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Abstract: Olive oil (OO) has longstanding significance in human history, particularly in the
Mediterranean region, where it has been a cornerstone of diet, economy, and culture. This
history adds to modern evidence-based knowledge. Background: The Mediterranean diet
(MD), rich in plant-based foods and OO, has been extensively associated with improved
cardiometabolic and cognitive health. Recent interest has emerged in understanding how
intermittent fasting protocols may enhance these effects. Still, the quality of OO does not
only lie in the extraction process; it is also dependent on the tree variety, the soil, and
the agricultural practices, ending with the way in which the finished product is stored
and consumed. Objectives: This review explores the synergistic potential between OO
consumption and intermittent fasting, focusing on their combined impact on metabolic
health, oxidative stress, and inflammatory pathways. Methods: A literature search was
conducted using multiple databases to identify studies addressing the health effects of
OO, fasting, and the MD. Both human and relevant preclinical studies were considered,
with emphasis on those evaluating inflammatory markers, lipid metabolism, insulin sen-
sitivity, and neuroprotective mechanisms. Results: Evidence suggests that the bioactive
compounds in EVOO may potentiate the benefits of fasting by enhancing antioxidant
capacity, reducing postprandial inflammation, and modulating gene expression related to
cellular metabolism. Combined, these factors may support improved insulin sensitivity,
reduced oxidative damage, and delayed onset of age-related diseases. Conclusions: Un-
derstanding the integrative role of OO and fasting within the MD framework could offer
valuable insights for nutritional strategies aimed at preventing metabolic syndrome, type 2
diabetes, and neurodegeneration. These findings also support the need for future clinical
trials exploring the timing, dosage, and dietary context in which these interventions are
most effective.

Keywords: olive oil; extra-virgin olive oil; EVOO; polyphenols; fasting

1. Introduction
“The Mediterranean peoples began to emerge from barbarism when they learned cultivating the

olive tree and the grape vine”, the Athenian historian Thucydides was reported to have said
in the fifth century BCE [1,2], and indeed, archeological findings indicate that extensive
olive cultivation and olive oil (OO) trade spread from the coastal areas of the Levant
since the late Neolithic and early Bronze Age (3000 BCE) [3,4]. Now only a fraction of the
world’s olive oil is still produced in the Levant, while the main producers have moved to
the west of the Mediterranean: for the 2018–2023 interval, 41% of the global production
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was in Spain, 8.8% in Italy, and 8.3% in Greece [5]. Since the Roman period, olive oil has
been the main fat consumed in the Middle East [4], and this is still true today for the
contemporary Mediterranean diet (MD) [6], but reliable information is scarce on the actual
amount consumed per capita. United Nations data estimates the annual per capita olive oil
consumption in 2021 at 14 kg in Greece, 12 kg in Spain, and 10 kg in Italy [7]. In a recent
Lebanese study, a third of households consumed more than 30 L per year, with more than
one quarter of the respondents consuming approximately 2 teaspoons of olive oil each
day [8]. The methodology of the current review is detailed in Appendix A.

2. The Context of the Mediterranean Diet and Fasting
Epidemiological research on the MD started in the 1950s, and since then, studies

confirmed that this diet, in which extra-virgin olive oil (EVOO) represents around 85% of
the total fat intake and up to one third of the total caloric intake, decreased the incidence of
hypercholesterolemia, atherosclerosis, diabetes, obesity, hypertension, and neurodegen-
erative diseases and showed a significant drop in total mortality and in cancer risk, with
additional antimicrobial and anti-inflammatory activities [1,9,10]. The health benefits of
the OO-rich MD are shown by studies and prevail over those of low-fat diet models [6]. On
the other hand, diets in which EVOO intake exceeds 35% of the total caloric intake are not
beneficial [10].

When evaluating the health benefits of the MD, it is important to consider not only
the composition of the diet itself but also fasting practices, as the Mediterranean region is
home to diverse religious traditions that incorporate various forms of fasting, ranging from
intermittent abstention from certain food groups to prolonged periods of caloric restriction,
which may play a significant role in the overall health outcomes traditionally attributed to
the MD [11].

Dietary interventions like intermittent fasting and caloric restriction significantly
influence gut microbiota, but findings on their effects remain inconsistent due to study
heterogeneity [12,13]. Animal studies suggest that microbiota composition adapts to
feeding modifications, but results vary across bacterial strains and regimens, and human
studies show shifts in bacterial diversity and activity depending on age, ethnicity, sex, and
health status, with some changes being transient [12]. Some fasting regimens involving
sirtuins (SIRT)-activating compounds, as is oleic acid—the major component of OO—show
potential benefits, yet conclusive patterns are not evident [12,14].

Fasting, including intermittent fasting and time-restricted feeding, has been shown
to improve insulin sensitivity, promote fat oxidation, and reduce markers of oxidative
stress and inflammation [15]. Fasting also activates autophagy and modulates metabolic
signaling pathways such as AMP-activated protein kinase (AMPK) and mammalian target
of rapamycin (mTOR), contributing to cellular resilience and longevity [16].

Fasting and the MD are two distinct yet complementary nutritional strategies that have
demonstrated robust benefits in metabolic, cardiovascular, and inflammatory conditions.
When combined, particularly with EVOO as a shared core component, these approaches
may exert synergistic effects that enhance health span and reduce disease risk [17,18].

Integrating fasting with a Mediterranean-style dietary framework, particularly in
the refeeding phases or in modified fasting protocols, enhances nutrient density while
maintaining metabolic flexibility.

EVOO plays a central role in this integration by

• Supporting satiety during fasting periods [19];
• Providing anti-inflammatory effects that complement fasting-induced reductions in

pro-inflammatory cytokines [14];
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• Minimally disrupting ketogenesis and glycemic control when consumed in small
quantities during modified fasts [20];

• Offering gut and cardiovascular protection during refeeding phases [21].

Furthermore, studies such as the PREDIMED trial have shown that higher adherence
to an MD supplemented with EVOO leads to improved lipid profiles, lower blood pressure,
and decreased risk of major cardiovascular events [22].

The combination of fasting and an MD enriched with EVOO represents a powerful,
evidence-based strategy for improving cardiometabolic health, enhancing cellular function,
and potentially extending health span [17].

