 non-responders. The immune cell com-
position for each sample predicted by CIBERSORT is summarized 
in Table S4. Among the 45 liver samples, 35 liver samples met the 
criteria with a P  <  .5 and were chosen for the subsequent analy-
ses. Correlation analysis revealed the following significantly nega-
tive correlations: macrophages M2 vs NK cells activated (related 
coefficient (RC) = −0.96), macrophages M2 vs T cells CD8+ activated 
(RC = −0.92) and macrophages M2 cell vs neutrophils (RC = −0.85). In 
contrast, the following significantly positive correlations were found: 
neutrophils vs dendritic cells activated (RC = 0.92), neutrophils vs 
NK cells activated (RC = 0.90) and NK cells activated vs T cells CD8+ 
(RC = 0.89). Correlations between various immune cell proportions 
are shown in Figure 4A. Comparing the immune cell proportions of 
liver samples between responders and non-responders, 8 out of 22 
kinds of immune cells were significantly different. (Figure 4B P < .05 
was considered to be significantly different). Higher proportions 
of macrophages M1, macrophages M2, plasma cells, CD4+ T cells 

memory resting, T cells gamma delta and dendritic cells resting were 
detected in responders, while higher proportions of NK cells acti-
vated and T cells CD8+ were detected in non-responders (P < .05). 
T cells follicular helper and B cells memory tended to be higher in 
responders, while T cells regulatory (Treg), neutrophils, dendritic 
cells activated, macrophages M0, B cells naive and mast cells resting 
tended to be higher in non-responders, but the differences were not 
significant (Figure S1).

3.6 | Prediction of related non-coding RNAs 
(ncRNAs)

Gene-miRNA analyses were performed with miRWalk 3.0 soft-
ware, and 5247 upstream miRNAs targeting the 15 hub genes were 
predicted. As previously mentioned, we only included miRNA-gene 
interactions that have been validated by previously reported as-
says. After screening, 19 validated miRNAs targeting 6 hub genes 
(CCL5, ACTA1, CXCR4, STAT1, CXCL10 and CD69) were identified 
(Table 3). Figure 5A illustrates the interaction network of the vali-
dated miRNAs and genes. Next, we further predicted the lncRNAs 
that were potentially related to the selected miRNAs using miR-
Net database. A total of 946 lncRNAs were discovered. Finally, 
we searched for the ncRNAs related to hepatitis B on the MNDR 
platform, and a total of 47 miRNAs and 3 lncRNAs were found 
to be associated with hepatitis B with high reliability (Table  S5). 
After cross-linking ncRNAs predicted to be associated with the 
hub genes and those identified through the MNDR platform, 2 key 
lncRNAs(H19 and GAS5) targeting 5 key miRNAs (hsa-mir-106b-5p, 
hsa-mir-17-5p, hsa-mir-20a-5p, hsa-mir-6720-5p and hsa-mir-
93-5p) were discovered (Table 4). Based on the above gene-miRNA 
analyses, CCL5 was found to be the most common targeted gene 
(Figure 5B).

Taking all the 3 levels into consideration, we proposed a mRNA-
miRNA-lncRNA triple subnetwork (Figure 5B). Classically, there are 
negative correlations between miRNAs and lncRNAs or mRNAs and 
inversely positive associations between mRNAs and lncRNAs accord-
ing to the competing endogenous (ceRNA) hypothesis.19 Considering 
this hypothesis, we speculated that the 8 corresponding miRNAs of 
the down-regulated CCL5 gene might be relatively highly expressed 
and that the 2 corresponding lncRNAs might expressed at low levels 
in antiviral therapy non-responders. However, more laboratory ex-
periments and clinical trials are needed to validate this hypothesis.

