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ABSTRACT

The dimerization initiation site (DIS) stem-loopwithin
the HIV-1 RNA genome is vital for the production of
infectious virions in T-cell lines but not in primary
cells. In comparison to peripheral blood mono-
nuclear cells (PBMCs), which can support the
replication of both wild type and HIV-1 DIS RNA
mutants, we have found that DIS RNAmutants are up
to 100 000-fold less infectious than wild-type HIV-1 in
T-cell lines. We have also found that the cell-type-
dependent replication of HIV-1 DIS RNA mutants is
largely producer cell-dependent, with mutants dis-
playing a greater defect in viral cDNA synthesis when
viruses were not derived from PBMCs. While many
examples exist of host–pathogen interplays that are
mediated via proteins, analogous examples which
rely on nucleic acid triggers are limited. Our
data provide evidence to illustrate that primary
T-lymphocytes rescue, in part, the replication of
HIV-1 DIS RNA mutants through mediating the
reverse transcription process in a cell-type-depen-
dent manner. Our data also suggest the presence of
a host cell factor that acts within the virus producer
cells. In addition to providing an example of an RNA-
mediated cell-type-dependent block to viral replica-
tion, our data also provides evidence which help to
resolve the dilemma of how HIV-1 genomes with
mismatched DIS sequences can recombine to gen-
erate chimeric viral RNA genomes.

INTRODUCTION

All retroviruses, including human immunodeficiency virus
type 1 (HIV-1), contain two copies of genomic RNA that
are noncovalently linked near their 50 end to form dimers
(1,2). The formation of a dimeric RNA genome is critical
for HIV-1 viral replication and HIV-1 genomic RNA

dimerization is believed to facilitate reverse transcription
(3,4), to increase the rate of genetic recombination (5–7)
and to contribute to overall genetic diversity (8,9).

Formation of HIV-1 genomic RNA dimers is initiated
by a region within the 50 untranslated region (50UTR) of
the HIV-1 RNA genome known as the dimer initiation site
(DIS) stem-loop (10–13). The HIV-1 50-UTR is one of the
most conserved parts of the HIV-1 RNA genome, and
contains extensive secondary and tertiary structures that
form function domains which regulate key steps in the
viral replication cycle (14). These domains include signals
for transcriptional transactivation (the TAR domain),
polyadenylation [the Poly(A) signal], reverse transcription
(the primer binding site; PBS), genomic RNA dimeriza-
tion (the DIS/SL1), splicing (the splice donor site; SD/
SL2), genomic RNA encapsidation (the �/SL3) and
translation (the gag start codon; AUG/SL4) (14). The
HIV-1 DIS stem-loop consists of a short 35 base sequence
that is located between the primer binding site and the
major splice donor site, which folds into a hairpin
structure with an exposed palindromic sequence flanked
by 50 and 30 purines within its loop (15). This highly
conserved palindrome sequence, which consists of either a
50-GCGCGC-30, 50-GTGCAC-30 or 50-GTGCGC-30 (16),
within the DIS stem-loop is important for the formation
of viral RNA dimers in vitro (10,11). According to the
proposed model for dimer formation, contact between two
DIS hairpins is initiated by base pairing of the self-
complementary palindrome sequences to form what is
known as the kissing-loop complex (17–19). In a structural
rearrangement activated by the HIV-1 nucleocapsid
protein, this initial kissing-loop complex is then trans-
formed into a more stable dimer with extended interstrand
base pairing known as the extended duplex (20–22). This
rearrangement is thought to be associated with viral
particle maturation, but experimental evidence illustrating
that virion genomic RNA undergoes the same reorganiza-
tion in vivo is currently lacking.

Studies using cell-free RNA binding assays have shown
that both the palindrome sequence and the stem-loop of
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the HIV-1 DIS are essential for the dimerization of short
sequences of viral RNA in vitro (10,11). However,
significant amounts of dimerized viral genomic RNA can
be found in full length mutant viruses that contain severe
disruptions of the DIS structure (23,24); although these
RNA dimers appear to have an abnormal conformation,
failing to form discrete dimers. These data imply the
involvement of other viral RNA sequences in the
dimerization process. In support of this, cell-free assays
with synthetic RNA molecules showed that antisense
nucleotide oligomers that bind to a separate stem-
loop structure in the HIV-1 50 UTR (SL3) and a down-
stream GA-rich RNA region were able to inhibit RNA
dimerization (25). In the context of full length HIV-1,
DIS stem-loop mutations lead to decreased genomic
RNA dimerization (24,26), genomic RNA packaging
(3,23,26–29) and virus infectivity (3,26,27,30).