3. Chrononutrition, EVOO Intake, and Health, from a
Biochemical Perspective

Recent research in chrononutrition, a field that investigates the temporal organization of
nutrient intake in relation to endogenous circadian rhythms, has begun to elucidate how the
timing of food consumption modulates metabolic and physiological outcomes [23–27]. The
synchronization between nutrient intake and circadian biology is increasingly recognized as
a determinant of cardiometabolic health [28,29]. Within this framework, the incorporation
of OO, particularly EVOO, into the diet warrants attention due to its rich profile of bioactive
compounds and functional lipids. EVOO, a principal source of monounsaturated fatty acids
in the Mediterranean diet, is predominantly composed of oleic acid and a diverse array of
phenolic compounds including hydroxytyrosol, oleuropein, and oleocanthal [30]. These
constituents were associated with anti-inflammatory, antioxidant, and cardioprotective
effects, which may interact with circadian-controlled metabolic pathways [30].

Scientific evidence suggests that the metabolic processing of dietary lipids, including
absorption, lipoprotein metabolism, and postprandial lipid clearance, is under circadian
regulation [31]. Insulin sensitivity and lipolytic activity exhibit diurnal variation, with peak
metabolic efficiency observed in the early part of the day. Accordingly, the consumption of
EVOO during morning or early afternoon meals may enhance lipid utilization and reduce
postprandial lipemia, a recognized cardiovascular risk factor [32].

Moreover, the bioavailability and systemic efficacy of EVOO polyphenols appear to be
modulated by the time of ingestion. Enzymatic activity within the gastrointestinal tract,
intestinal permeability, and hepatic xenobiotic metabolism—all crucial for polyphenol ab-
sorption and transformation—are subject to circadian modulation [33]. Therefore, aligning
EVOO intake with periods of optimal gastrointestinal and hepatic activity may potentiate
its systemic antioxidant and anti-inflammatory effects [33].

Oleocanthal, a phenolic compound unique to EVOO, exerts anti-inflammatory activity
through cyclooxygenase (COX) inhibition, mimicking the pharmacological action of nons-
teroidal anti-inflammatory drugs [34]. Given the circadian rhythm in pro-inflammatory
cytokine secretion and immune cell activation, timed consumption of EVOO may act
synergistically with these oscillations to modulate inflammatory responses [34].

The elderly population, who often exhibit disrupted circadian rhythms and increased
oxidative stress, may particularly benefit from structured EVOO consumption during
the active phase of the day (i.e., morning to early afternoon). This strategy may support
metabolic homeostasis and attenuate age-related pathologies including cardiovascular
disease and neurodegenerative conditions [35].

In the context of the Mediterranean dietary pattern, which emphasizes early meal
timing, plant-based foods, and liberal use of EVOO, there is inherent compatibility with
chrononutritional principles. Epidemiological and interventional studies demonstrated
that the MD, when consumed in synchrony with circadian rhythms, confers superior
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metabolic and cardiovascular outcomes compared to isocaloric diets with suboptimal
temporal patterns [36,37].

4. Nutritional Strategies in the Context of Therapeutic Modulation
Fasting, defined as a voluntary abstention from caloric intake for varying durations,

has gained increasing attention for its potential therapeutic effects on metabolic health,
inflammation, and cellular repair mechanisms. Various forms of fasting, including inter-
mittent fasting, time-restricted feeding, and prolonged fasting, were shown to modulate
insulin sensitivity, enhance autophagy, and promote fat oxidation [15,21]. Within this
context, the inclusion or strategic use of specific nutrients such as EVOO has emerged as a
topic of scientific interest [30].

Olive oil, particularly EVOO, is characterized by a high content of monounsaturated
fatty acids, predominantly oleic acid, and a wide range of bioactive compounds including
polyphenols, squalene, and tocopherols that possess well-documented anti-inflammatory,
antioxidant, and cardioprotective properties [30,38].

In modified fasting protocols, where minimal caloric intake is permitted, small quan-
tities of OO may be used without substantially disrupting the physiological fasting state.
Due to its low glycemic impact and negligible effect on insulin secretion, OO does not
significantly interfere with key metabolic pathways associated with fasting, such as keto-
genesis and lipolysis [20]. Moreover, its high satiety index may help mitigate hunger and
improve adherence to fasting regimens [19].

The bioactive constituents of EVOO are also implicated in supporting mitochondrial
function, reducing oxidative stress, and modulating inflammatory cytokine expression, all
of which align with the mechanistic goals of fasting. Additionally, during the refeeding
period post-fast, the incorporation of OO can support digestive reactivation in a gentle man-
ner, enhance nutrient absorption, and promote bile production, aiding in the metabolism of
dietary fats [30].

From a clinical nutrition standpoint, the synergistic application of fasting and EVOO
may offer a complementary approach in the management of metabolic disorders, including
type 2 diabetes, obesity, and cardiovascular disease. However, further randomized con-
trolled trials are necessary to delineate optimal dosages, timing, and long-term effects of
EVOO consumption within various fasting protocols [39].

Current evidence suggests that EVOO, due to its unique lipid profile and bioactive
components, may enhance the tolerability and efficacy of fasting interventions while
preserving key metabolic benefits [30].

When combined, the fasting regimen and OO consumption may exert synergistic
effects in addressing the pathophysiological components of metabolic syndrome. Fasting
improves metabolic flexibility and fat utilization, while EVOO provides essential fatty
acids and bioactive compounds that support cardiovascular and metabolic health without
disrupting the metabolic state induced by fasting. Additionally, the inclusion of EVOO
during refeeding or in modified fasting protocols may enhance satiety, maintain lipid
homeostasis, and attenuate postprandial glycemic spikes [40].

Fasting, particularly in its prolonged or intermittent forms, leads to periods where
the stomach remains empty for extended durations. In this state, gastric mucosal pro-
tection is reduced due to lower prostaglandin levels and less mucus secretion, thereby
increasing susceptibility to nonsteroidal anti-inflammatory drug (NSAID)-induced mucosal
injury. Consequently, the use of ibuprofen during fasting is generally discouraged unless
accompanied by protective strategies [40].

One such strategy may involve EVOO, which possesses gastroprotective, anti-
inflammatory, and antioxidant properties. EVOO is rich in monounsaturated fatty acids
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(primarily oleic acid) and polyphenolic compounds, some of which exhibit ibuprofen-like
COX-inhibitory activity without the same gastrointestinal toxicity. Moreover, EVOO en-
hances mucosal defense by increasing prostaglandin E2 synthesis and reducing oxidative
damage to the gastric lining [34].

While OO should not be considered a replacement for pharmaceutical gastroprotec-
tants in high-risk NSAID users, moderate intake during or prior to NSAID administration,
particularly in fasting states, may provide a natural protective buffer to reduce mucosal
damage. Additionally, OO’s anti-inflammatory effects may synergize with or reduce the
required dose of ibuprofen in certain contexts, though clinical data on this interaction
remain limited [41].