3.7 | Verification of potential biomarker by 
measuring chemokine expression

The hub genes were predicted to be mostly enriched in chemokine-
mediated signalling pathway. The expression levels of 5 hub 
chemokines were verified in CHB children serum samples using 
quantibody® array kit. There were no significant differences in age, 
weight, baseline viral load, alanine aminotransferase (ALT) levels or 
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pathology between responders and non-responders patients before 
treatment (Baseline). Demographic and clinical characteristics of the 
included CHB patients are shown in Table S6. Consistent with the 
prediction, the results showed that the expression levels of CCL4, 
CCL5, CXCL9, CXCL10 and CXCL13 in serum of non-responders to 
antiviral treatment were generally lower than that of responders in 

the early phase of treatment (Figure 6 and Table S6). The levels of 
CCL4 and CXCL10 were significantly higher in responders than that 
of non-responders at baseline (P < .05). Though the levels of CCL5 
and CXCL9 were not significantly higher in responders than that of 
non-responders at baseline, statistically differences were detected 
at 16 weeks of treatment (P < .05).

F I G U R E  3   A, The protein-protein interaction(PPI) network of the differentially expressed genes (DEGs) was constructed using 
Cytoscape. B, Overlapping the first 25 genes in the five classification methods of cytoHubba to identify hub genes. C, The biological 
process(BP) analysis of hub genes was constructed using BiNGO. The colour depth of nodes refers to the corrected P-value of ontologies. 
The size of nodes refers to the numbers of genes that are involved in the ontologies. P <.01 was considered statistically significant
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4  | DISCUSSION

CHB still endangers human health, the outcome of which might be 
improved through antiviral therapy. However, the genetic differ-
ences between antiviral therapy responders and non-responders re-
main unclear. Therefore, in this study we conducted bioinformatics 
analysis to identify a total of 1164 DEGs and 77 overlapping DEGs 

in CHB patients who received antiviral therapies. First, to systemi-
cally analyse the relationships and functions of overlapping DEGs, 
we constructed PPI networks. A variety of interactions among the 
selected DEGs was discovered, especially for the down-regulated 
DEGs. As a result of PPI network analyses, 3 hub modules and 15 
hub genes were discovered with the MCODE and cytoHubba al-
gorithms in Cytoscape, respectively. Enrichment analyses of the 

TA B L E  1   Hub modules and top biological process of genes involved in each module

Module Score Node Edge Node ID Seed
Top biological 
process

Gene 
count P-value

1 9.600 11 48 CKM,MYL1,ACTA1,MB, 
MYL2,MYH2,TNNC1,TTN, 
MYBPC1,MYH1,TNNC2

CKM Muscle Filament 
Sliding

8 2.0E-17

2 9.333 10 42 CXCL13,CCL20,CXCL10, 
STAT1,CD69,CXCL9,CXCR4, 
CCL4,CCL5,CXCL11

CXCL13 Chemokine-
mediated 
signalling pathway

8 6.4E-16

3 6.500 9 26 CD74,GBP1,CTSC,HLA-DQB1,HLA-DMA,HLA-
DRB1,HLA-DOA,HLA-DRB5,FCGR1B

CD74 Immune response 8 4.6E-11

TA B L E  2   Hub genes and top GO terms and KEEG pathways of enrichment analyses

Category Term Count P-Value Genes

BP GO:0 006 955~immune response 9 3.85E-10 CXCL10, CD74, HLA-DRB5, CXCL9, CCL5, 
CCL4, CXCL13, HLA-DRB1, HLA-DQB1

GO:0 070 098~chemokine-mediated signalling 
pathway

6 2.28E-9 CXCL10, CXCL9, CCL5, CCL4, CXCR4, 
CXCL13

GO:0 002 381~immunoglobulin production 
involved in immunoglobulin mediated 
immune response

3 6.45E-6 HLA-DRB5, HLA-DRB1, HLA-DQB1

CC GO:0 009 897~external side of plasma 
membrane

6 3.82E-7 CXCL10, CD74, HLA-DRB5, CXCL9, CD69, 
HLA-DRB1

GO:0 042 613~MHC class II protein complex 4 4 5.51E-7 CD74, HLA-DRB5, HLA-DRB1, HLA-DQB1

GO:0 071 556~integral component of lumenal 
side of endoplasmic reticulum membrane