Deletion of the complete DIS stem-loop has been shown
to strongly decrease HIV-1 infectious titres; however, we
have previously demonstrated that the requirement for the
DIS RNA stem in the replication of HIV-1 is cell-type
dependent (23), with HIV-1 mutants lacking the DIS stem
being replication competent in primary peripheral blood
mononuclear cells (PBMCs) but not in a SupT1T-cell line.
Long-term passage of DIS RNA mutants in PBMCs did
not restore the DIS stem or lead to the detection of
compensatory mutations (23). The ability of HIV-1 DIS
RNA mutants to replicate in PBMCs has been validated
independently using a primary isolate from a patient
sample (31). However, in contrast to these studies, it has
been reported that a �DIS HIV-1 mutant was not
replication competent in cord blood mononuclear cells
(CBMCs) (32). The biological distinctions between
PBMCs and CBMCs are currently unclear and it is
unknown whether these contrasting results are due to the
differential proteinomic profiles of these two distinct
primary cell populations.

While numerous protein-mediated cell-type-dependent
restrictions have been reported (33–35), examples of
RNA-mediated cell-type-dependent restriction are few
and far between. Recently, the role of RNA in cell biology
has been reassessed, revealing that RNA sequences
may have a direct role in regulating biological processes
(36–38). It is unclear whether the observed RNA-mediated
restriction of HIV-1 DIS mutants is limited to SupT1 cells
or if it is a widespread phenomenon across other T-cell
lines. It is also unknown what the RNA structural
requirements that govern this restriction process are or
at what stage of the viral replication cycle this cell-type-
dependent restriction acts.

The dimerization of HIV-1 genomic DNA is also thought
to play a role in the creation of intersubtype recombinant
viruses. It is believed that the formation and packaging of
heterologous genomic RNA dimers consisting of RNA
genomes from two different HIV-1 subtypes relies on the
ability of the two complementary viral DIS sequences
to mediate RNA dimerization (39). To date, three different
HIV-1 DIS sequences have been identified and different
HIV-1 subtypes utilize different DIS sequences (50-GCG
CGC-30 subtype B and D, 50-GTGCAC-30 subtype A, C, E,
F and G and 50-GTGCGC-30 subtype D and G) (16).

Mismatching DIS sequences are thought to reduce genomic
RNA dimerization (40) and a recent study has suggested
that mismatching DIS sequences between HIV-1 subtypes
is a major restriction in HIV-1 intersubtype recombination
(39). Yet, it is clear that intersubtype recombination
between viruses that contain mismatching DIS sequences
does occur in vivo (41,42), but the precise mechanisms that
mediate this biological process remain undetermined.
In this study, we have investigated the replication of

HIV-1 DIS RNA mutants in both primary T-lymphocytes
and laboratory adapted T-cell lines. Multiple round
replication assays revealed that all HIV-1 DIS mutants
tested were replication competent in PBMCs and mono-
cyte-derived macrophages (MDMs), with a maximum
reduction in infectivity of �10-fold compared to wild-type
(WT). Whereas, a panel of human T-cell lines displayed
a significantly reduced capacity to support the replication
of DIS defective HIV-1 with up to a 100 000-fold decrease
in infectivity compared to WT HIV-1. In a single round
luciferase reporter virus assay, the replication of HIV-1
DIS mutants was impaired at an early step in the viral life
cycle. Examination of HIV-1 reverse transcription pro-
ducts demonstrated that HIV-1 DIS mutants were
defective in the synthesis of viral cDNA in a producer
cell-type-dependent manner; with the synthesis of viral
cDNA significantly increased when input viruses were
produced from PBMCs compared to virus derived from
293T cells. Our data provide evidence to illustrate that
primary T-lymphocytes rescue, in part, the replication of
HIV-1 DIS RNA mutants through mediating the reverse
transcription process in a cell-type-dependent manner.
This mechanism may help to explain the dilemma of how
different HIV-1 subtypes with mismatched DIS sequences
(such as B and C) are able to recombine to yield HIV-1
intersubtype recombinants.