Fasting increases the risk of ibuprofen-induced gastrointestinal irritation, while OO
may offer a protective and complementary role. Co-ingestion of OO or avoiding NSAID
use on an empty stomach may help mitigate adverse effects. However, more research is
needed to clarify the optimal timing, dosage, and safety of combining these elements in
clinical or self-care settings [42].

5. The Olive Fruit and the Types of Olive Oil
The water content of fresh olives ranges between 50 and 70% and oil between 20 and

30%, while carbohydrates represent less than 19%, cellulose 6%, and protein and minerals
1.5% each [4,43]. The structure of the olive fruit is detailed in Figure 1.

Figure 1. The structure of the fresh olive drupe: the epicarp represents the skin, the mesocarp
represents the pulp or the flesh, and the endocarp represents the stone or the pit, containing the
kernel or the seed.

Olive trees follow a biennial bearing cycle, producing heavy crops (ON) and light
crops (OFF) in alternating years. During ON years, fruit development limits shoot growth
and reduces flowering for the next season. ON years result in smaller fruits with a lower
flesh-to-stone ratio, delayed ripening, and less oil. However, the overall oil production per
tree remains higher in ON years [43].

Oil represents 14–30% of the mesocarp and only 1–1.5% of the endocarp [10,43]. The
oil from the mesocarp agglomerates in vacuoles, while that in the endocarp is cytoplas-
matic [44].

This means that physical pressing could be sufficient to extract almost all the vacuolar
oil from the mesocarp, while the cytoplasmatic oil from the kernel, even if crushed, is much
more difficult to extract and remains in the pomace [44]. For an overview of OO extraction
processes, see Figure 2.

Even so, malaxation is an essential process, as it enhances oil droplet coalescence
and the separation of phases, as well as promoting the formation of volatile compounds,
leading to a highly nutritional and flavorful oil, as it allows polyphenols and other minor
constituents to disperse in the oil physically or due to enzymatic activity [10,45,46].
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Oil separation is carried out by one of three methods: mechanical pressing, percolation,
or centrifugation [45]. The remaining pomace can be stored for months and is further
processed to lose most of the moisture, and then the remaining oil is extracted using
solvents like hexane [45,47].

The use of n-hexane as an oil extraction solvent is somewhat justified in the case of
sunflower seeds, for example, where it can boost the yield from 25 to 40% when compared
to using pressure alone, but in the case of olive pomace, only a small remaining percentage
of residual oil is extracted, and following this process of making the crude olive pomace oil
edible, polyphenols, phytosterols, vitamins, and other bioactive molecules are lost [45,48,49].
Traces of polyphenols can still be found in commercial regular olive or olive pomace oil
because of the legal obligation to mix refined OOs and refined olive pomace oils with
various proportions of EVOO or VOO [47].

 

Figure 2. An overview of OO extraction methods shows how the ratio of polyphenols and other
beneficial components of OO is heavily dependent on the technological process of extraction. The
green highlight designates the four commercially available OO types, with legal labels and free
acidities set by EU regulation [47,49,50]. Lampante oil is a very low-quality oil, either obtained
from low-quality or old olive fruit or improperly processed, which makes it inedible without further
refining [47].

In fresh olives, the phenolic contents could amount to a striking 20–30 g/kg in the
mesocarp, but because of their polar and thus more hydrophilic nature, only a minute
fraction ends up in the EVOO after pressing and filtering—on average only 0.5 g/kg
(0.05%)—with the rest persisting in the pomace (~45%) and the majority being lost in
wastewater (~53%) or degraded during refining processes [45,49,51,52]. Some of the pheno-
lic constituents become oil-soluble only after they are enzymatically hydrolyzed and form
aldehydic aglycones [45,46].
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6. EVOO Constituents and Their Health Attributes
6.1. Legal and Regulatory Considerations

It is important to acknowledge first that each effect is dependent on the dose and also
on the frequency of administration, so this is why all the health claims allowed commercially
at the European level by the EU Commission Regulation 432/2012 concerning different
constituents of EVOO must specify the minimum or maximum daily intake needed for each
specific constituent to have the specific beneficial health outcome listed [53]. For example,
the claim “Olive oil polyphenols contribute to the protection of blood lipids from oxidative stress”
may be used only if the oil has a minimum of 0.025% content in hydroxytyrosol and
derivatives and only if the consumer is also instructed to consume a daily minimum of 20 g
of oil [53]. The average value identified in the literature for polyphenol content in EVOO is
0.05% [49].

The World Health Organization (WHO) updated on 17 July 2023 its guidance on total
fat, saturated fat, and trans-fat based on the latest scientific evidence. Table 1 presents a
summary of the European Food Safety Authority (EFSA) and WHO guidelines on some
EVOO constituents and health claims.

Table 1. EFSA and WHO health claims and recommendations related to olive oil [53–55].

Health
Claim/Recommendation Conditions Organization

Protection of LDL particles
from oxidative damage

At least 5 mg hydroxytyrosol
per 20 g olive oil;

daily intake of 20 g
EFSA

Ensuring normal blood
LDL cholesterol levels

Valid for foods high in
unsaturated fats;

oleic acid supports normal
cholesterol levels

EFSA

Dietary fat intake
recommendations

Total fat represents <30% of
total energy intake;

unsaturated fats preferred
WHO

Trans-fat intake
recommendations

Trans-fats represent <1% of
total energy intake

(<2.2 g/day for 2000 kcal diet)
WHO

EFSA—European Food Safety Authority; LDL—low-density lipoproteins; WHO—World Health Organization.

The WHO emphasizes the significance of both the quantity and quality of dietary
fat for maintaining optimal health. Although the WHO’s “Healthy Diet” guidelines do
not specify OO per se, they underline that adults should restrict their total fat intake to a
maximum of 30% of their total energy consumption. For individuals aged two years and
older, fat intake should predominantly consist of unsaturated fatty acids. Saturated fatty
acids should contribute no more than 10% of total energy intake, while trans-fatty acids
(TFAs), whether derived from industrial processing or ruminant animal sources, should
be limited to less than 1% of total energy intake [54]. This leaves room for incorporating
monounsaturated fats, such as those found in OO, which are well-recognized for their
beneficial effects on lipid profiles and overall cardiovascular health.

To promote healthier dietary patterns, saturated and trans-fatty acids can be substi-
tuted with alternative macronutrients, such as polyunsaturated fatty acids, monounsatu-
rated fatty acids from plant-based sources, or carbohydrates rich in naturally occurring
dietary fiber, including whole grains, vegetables, fruits, and legumes. Saturated fatty acids
are predominantly found in fatty meats, dairy products, and solid fats and oils, such as
butter, ghee, lard, palm oil, and coconut oil. Meanwhile, trans-fatty acids are commonly
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present in processed foods, including baked and fried products, pre-packaged snacks, and
animal-derived foods from ruminants such as cows and sheep [55].