4 1.30E-6 CD74, HLA-DRB5, HLA-DRB1, HLA-DQB1

MF GO:0 008 009~chemokine activity 5 6.14E-8 CXCL10, CXCL9, CCL5, CCL4, CXCL13

GO:0 048 248~CXCR3 chemokine receptor 
binding

3 6.38E-6 CXCL10, CXCL9, CXCL13

GO:0 031 730~CCR5 chemokine receptor 
binding

3 1.78E-5 STAT1, CCL5, CCL4

KEGG hsa04062:Chemokine signalling pathway 7 2.91E-7 CXCL10, CXCL9, STAT1, CCL5, CCL4, 
CXCR4, CXCL13

hsa04620:Toll-like receptor signalling pathway 5 2.40E-5 CXCL10, CXCL9, STAT1, CCL5, CCL4

hsa04060:Cytokine-cytokine receptor 
interaction

6 3.41E-5 CXCL10, CXCL9, CCL5, CCL4, CXCR4, 
CXCL13

Abbreviations: BP, biological process; CC, cellular component; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MF, 
molecular function.

F I G U R E  4   A, Correlation matrix of the immunocyte proportions in all samples. Red and blue colour represent positive and negative 
correlations, respectively; numbers in the nodes represent related coefficient(RC)(|RC|<0.3 no correlation; 0.3≤|RC|<0.5 low correlation; 
0.5≤|RC|<0.8 moderate correlation;|RC|≥0.8 significant correlation). B:Differences in proportions of each immune cell type in responders 
and non-responders. Blue, red and green colour represent liver samples of responders before treatment, responders after treatment and 
non-responders before treatment. Numbers above any two boxs represent P-values (P-value <0.05 was considered to be significantly 
different)

http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030049
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030049
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selected DEGs, hub genes and hub modules all revealed that DEGs 
were mainly enriched in the immune response pathway, especially 
chemokine signalling pathways. We speculated that immune-related 
pathways might be determinants of antiviral efficacy. Next, we con-
ducted the immune cell infiltration analyses of the pre-treated liver 
samples and detected significantly different characteristics between 
responders and non-responders, indicating that the liver immuno-
logical microenvironment might affect the therapeutic responsive-
ness. Finally, to explore the potential molecular mechanism in the 
regulation of therapeutic responsiveness, upstream miRNAs and 
lncRNAs of hub genes were screened and a potential mRNA-miRNA-
lncRNA triple-regulatory network targeting CCL5 was established.

Intriguingly, many of the hub genes have been shown in previous 
studies to be involved in the progression or therapeutic responsive-
ness of CHB in previous studies, which partially supports the results 
of our bioinformatic analyses. First, among all the DEGs in our in-
teraction network, CCL5 was the primary hub gene according to 
the five topological algorithms in the cytoHubba package. We also 
found that CCL5 is the only mRNA with validated interactions with 
miRNAs and lncRNAs in constructing the triple-regulatory network. 
In a previous study, Hu et al found that CCL5 is a reliable biomarker 
for predicting liver fibrosis and cirrhosis: the expression of CCL5 in 
serum and hepatic tissue first increased in CHB patients with ongo-
ing liver injury and then significantly decreased in advanced liver cir-
rhosis patients.20 Moreover, CCL5 and its receptor CCR5 have been 

established with roles in cancer progression and tumour immune 
evasion mechanisms, including in HCC.21,22 An antagonist of CCL5 
was found to ameliorate liver fibrosis and prevent HCC in mouse 
models, which further strengthened the relationship between CCL5 
and liver fibrosis or carcinogenesis.23,24 However, the effect of CCL5 
on chronic liver disease progression and HCC development was re-
ported to be more significant in steatohepatitis than in viral hepati-
tis.25 The changing levels of CCL5 (first increasing before decreasing) 
indicated that CCL5 might be regulated in multiple ways in CHB 
progression, a supposition that aligns with the complicated ncRNA 
regulatory network targeting CCL5 in our study. However, the regu-
latory mechanism remains unclear and deserves further research to 
explicit. Currently, the roles of CCL5 in HBV infection are difficult 
to reconcile and summarize. We found that CCL5 was significantly 
down-regulated in non-responders compared to responders before 
antiviral therapy. Low expression of CCL5 was potentially related 
to antiviral therapy failure, but further validation and exploration 
of the mechanism are needed. Second, the down-regulated genes 
CXCL9, CXCL10 and CXCL13 detected by our studies were also em-
phasized and discussed in previous studies. In CHB patients who 
achieved HBsAg seroconversion under antiviral treatment, a decline 
in HBsAg was followed by the elevation of CXCL9, CXCL10, CXCL11, 
CXCL13 and IL-21, suggesting the potential value of these chemok-
ines in predicting a functional CHB cure.26 The level of serum CXCL9 
before treatment was reported to be a good predictor of sustained 

miRNA ID
Gene 
symbol

Number of 
pairings

Binding region 
length

Longest 
consecutive 
pairings

Validated data 
source

hsa-let-7a-5p ACTA1 15 16 15 MIRT550902

hsa-let-7b-5p ACTA1 21 25 14 MIRT550901

hsa-let-7c-5p ACTA1 19 24 13 MIRT550900

hsa-miR-98-5p ACTA1 15 16 15 MIRT550892

hsa-miR-146a-5p CXCR4 19 27 9 MIRT000006

hsa-miR-146a-5p CXCR4 20 41 11 MIRT000006

hsa-miR-494-5p CXCR4 18 22 12 MIRT735294

hsa-miR-34a-5p STAT1 15 19 7 MIRT025278

hsa-miR-661 CXCL10 14 28 8 MIRT540505

hsa-miR-939-3p CXCL10 9 10 9 MIRT540515

hsa-miR-3187-5p CXCL10 15 21 7 MIRT540513

hsa-miR-32-5p CD69 17 21 8 MIRT728020

hsa-miR-20a-5p CCL5 16 23 9 MIRT685367

hsa-miR-4726-5p CCL5 20 26 10 MIRT518347

hsa-miR-4726-5p CCL5 18 23 13 MIRT518347

hsa-miR-6720-5p CCL5 22 36 15 MIRT685342

hsa-miR-6849-3p CCL5 18 25 9 MIRT685347

hsa-miR-17-5p CCL5 16 23 9 MIRT685368

hsa-miR-93-5p CCL5 17 23 10 MIRT685363

hsa-miR-106b-5p CCL5 15 21 10 MIRT685369

hsa-miR-7151-3p CCL5 15 19 8 MIRT518343

TA B L E  3   The validated miRNA-mRNA 
pairs identified by miRWalk 3.0 database
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virological response (SVR) in CHB patients receiving PEG-IFN treat-
ment, because it was significantly higher in patients with SVR than 
in those without SVR. The sensitivity of pre-treatment CXCL9 was 
59.1% in predicting patients with SVR, when the cut-off value was 
set as >80 pg/mL.27 The levels of serum CXCL13, which is positively 
correlated with the levels of intrahepatic CXCL13 before treatment, 
were significantly higher in CHB patients with a complete response 
than in those without a complete response.28 In addition, serum lev-
els of CXCL13 at the end of nucleos(t)ide analog(NA) treatment were 
positively associated with HBsAg loss and long-term virological re-
sponse.29 One of the potential mechanisms of CXCL13 against HBV 
infection was achieved by recruiting CXCR5+CD8+ T cells to the 
liver microenvironment and subsequently promoting the produc-
tion of HBV-specific IFNγ, IL-21 and B cell antibody responses.28,30 
CXCR5, the chemokine receptor of CXCL13, was also closely asso-
ciated with a lower clinical relapse rate upon cessation of the NA 
treatment in genetic variation studies of CHB patients.31 Based on 
previous studies and our findings, lower expression of pre-treatment 
CXCL9, CXCL10 and CXCL13 as well as lower expression of post-
treatment CXCL13, probably predicts a better antiviral treatment re-
sponse. Finally, STAT1, a key component in IFN signalling pathways 
and its upstream IFN/Janus kinase (JAK)/STAT signalling pathway, 