6.2. Age-Specific Considerations for Lipids Intake

For children, the focus is on ensuring a balanced intake of fats that supports growth
and cognitive development. While specific EVOO recommendations for children are
less commonly delineated in major guidelines, incorporating EVOO as a primary source
of dietary fat within the framework of a balanced diet can help provide essential fatty
acids and antioxidants. National dietary guidelines (such as those from Mediterranean
countries) often suggest that healthy fats, including EVOO, should make up a substantial
part of the daily fat intake of children, adjusted proportionally to their lower energy
requirements [55,56].

In adult populations, many MD guidelines recommend daily consumption of around
25–30 mL (approximately 2–3 tablespoons) of EVOO as a key component of a heart-healthy
diet. This amount is consistent with findings from the PREDIMED study, which showed a
reduction in cardiovascular risk with increased OO consumption. Such intake supports the
maintenance of healthy lipid profiles and provides anti-inflammatory benefits [22].

For elderly individuals, nutritional needs are similar to those of adults but with
increased emphasis on maintaining cardiovascular health and preventing age-related
oxidative stress. The inclusion of EVOO is particularly beneficial for this group [55,57,58].

6.3. Olive Oil in the Context of Mediterranean Diet

The high content of monounsaturated fatty acids and antioxidants underpins many of
the diet’s beneficial effects, including reduced inflammation, improved endothelial function,
and enhanced metabolic control [27,55].

Recent studies continue to reinforce the connection between EVOO consumption
and lower risks of cardiovascular diseases, type 2 diabetes, and even certain types of
malignancies [59]. Moreover, the MD’s synergy, where EVOO works in concert with
other nutrient-dense foods, creates a holistic approach to preventing chronic diseases and
promoting longevity [60,61].

In summary, current recommendations from the WHO and EFSA support the inclu-
sion of EVOO as a beneficial fat source within a balanced diet. While specific quantita-
tive guidelines may vary by age group, the overall evidence supports daily intakes of
20–30 mL for adults and the elderly, with proportionally adjusted amounts for children.
The MD remains a prime example of how EVOO can contribute to health through its
anti-inflammatory, antioxidant, and metabolic-modulating effects [62,63].

6.4. EVOO Composition and Organoleptic Attributes

EVOO is one of the best sources of nutraceuticals, and although most of the published
studies are in vitro, the results are promising for a wide range of chronic and degenerative
pathologies [6].

EVOO and VOO composition varies depending on the cultivar genotypes, soil prop-
erties, climate, sanitary and agronomic conditions, ripeness stage of olives, harvesting
method and degree of fruit damage, extraction method, and, last but not least, packing
materials, storage, and cooking conditions [43,47,49,64]. The average composition of EVOO
is presented in Table 2.
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Table 2. EVOO constituents with average proportions [10,43,46,47,49,65].

Major fraction 98–99%

saponifiable fraction
mostly fatty acids in the

form of TAGs,
mainly triolein

≈75% MUFAs
55–83% ω-9 oleic acid
<3.5% ω-7 palmitoleic acid
<0.5% gadoleic acid, heptadecenoic acid

<25% PUFAs 3.5–21% ω-6 linoleic acid
<1.5% ω-3 alpha-linolenic acid

<25% SFAs

7.5–20% palmitic acid
<5% stearic acid
<1% lignoceric acid, arachidic acid
<0.5% heptadecanoic acid, behenic acid
<0.1% myristic acid

Minor fraction
1–2%

unsaponifiable fraction
(nonpolar)

hydrocarbons squalene (2–9 g/kg),
β-carotene

EVOO has 20–30% more
squalene compared
to VOO.

tocopherols
(lipophilic phenols) 10–350 mg/kg

In refined OO the
tocopherols are lost.
Alpha-tocopherol can
be added.

triterpenic alcohols and
dialcohols

phytosterols 1–2.5 g/kg But no cholesterol.

pigments chlorophylls, pheophitins

hydrophilic fraction
(polar)

phenolic compounds
120–600 mg/kg
(1–3% of pulp)

secoiridoids 90% (almost
exclusive to Olearaceae)

Oleuropein, oleacin,
oleocanthal, ligstrozide.

phenolic acids Benzoic and cinnamic
acids derivatives.

phenolic alcohols Hydroxytyrosol tyrosol.

lignans Pinoresinol.

flavonoids Apigenin, luteolin.

hydroxy-isochromans

volatile components aldehydes, ketones
and alcohols

EVOO—extra-virgin olive oil; MUFAs—monounsaturated fatty acids; OO—olive oil; PUFAs—polyunsaturated
fatty acids; SFAs—saturated fatty acids; TAGs—triacyl-glycerides; VOO—virgin olive oil.

The hue, scent, flavor, taste, and aftertaste of EVOO are influenced by its minor
fraction [10]. EVOO’s organoleptic properties, influenced by polyphenols, contribute to its
sensory qualities like bitterness and throat irritation [8], which does not make them easily
accepted by most consumers [6]. The bitterness or the astringency notes are influenced by
some of its minor components, such as secoiridoids like oleuropein and ligstrozide [6,49].
Ligstrozide and oleocanthal are responsible for the irritant burning throat sensation that is
characteristic of high-quality EVOOs [6].

During the organoleptic assessment of EVOOs and VOOs, a highly trained panel of
tasters identifies sensory attributes (fruitiness, bitterness, pungency) or defects (such as
musty, winey, or rancid aromas) [43].

6.5. Health Benefits of EVOO

EVOO has received considerable attention for its health-promoting properties, derived
primarily from its lipidic composition, characterized by a high content of monounsaturated
fatty acids (MUFAs)—especially oleic acid—and its rich spectrum of minor bioactive
compounds such as polyphenols [1,6,61]. These are summarized in Figure 3.



Nutrients 2025, 17, 1905 10 of 24

Figure 3. Protective effects of olive oil’s major and minor constituents on health and disease processes.

6.5.1. Cardiovascular Health

The cardioprotective effects of EVOO are closely linked to its lipid profile. EVOO
contains approximately 70–80% oleic acid, a MUFA well-recognized for its beneficial cardio-
vascular properties. Moreover, EVOO has an optimal omega-6 to omega-3 fatty acid ratio
(ω6:ω3 between 5:1 and 10:1), contrasting sharply with the typical Western diet, which
usually has a ratio around 16:1, associated with pro-inflammatory and pro-atherogenic
effects. Additionally, EVOO is low in saturated fatty acids (SFAs), further supporting its
cardiovascular protective profile. Regular intake of EVOO results in decreased plasma
levels of LDL and VLDL cholesterol alongside an occasional increase in HDL cholesterol,
collectively reducing risks associated with atherosclerosis and coronary heart disease. The
Food and Drug Administration (FDA) acknowledges that a daily intake of approximately
23 g of EVOO can reduce coronary heart disease risk provided it substitutes for an equiv-
alent amount of saturated fats. Similarly, EFSA highlights the cardiovascular benefits of
replacing dietary saturated fats with unsaturated fats, as per Regulation EU 432/2012, to
maintain normal plasma cholesterol levels [10,18,43,53–55,66].