has also piqued interest in previous studies showing that HBV can 
influence the IFN/JAK/STAT signalling pathway and the differential 
phosphorylation of STAT1. Through STAT1-related pathways, HBV 
infection not only induced monocytes to express lower levels of IFN 
signalling/stimulated genes and higher levels of IL-10,32 but also led 
to the suppression of the anti-HBV T cell response.33,34 A specific 
enhancer of STAT1, 2-NP, rescued IFN signalling in HBV-infected 
monocytes,32 which corroborate our findings that a higher level of 
STAT1 is found in responders. More studies on the regulatory mech-
anism of IFN/JAK/STAT signalling may help elucidate the mechanism 
of persistent HBV infection and the poor response rates to antiviral 
therapy in CHB patients.

Immune response and chemokine signalling were revealed as the 
most significantly enriched in GO and KEGG pathways. Chemokines 
play various roles, including mediating immune cell trafficking, 
lymphoid tissue development and cancer progression by promot-
ing the formation of an immunosuppressive microenvironment.35 
In the present study, intrahepatic immune response activation and 
chemokine signalling were detected, which might result in different 
immune cell infiltration in the liver microenvironment between re-
sponders and non-responders. In addition, in previous studies, the 
immune infiltration characteristics in the liver microenvironment 

F I G U R E  5   A, Interaction network between hub genes and its targeted miRNAs. Genes are coloured in pink; miRNAs are coloured in 
purple. Intensity of colour is adjusted according to the number of targeting lines. B, The mRNA-miRNA-lncRNA competing endogenous RNA 
(ceRNA) triple regulatory sub-network associated with the effect and prognosis of antiviral therapy in hepatitis B. Genes are coloured in 
pink; miRNAs are coloured in purple; lncRNAs are coloured in yellow

lncRNA ID Disease Name
Scores by 
MNDR

Correlated 
miRNA Experiment

H19 Hepatitis B, Chronic 0.999141 hsa-mir-106b-5p CLIP-Seq

hsa-mir-17-5p

hsa-mir-20a-5p

hsa-mir-6720-5p

hsa-mir-93-5p

GAS5 Hepatitis B 0.982118 hsa-mir-6720-5p CLIP-Seq

TA B L E  4   The correlation between 
miRNA-lncRNA pairs identified by cross-
linking miRNet and MNDR database
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were also reported to be associated with hepatitis severity, the 
HBV-related liver disease progression and the efficacy of antiviral 
treatments in previous studies.4,36 Our chemokine assays in serum 
of CHB patients confirmed that 5 hub chemokines (CCL4, CCL5, 
CXCL9, CXCL10 and CXCL13) were significantly down-regulated in 
antiviral treatment non-responders comparing non-responders. The 
verified chemokines may have high potential values to be used as 
novel biomarkers in predicting treatment response.

Persistent HBV infection can cause immune suppression and 
dysfunction and induce HBV-related liver disease. To reveal differ-
ences in immune cell infiltration characteristics between respond-
ers and non-responders, we applied the CIBERSORT algorithm. 
Our results indicated a higher infiltration of CD8+ T cells and ac-
tivated NK cells in non-responders than in responders, which can 
be explained by the findings of previous studies. Progressive func-
tional exhaustion and the ultimately deletion of virus-specific T 
cells are commonly acknowledged in persistent HBV infection due 
to the production of inhibitory molecules such as PD-1 and IL-10 
and the regulation of NK cells.37 In patients with poor control of 
their HBV infection control, many more CD8+ T cells infiltrated the 
livers, but the infiltration of HBV-specific CD8+ T cells was atten-
uated by the recruitment of nonspecific CD8+ T cells into the liver 
microenvironment,38,39 which promoted persistent HBV infection 
and liver pathogenesis.40 Activated NK cells played more patho-
genic than protective roles in CHB, considering the preserved 
cytolytic activity, poor antiviral cytokine production and suppres-
sive effect on HBV-specific T cells.41 On the one hand, NK cells 
were activated and tended towards exhibiting cytolytic activity in 
the liver but without a concomitant increase in IFN-γ production, 
which subsequently mediated infected hepatocyte injury but was 
insufficient for viral clearance; on the other hand, NK cells inhib-
ited HBV-specific T cell responses by affecting antigen-presenting 
cells and regulating cytokines or killing T cells.42 PegIFNα and IFN-
stimulating TLR7 agonists therapy were reported to be efficient in 

restoring the function of NK cells and removing their negative ef-
fect on specific T cells.43,44 However, the potential benefits of NK 
cell modulation in the setting of persistent HBV infection need to 
be further explored and demonstrated. In contrast, our results in-
dicated that the levels of resting CD4+ memory T cells, plasma cells, 
γδT cells, resting dendritic cells and macrophages were significantly 
higher in responders than in non-responders. Higher resting CD4 
memory T cells were detected in responders, but no significant 
difference was detected in other subsets of CD4 T cells including 
naive and activated memory CD4 T cells. Compared to CD8+ T cell 
responses in CHB, much less is known about the down-regulation 
of CD4+ T cell responses.37 The higher infiltration of plasma cells 
in responders might favour responsiveness to antiviral treatment. 
Although the relevance of B cells and the antibody response in 
CHB is not well understood, the antibody response to HBV may 
contribute to viral infection control by limiting viral spread and 
removing the circulating virions.40 γδT cells, a minor unique T cell 
subpopulation, have long been considered as innate-like immune 
cells.45 In contrast to the elevated number and cytotoxic activ-
ity of γδT cells in chronic hepatitis C, the dominant subpopulation 
of γδT cells consisting of Vδ2 T cells was significantly diminished 
in CHB and was accompanied by decreased IFN-γ and cytotoxic 
activity.46 Our results revealed a lower level of γδT cells in non-
responders, indicating that the dysfunction of γδT cells might be 
more severe in this patient group. Dendritic cells (DCs), commonly 
considered as the most potent antigen-presenting cells (APCs) 
that initiate primary immune responses, were reported to be lower 
in CHB patients than in healthy controls.47 Our studies revealed 
that the decline in resting DCs in non-responders was more severe 
than that in responders (P <.05), possibly indicating a more severe 
dysfunction of DCs in non-responders at baseline. However, the 
total levels of dendritic cells of responders and non-responders 
were not significantly different prior to IFN-α treatment (P = .16), 
which is consistent with previous findings of peripheral blood DCs 

F I G U R E  6   The expression level 
of CCL4, CCL5, CXCL9, CXCL10 and 
CXCL13 in serum of CHB therapeutic 
non-responders were lower than that of 
responders at baseline and at 16 weeks of 
treatment. *P <.05, **P <.01
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in CHB patients.48,49 The dysfunction of DCs may reduce exoge-
nous IFN-α secretion and might also lead to non-responsiveness 
to IFN-α treatment in CHB patients.4 However, recent studies 
investigating the frequency and functionality status of DCs in 
CHB infection are still insufficient. In addition to DCs, macro-
phages are also important components of APCs in HBV infection. 
Macrophages differentiate into various subsets and play divergent 
roles in interacting with HBV infection including pathogen clear-
ance (mainly conducted by M1 macrophages) and pathogenesis 
(mainly conducted by M2 macrophages).50,51 Conflicting findings 
on the roles of macrophage in CHB progression are difficult to rec-
oncile and their roles in antiviral treatment remain unclear despite 
recent studies. Our results suggest a higher infiltration of macro-
phages in responders than non-responders at baseline and an even 
higher infiltration of macrophages in responders after treatment 
than before treatment, which deserves to be further verified and 
explained in future experiments.