6.5.2. Anti-Inflammatory Effects

EVOO exerts potent anti-inflammatory activities through both its fatty acids and
polyphenolic constituents. Oleic acid helps modulate inflammation by gradually replacing
pro-inflammatory fatty acids such as linoleic and arachidonic acids in cell membranes.
This substitution influences key inflammatory signaling pathways, notably the nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, reducing pro-
inflammatory cytokine expression. The polyphenolic compound oleocanthal, found in
EVOO, inhibits COX-1 and COX-2 enzymes in a manner analogous to NSAIDs like ibupro-
fen, offering dose-dependent anti-inflammatory benefits. COX-1 and COX-2 enzymes are
critical components of the prostaglandin synthesis pathway, as shown in Figure 4 [67,68].
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Figure 4. Involvement of ibuprofen and oleocanthal in the prostaglandin pathway. FAAH—fatty acid
amide hydrolase. COX1 and COX2—cyclooxygenase 1 and 2. Adapted from [67–69].

Furthermore, polyphenols such as hydroxytyrosol and oleuropein suppress other
inflammatory mediators, reinforcing the preventive role of EVOO against chronic inflam-
matory states linked to various degenerative diseases [10,14,67,70–72].

6.5.3. Antioxidant Activities

The antioxidant capacity of EVOO is significantly attributed to its polyphenolic content,
including compounds such as hydroxytyrosol, tyrosol, oleuropein, and oleocanthal [61,73–75].
These antioxidants actively scavenge reactive oxygen species (ROS), limiting oxidative dam-
age to cellular components such as proteins, lipids, and DNA. EVOO polyphenols enhance
endogenous antioxidant enzyme activities, including superoxide dismutase, catalase, and glu-
tathione peroxidase, further fortifying cellular defense mechanisms [76–78]. EFSA recognizes
the antioxidant properties of hydroxytyrosol and related polyphenols, recommending an
intake of at least 5 mg/day through EVOO consumption to achieve significant antioxidative
protection, notably the inhibition of LDL oxidation, a key factor in atherogenesis [39,70,79–83].

6.5.4. Neuroprotective Potential

Emerging evidence highlights the potential neuroprotective benefits of EVOO, primarily
attributable to its polyphenolic components, notably oleocanthal, oleuropein, and hydroxyty-
rosol. These polyphenols demonstrate the ability to traverse the blood–brain barrier, exerting
direct antioxidant and anti-inflammatory actions within neural tissues [84–88]. Through the
activation of intrinsic protective mechanisms such as the nuclear factor erythroid 2-related
factor 2 (Nrf2) pathway, EVOO phenolics bolster neuronal resilience to oxidative stress and
inflammation. Specifically, oleocanthal promotes cerebral clearance of amyloid-beta (Aβ),
suggesting therapeutic potential in neurodegenerative conditions such as Alzheimer’s
and Parkinson’s diseases. Moreover, EVOO polyphenols attenuate neuroinflammation, a
critical factor in cognitive decline and neurological disorders. Notably, hydroxytyrosol has
intriguing biochemical connections to neurotransmitter metabolism, particularly involving
dopamine synthesis pathways, as depicted in Figure 5 [89,90].
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Figure 5. Hydroxytyrosol may be generated endogenously through dopamine metabolism or acquired
exogenously. TyDc—tyrosine/DOPA decarboxylase, MAO—monoamine oxidase, ADH—alcohol
dehydrogenase, ALR—aldehyde reductase [91–93].

The dopamine biosynthetic pathway commences with L-phenylalanine, which is con-
verted into L-tyrosine. This L-tyrosine is then transformed into L-3,4-dihydroxyphenylalanine
(L-DOPA), the immediate precursor to dopamine. Next, tyrosine/DOPA decarboxylase cat-
alyzes the conversion of L-DOPA into dopamine, which is subsequently metabolized into
3,4-DHPAA by monoamine oxidase (MAO) [89]. The final step of this metabolic pathway
involves the production of hydroxytyrosol via a reversible reaction catalyzed by alcohol
dehydrogenase [91,94].

Conversely, the external pathway for hydroxytyrosol formation in olives during maturation
is comparatively simpler. In this process, a β-glycosidase converts oleuropein into its aglycone
form, which then undergoes hydrolysis to yield elenolic acid and hydroxytyrosol [94].

6.5.5. Metabolic Regulation and Longevity

The metabolic regulatory and potential longevity benefits associated with EVOO are
predominantly linked to its MUFA content, especially oleic acid, as well as to its bioactive
polyphenols, such as oleuropein and hydroxytyrosol. EVOO polyphenols influence key
metabolic pathways by activating SIRT1, an NAD+-dependent enzyme pivotal in cellular
metabolism, stress resistance, and aging processes. Activation of SIRT1 by EVOO com-
ponents has been associated with improved mitochondrial function, increased insulin
sensitivity, and reduced inflammation, thereby promoting metabolic health. These mecha-
nisms collectively enhance cellular resilience, potentially delaying the onset of age-related
metabolic disorders, including metabolic syndrome and diabetes, and possibly contributing
to increased longevity [12,14,76,95,96].

6.5.6. Modulating Membrane Potential and Fluidity

The bioactive components of EVOO, particularly oleic acid and polyphenols such
as hydroxytyrosol and oleuropein, play a crucial role in modulating membrane potential
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and fluidity. Oleic acid integrates into phospholipid bilayers, enhancing membrane fluid-
ity and elasticity, which supports optimal functioning of membrane-bound proteins, ion
channels, and receptors. This modulation of membrane dynamics influences a range of
physiological processes including cellular signaling, neurotransmission, nutrient transport,
and energy metabolism. Polyphenols further contribute by stabilizing membrane structures
and protecting them from oxidative damage, thereby preserving the biophysical properties
necessary for cellular homeostasis and metabolic regulation [97–99]. Furthermore, these
compounds can prevent apoptosis, including cell death induced by H2O2, a key property
given the critical role of cell death in neurodegenerative processes’ development. Polyphe-
nols confer cytoprotection by hyperpolarizing the basal mitochondrial membrane potential
and by reducing the activity of neuronal Na+/K+ ATPase [82,97,100].