Increasing evidence indicates that ncRNAs, including miR-
NAs and lncRNAs are actively involved in various regulatory pro-
cesses of HBV-related liver diseases.52-54 miRNAs regulate gene 
expression by binding to target mRNAs, causing mRNA degrada-
tion or translation inhibition. lncRNAs have various functions in 
chromosome modification, transcriptional regulation and post-
transcriptional processing by interacting with multiple molecules 
including DNA, RNA and proteins. Based on the competing en-
dogenous RNA (ceRNA) triple-regulatory hypothesis, lncRNAs can 
competitively bind to miRNAs thereby relieving the suppressive 
effect of miRNAs on mRNAs.19 Recent studies have shown inter-
est in revealing potential ceRNA interactions to better understand 
the molecular regulatory mechanisms in CHB. Fan et al revealed 
that the lncRNA n335586/miR-924/CKMT1A axis can promote 
HBV-related HCC cell migration and invasion.55 Liu et al found that 
the lncRNA H19/miR-675/PPARα axis might regulate liver cell in-
jury and energy metabolism remodelling induced by HBx via Akt/
mTOR signalling.56 However, integrated and comprehensive analy-
ses of the ceRNAs network in HBV infection have not sufficiently 
addressed these possibilities. In this study, we proposed a novel 
mRNA-miRNA-lncRNA triple-regulatory network to explore po-
tential ceRNA network interactions that may influence the process 
of CHB treatment. The subnetwork might provide novel therapeu-
tic targets in hepatitis B and promising biomarkers for predict-
ing the efficacy of antiviral therapy. However, notably, putative 
ceRNA interactions sometimes are not confirmed by experiments, 
because a single physiological ceRNA may have limited influence 
on highly expressed miRNAs.57 It is better to study ceRNAs collec-
tively as a network instead of individually in the post-transcription 
regulation processes. That is, putative ceRNA interactions should 
be scrutinized collectively using transcriptome-wide approaches 
coupled with bioinformatic prediction.

In summary, antiviral therapeutic responsiveness is suboptimal 
and variable among chronic hepatitis B (CHB) patients, and the 
underlying mechanism is unclear. To find a valid regimen for treat-
ing CHB, we must know more about the host factors affecting 

therapeutic responsiveness. Our bioinformatics analysis revealed 
5 hub chemokines (CCL4, CCL5, CXCL9, CXCL10 and CXCL13) 
as candidate biomarkers in predicting therapeutic responsive-
ness and a potential mRNA-miRNA-lncRNA as a potential reg-
ulatory network targeting CCL5. In addition, we found that the 
antiviral therapeutic responsiveness was associated with the host 
chemokine-mediated immune response and immune cell infiltra-
tion characteristics in the liver microenvironment. However, the 
present study presented certain limitations. First, the major lim-
itation of our study was the small sample numbers, which may in-
fluence the statistical power of our analyses. Due to the difficulty 
in completing the long follow-up period, the number of included 
CHB patients in the present study was limited. We performed the 
chemokine assays to enlarge the sample sizes and verify some of 
our findings, but more clinical studies with larger sample sizes 
are needed to verify our findings in the future. Second, although 
our immune infiltration analyses lay a foundation for further re-
searches, we could not validate the immune infiltration charac-
teristics in CHB livers samples. Finally, the identified chemokines 
in blood samples may be valuable and applicable biomarkers in 
CHB treatment, but the molecular mechanism of the chemokine 
signalling pathways or the interactions between chemokines and 
the liver microenvironment needs to be further explored. Further 
studies considering these aspects should be conducted in the 
future.

5  | CONCLUSION

In conclusion, we performed the first integrated bioinformatics 
analysis exploring the association between host genetic factors and 
antiviral therapeutic responsiveness in CHB patients. Our findings 
suggested that host genetic factors influenced therapeutic respon-
siveness in CHB patients, which may be related to the chemokine-
mediated immune response, liver immunological microenvironment 
and a potential mRNA-miRNA-lncRNA network targeting CCL5. 
Our study provides candidate biomarkers and potential molecular 
mechanisms of therapeutic responsiveness in CHB. However, more 
studies are needed to validate these findings.
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