6.5.7. Anticancer and Chemopreventive Effects

EVOO polyphenols exhibit notable anticancer properties. Oleuropein, hydroxyty-
rosol, and secoiridoids demonstrate significant antioxidative activity, inhibition of cell
proliferation, induction of apoptosis, and modulation of inflammatory pathways linked to
cancer development. In vitro and in vivo studies consistently report EVOO polyphenols’
chemopreventive effects across diverse cancer cell lines. Oleuropein specifically exhibits
strong anticancer potential through radical-scavenging actions, metal-chelating activity,
and inhibition of angiogenesis and platelet aggregation. Furthermore, polyphenolic con-
stituents such as oleocanthal have shown promise as adjunctive therapeutic agents in cancer
treatments given their potent anti-inflammatory and antioxidant capabilities [49,101–106].

6.5.8. Gaps in Nutritional Research Related to EVOO

Despite extensive evidence of EVOO’s beneficial health effects, several critical gaps
persist within the clinical and nutritional research domains. Most notably, robust, large-
scale randomized controlled trials (RCTs) evaluating the long-term clinical impacts of
EVOO consumption across diverse populations remain limited. There is an urgent need
to define clearly optimal consumption levels, establish standardized phenolic profiles,
and investigate how varying dietary patterns and individual genetic factors influence
EVOO’s bioavailability and efficacy. Further research should aim to unravel the interactive
mechanisms between EVOO constituents and other dietary components, providing a
clearer, more definitive evidence base to support nutritional guidelines and public health
recommendations concerning EVOO consumption.

7. Factors That Influence the Quality of Olive Oil
A high-quality EVOO has its origin in the orchard, with suitable cultivars, healthy

olives, and ideal harvest times. Studies suggest that the highest phenolic content occurs in
early harvests, in the first half the ripening/pigmentation stage, whereas overripe olives
harvested in November or December will yield higher quantities of oil but with the lowest
phenolic concentration and increased acidity [43,45,107].

It was reported that the concentration of total phenols differed by as much as 15-fold
across 44 cultivars studied, though among the most common varieties from Spain, Italy,
and Greece, as it can be observed in Figure 6, the differences were not so abrupt [108,109].

Free OO acidity refers to the percentage of free oleic acid found in OO [47]. Typically,
the fatty acids in OO are esterified in the form of triglycerides, but free fatty acids are re-
leased when endogenous or exogenous lipases start breaking down these triglycerides [47].
When the olive fruit is intact, the oil is usually found in large vacuoles, separated from the
watery part of the flesh that contains lipases [47]. These lipolytic enzymes can be found in
the leaves as well [45] and also in fruit infested by the most frequent pest, the olive fruit fly
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(Bactrocera oleae) [43,47]. Oil produced from these infested olives has an increased acidity
and a decimated phenolic content, up to a quarter of the original value [43]. Washing dirty
or bruised olives for a prolonged time before milling is less preferable, as the additional
water can serve as a medium for the dissolution of phenolic compounds, reducing their
concentration in the extracted OO [45].

Figure 6. Variation in the average concentration of phenolic compounds (mg/kg) in monovarietal
VOOs for 6 representative cultivars from Spain, Italy, and Greece [108–110].

Dry summers stimulate earlier olive ripening and favor oil with higher phenol levels,
but excessive temperatures induce an increase in the oil free acidity [43].

The ratios of fatty acids are variable with latitude and altitude and also with the use
of fertilizers or irrigation. In colder environments, the PUFAs increase and SFAs decrease,
while the oleic acid increases with altitude or the employment of ripening retardant fertil-
izers, and finally, both MUFAs and PUFAs are more abundant in crops growing in dryer
environments [10]. Unexpected freezing temperature may initiate oxidative processes in
the olives due to cell destruction, resulting in oil with a lower phenolic content [43].

Excessive nitrogen fertilization lowers the quality of the oil by reducing the phenol
content, yet alpha-tocopherol content increases [43,45].

Most harvesting is performed through mechanical means (like trunk shakers), which
produce significant damage to the fruit, more than 10 times when compared to hand-
picking; therefore, it is essential that processing starts as soon as possible, as physical
and chemical degradation increases exponentially after one hour, with the additional
inconvenience of microorganism proliferation that will imprint undesirable organoleptic
defects [43].

Technological extraction methods, process duration, and temperature are intercon-
nected factors that influence the quality of the oil. If we compare methods, the observations
might be surprising: even if the modern hammer crushing system induces a higher working
temperature than a more traditional stone mill, the longer process required by the latter
implies prolonged air exposure and therefore higher oxidation, so the stone-milled oil
would have the lower content of total phenols of the two [45].

When the olive fruit is crushed, the oil vacuoles rupture and mix with the watery
fraction of the olive fruit, initiating the lipolytic process. This process only stops once
the oil is separated from the water and properly filtered, and this is why minimizing the
processing time and the leaf content and having healthy and clean olive fruit is essential to
maintain a low level of free acidity [43,45,47].

Unfiltered EVOO contains more polyphenols than filtered oil, especially those more
polar that show increased affinity to the water droplets dispersed in the unfiltered oil [49].
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Unfiltered EVOO may also offer superior flavor attributes, but it is important to note
that most of these qualities originate in the fruit pulp suspension that also encourages
fermentation and enzymatic activity, leading to the faster degradation of the unfiltered
oil [43,45].

Destoning olives before crushing eliminates certain enzymes concentrated in the
kernel, reducing phenolic oxidation and ultimately yielding oil with a higher phenolic
content [45].

Intensive farming, increased irrigation, and selective cultivars offer better OO yields
but not necessarily the highest quality in terms of health-enhancing attributes, yet growing
consumer awareness of healthy foods and their willingness to pay more for them are
driving demand for bioactive-rich cultivars [43].

8. EVOO Storage
EVOO and VOO have a better shelf life than seed oils, on the one hand because of the

high oleic acid content and on the other hand because α-tocopherol, hydroxytyrosol, and
secoiridoids act as synergic antioxidants [43,45,49]. A higher MUFA-to-PUFA ratio also
improves the long-term oil oxidative stability [43].

Polar antioxidants tend to accumulate at the oil–air interface, where oxidation is more
likely to occur, thus enhancing the protection against oxidative degradation by reducing
oxygen permeability, acting as a physical barrier that slows oxidation [83]. This helps
explain the polar paradox, where polar antioxidants sometimes outperform nonpolar ones
in oil-based systems but only if certain concentrations are attained [83].

Storage conditions also influence EVOO’s polyphenol content, with studies showing
that prolonged storage under diffused light, similar to supermarket levels, leads to the
degradation of approximately 45% of total phenols within four months [111]. However,
when stored in the dark, EVOO retains its antioxidant activity for up to eight months,
and interestingly, hydroxytyrosol and tyrosol levels can increase during storage due to
the hydrolysis of complex phenols, highlighting the dynamic nature of EVOO’s chemical
composition over time [111].

Reducing the oxygen concentration in the bottle headspace to 2–5% significantly
prolongs EVOO’s shelf life, particularly at cooler storage temperatures (10 ◦C). Low oxygen
levels better preserve polyphenols, chlorophylls, and oil stability indicators, especially
when dark glass packaging is used. Maintaining a low-oxygen headspace thus emerges
as a crucial, yet often overlooked, packaging parameter. In comparison, EVOO stored
at higher oxygen concentrations (10–21%) showed accelerated degradation, especially
when combined with higher storage temperatures (28 ◦C). These findings emphasize the
importance of controlled atmospheric packaging for premium oils, suggesting that even
standard glass packaging can be optimized by simply adjusting the headspace composition,
preferably with inert gases, to better preserve the oil’s chemical and sensory profile over
time [112].

Packaging materials and storage temperatures critically influence the rate of EVOO
degradation. Although tin packaging provides better light protection than glass, there
are studies that indicated that only at low temperatures (6 ◦C) did both glass and tin
containers help maintain EVOO quality, while higher temperatures (26 ◦C), particularly
in tins, accelerated oxidative degradation and rancidity. Therefore, dark glass and cool
temperatures are preferred in order to better preserve both chemical integrity and desirable
sensory notes of EVOO, like bitterness and pungency. These findings underscore the
delicate balance between packaging, temperature, and product longevity, demonstrating
that storage temperature often plays a more decisive role than container type alone [113].
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Other research showed that an average of 4 ◦C proved optimal for EVOO preserving,
and even though −18 ◦C proved to show increased protective effects, it is also much more
costly and impractical for long-term storage and transport [114].

Adding modified polysaccharides from Lycium barbarum to EVOO markedly improves
oxidative stability under accelerated aging [115]. While technically effective, this practice
raises regulatory and definitional concerns: EVOO must remain a pure product of the Olea
europaea fruit. Introducing components from other plants, even if natural and beneficial,
violates the legal and commercial standards defining EVOO, and such oils can no longer be
marketed under this designation.

Proper home storage, including glass or tin-coated steel containers in cool, dark
places, preserves quality. Most consumers (76%) in one study stored OO in closed cabinets,
favoring tinplate containers (36.6%). However, more than a third of respondents stored OO
in clear bottles and 16.4% in plastic, increasing degradation risks [8].

A study which evaluated over three years the stability of EVOO kept in unopened
bottles under different temperature conditions revealed that the phenolic compounds
experienced the most significant degradation, while tocopherols, squalene, and sterols
showed only slight reductions, and fatty acids remained largely stable. Opening the
bottle mid-way accelerated the degradation. At the end of the three-year period, only the
high-phenol OO retained its organoleptic properties [114].

In conclusion, while technical innovations like headspace oxygen reduction, tempera-
ture regulation, and careful material selection can greatly improve EVOO shelf life within
regulatory bounds, the use of additives from other botanical sources is incompatible with
the fundamental definition of EVOO.

9. Effects of Cooking on EVOO
Lebanese, Greek, and Italian preferences for domestically produced oil reflects a

Mediterranean trend valuing freshness and quality, with nearly half of participants from a
recent study preferring to consume OO raw rather than use it for cooking [8].

EVOO and VOO are obviously best consumed raw to preserve their quality, but they
are often exposed to heat in cooking. Heating affects not only their fatty acid composition
but also their minor bioactive compounds. Research highlights concerns about the loss
of beneficial substances and the formation of potentially harmful compounds, such as
oxidized fatty acids and polymerized triglycerides [116].

The oxidation of EVOO’s minor compounds, particularly phenolic compounds like
hydroxytyrosol, varies depending on temperature and cooking duration [117]. While
some compounds degrade significantly, others, such as lignans and squalene, remain
relatively stable [117]. Cooking techniques also influence EVOO’s oxidative stability—pan-
frying leads to more degradation than deep-frying due to increased oxygen exposure, and
microwave cooking accelerates the breakdown of antioxidants [117,118]. Yet, some studies
reported that microwave cooking does not degrade OO; however, we disagree with these
conclusions, as the exposure time in these studies was insufficient, and the OO samples,
having minimal water content, would require a longer heating period to reach comparable
thermal conditions to regular foods [117,118]. When boiling, phenolic compounds migrate
into the water and degrade. Despite these changes, EVOO’s antioxidant profile helps
protect fatty acids and vitamins from oxidation better than other oils [117].

Thermal treatments further accelerate the degradation, with frying, in particular,
causing a sharp decline in hydroxytyrosol levels, with up to a 50% loss after just 10 min at
180 ◦C and less than 10% remaining after six frying cycles [111].

Cooking methods impact OO differently. Frying, especially repeated deep-frying,
leads to oxidation, hydrolysis, and polymerization, potentially degrading bioactive com-
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pounds, despite OO’s resistance to thermal oxidation when compared to other frying oils.
Boiling has a variable effect—while total phenolics remain stable at neutral pH, acidic
conditions and the presence of certain vegetables (rich in metals like iron and copper)
accelerate polyphenol loss through hydrolysis and leaching. To minimize degradation, OO
should be added toward the end of the cooking process. Microwave heating is particularly
damaging due to uncontrolled high temperatures, significantly degrading alpha-tocopherol
and other beneficial compounds [116].

From a nutritional standpoint, consuming fried foods should be limited to occasional
use due to the risk of oil absorption, which can increase calorie intake. Furthermore, when
oils are reheated, they may generate potentially toxic degradation products. Therefore, it is
crucial to use high-quality, stable frying oils and optimal frying conditions to ensure both
the safety and the sensory quality of fried foods [65].

The type of oil used for frying varies by region and culinary tradition. In Europe,
for instance, sunflower oil is more common in the east, OO in the Mediterranean, and
rapeseed oil in the north [65]. Oils rich in MUFAs, such as OO, are actually considered
more stable for frying due to their higher resistance to oxidation compared to oils with
>3% PUFA, like sunflower or soybean oil [65,116]. While SFAs provide greater oxidative
stability, they are less desirable nutritionally due to their links to cardiovascular diseases.
OO is recommended for frying because of its superior stability at high temperatures and its
beneficial fatty acid composition [65]. Studies performed during a 5-day-long process of oil
reheating at 190 ◦C showed that OO degraded the slowest: it took 33 h for OO, 17 h for
sunflower oil, and 4 h for linseed oil to reach the legal limit of Total Polar Compounds, and
at the same time, the process generated the least amount of aldehides for OO [65,119].

While high temperatures during deep-frying alter the fatty acid composition, leading
to increased saturated fatty acids and TFAs, EVOO remains more resistant to peroxidation
than polyunsaturated-rich oils, reducing the formation of harmful lipid oxidation products
(LOPs) [61].

Therefore, EVOO is considered a premium frying oil, offering both health benefits and
better stability during storage and frying [65].

During cooking, EVOO undergoes chemical transformations due to heat and oxygen
exposure, impacting both its major and minor components. Unlike other vegetable oils,
EVOO remains stable at high temperatures due to its fatty acid profile, rich in monounsatu-
rated fats and phenolic compounds. Although previously considered unsuitable for frying
due to its relatively low smoke point, recent studies show that smoke point is not a reliable
indicator of oil stability. EVOO outperforms other oils in resisting oxidation and producing
fewer harmful byproducts, making it one of the best options for cooking [117].

EVOO can be used as the fat base in ice cream, offering a healthier and palatable
alternative to traditional dairy fats [9]. A high polyphenol content enhances bitterness and
pungency, potentially reducing consumer tolerance, yet the interaction of small-molecule
polyphenols with milk proteins in food products like ice cream can influence the organolep-
tic properties, which appears to mask the bitterness [9]. Moreover, in vitro simulated
digestion revealed that these interactions facilitated polyphenol release, potentially increas-
ing antioxidant protection [9].

Cooking with EVOO usually results in beneficial interactions with food, enhancing
the stability and bioavailability of certain bioactive compounds. For example, phenolic
compounds migrate into foods like vegetables, improving their antioxidant content. The
use of EVOO in tomato-based dishes increases the extraction of beneficial compounds from
the tomatoes, enriching the final product. However, interactions between EVOO’s minor
compounds and food macromolecules like proteins can alter nutrient absorption. While
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EVOO’s health benefits are well-documented, further research is needed to understand the
new compounds formed during cooking and their impact on health [117].

10. Conclusions
An ever-growing body of research has consistently linked adherence to a Mediter-

ranean diet, rich in EVOO, with lowered mortality and increased longevity. To fully
understand the diet’s effects, it is necessary to further focus on the interplay between
dietary intake and fasting periods, which are common on the Mediterranean region, which
may synergistically influence metabolic health and disease risk [98,99,120,121].

The combination of intermittent fasting and EVOO intake may exert synergistic effects
on human health through complementary and intersecting mechanisms. Intermittent fast-
ing promotes metabolic flexibility, enhances insulin sensitivity, stimulates autophagy, and
reduces systemic inflammation. Concurrently, EVOO, rich in monounsaturated fatty acids
and bioactive polyphenols, contributes anti-inflammatory, antioxidant, and lipid-lowering
effects. When used together, these strategies may amplify each other’s impact by modulat-
ing shared cellular signaling pathways, including AMPK activation, NF-κB inhibition, and
improved mitochondrial function. This synergy may lead to more pronounced benefits
in the prevention and management of metabolic syndrome, cardiovascular disease, and
neurodegenerative disorders compared to either intervention alone.

Consumers represent the final link in the OO chain. Their ability to identify and select
high-quality EVOO and also use it properly is crucial for maximizing potential health
benefits. However, consumer choices could be influenced by price, biases, misconceptions,
or insufficient knowledge, which could lead to suboptimal selection of EVOO products.

These findings highlight the need for future strategies to be developed towards enhanc-
ing consumer education and promoting informed choices in order to maximize EVOO’s
nutritional and sensory benefits.
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AMPK AMP-activated protein kinase
AP-1 activator protein 1
BCE before current era
COX cyclooxygenase
DNA deoxyribonucleic acid
EFSA European Food Safety Authority
EU European Union
EVOO extra-virgin olive oil
FAAH fatty acid amide hydrolase
FDA Food and Drug Administration
HDL high-density lipoprotein
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iNOS inducible nitric oxide synthase
IOC International Olive Council
Keap1 Kelch-like ECH-associated protein 1
L-DOPA L-3,4-dihydroxyphenylalanine
LDL low-density lipoprotein
LOPs lipid oxidation products
LOX lipoxygenase
MAO monoamine oxidase
MD Mediterranean diet
mTOR mammalian target of rapamycin
MUFAs monounsaturated fatty acids
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells
Nrf2/ARE nuclear factor erythroid 2-related factor 2/antioxidant response element
NSAID nonsteroidal anti-inflammatory drug
OLC oleocanthal
OO olive oil
PUFAs polyunsaturated fatty acids
RNS reactive nitrogen species
ROS reactive oxygen species
SIRT sirtuins
SFAs saturated fatty acids
TFAs trans-fatty acids
VLDL very-low-density lipoprotein
VOO virgin olive oil
WHO World Health Organization

Appendix A
Methodology

This review was conducted as a narrative synthesis of the peer-reviewed literature
focused on the health effects of olive oil consumption, particularly in combination with
intermittent fasting and within the broader framework of the Mediterranean diet. The aim
was to integrate findings across clinical, preclinical, and in vitro research to explore the
interconnected roles of olive oil components in modulating oxidative stress, inflammation,
insulin resistance, and cognitive health.

To identify the relevant literature, comprehensive searches were carried out across
ScienceDirect, PubMed and Google Scholar. A combination of keywords and Boolean
operators was used to maximize sensitivity and relevance. Key terms included: olive oil,
extra-virgin olive oil, EVOO, polyphenols, fasting, intermittent fasting, Mediterranean
diet, oxidative stress, inflammation, insulin resistance, and cognitive function. In addition,
specific articles were retrieved directly via DOI lookups from bibliographies encountered
in primary and secondary sources.

Inclusion criteria encompassed human clinical trials, preclinical animal studies,
in vitro investigations, reviews and official reports or position statements from author-
itative bodies such as the WHO and the International Olive Council (IOC). To ensure
thematic relevance, only studies that directly examined the effects of olive oil and/or
fasting on metabolic, inflammatory, oxidative, or neurological endpoints were considered.
Exclusion criteria comprised non-original research (e.g., commentaries, news articles),
papers not isolating the effects of olive oil or fasting (e.g., multi-component interventions
without clear attribution) and publications not available in English. No restrictions were
applied based on study location or sample demographics.

A total of approximately 300 sources were initially retrieved, including journal articles,
book chapters, books, and official documents. After screening for relevance and method-
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ological quality, only 122 sources were selected and cited in the final manuscript. While
the majority of references are from the last decade, a limited number of older but seminal
works were also included to provide historical or mechanistic context.
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