MATERIALS AND METHODS

Construction of plasmid DNAs

WT HIV-1 and a panel of five DIS RNA mutants
(NLACGCGT, NLGCGCGC, NLPalindrome neg, NLExt Stem and
NLExt Loop) were used in this study to examine the RNA
structural requirements, which govern the cell–type-
dependent replication of HIV-1 DIS RNA mutants. Two
types of mutants were used, those with deletions in the
DIS stem-loop, which were designed to abolish the stem-
loop structure (NLPalindrome neg, NLACGCGT, NLGCGCGC),
and those with insertions in the DIS stem-loop, which
aimed to maintain a stem-loop structure but alter
either the length of the stem (NLExt Stem) or the loop
(NLExt Loop) (Figure 1). The WT HIV-1 proviral DNA
NL4.3 was obtained from the NIH AIDS Reagents
Program from Dr Malcolm Martin (43). The numbering
of RNA sequences in Figure 1 is based on the RNA
genome of NL4.3. NLACGCGT and NLGCGCGC have been
previously published (23). NLGCGCGC, which contains the
WT DIS palindrome sequence, was generated by replace-
ment of the 35-nucleotide (nt) sequence encompassing the
DIS stem-loop (HIV-1 RNA residues 242–276) within the
NL4.3 proviral DNA with the 10 nt palindrome sequence
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(50 ACGCGCGCGT 30). Similarly, NLACGCGT was con-
structed by replacing the same 35 nt sequence (HIV-1
RNA residues 242–276) within the NL4.3 proviral DNA
with an arbitrarily chosen 6 nt palindrome sequence
(50 ACGCGT 30). NLPalindrome neg was created by deletion
of a 43 nt sequence encompassing the DIS stem-loop
(HIV-1 RNA residues 237–279). NLExt Stem and NLExt

Loop were constructed via the insertion of a 26 nt sequence
(50 CGCGGGGGGGACGCGCGCGTTTTTTT 30 and
50CGCGAAAAAAACGCGCGCGTCCCCCC 30, respec-
tively) into the BsshII site of NL4.3. All mutants were
constructed via site-directed mutagenesis using specific
PCR primers. DNA sequencing was performed to confirm
the presence of the desired mutations and the absence of
spontaneous mutations via PCR mutagenesis.
Macrophage tropic HIV-1 constructs were generated by

substitution of the EcoR1/BamHI fragment of the NL4.3-
based plasmids with the EcoR1/BamHI fragment from
pNL(AD8). The pNL(AD8) HIV-1 AD8 Macrophage-
Tropic R5 clone was obtained through the AIDS Research
and Reference Reagent Program, from Dr Eric O. Freed
(44). HIV-1 luciferase reporter virus constructs were used
to identify the stage at which the replication of the DIS
mutants was blocked. The HIV-1 luciferase reporter virus
constructs, which contain the firefly luciferase gene inserted
into the HIV-1 nef gene, were generated by substitution of
the Xho1/BamHI fragment of the NL4.3-based plasmids
with the Xho1/BamHI fragment from pNL4-3.Luc.R-E-.
The pNL4-3.Luc.R-E- clone was obtained through the
AIDS Research and Reference Reagent Program, from
Dr Nathaniel Landau (45,46). The HIV-1 luciferase
reporter virus constructs also contained a stop codon and

frameshift mutation in the second exon of the rev gene,
which was introduced via a 22 bp insertion (50 GATC
CAATAGACGCGTCTATGG 30) into the BamHI site of
the NL4.3 and NL(AD8)-based plasmids.

The vesicular stomatitis virus envelope glycoprotein
expression plasmid pHCMV-G was generously provided
by Dr Jane Burns (University of California, San Diego).
The pNLA1 and pNLA1(AD8) are HIV-1 Env and
accessory protein expression vectors (a kind gift from
Dr Damian Purcell, University of Melbourne) that express
all HIV-1 proteins with the exception of Gag and GagPol
under the HIV-1 LTR-control.

Virus production

Mutant and WT HIV-1 particles were produced either by
poly(ethylenimine) (PEI; Polysciences Inc., Warrington,
PA, USA) transfection of 293T cells or by infection of
phytohemagglutinin (PHA) stimulated PBMCs. 293T cells
were maintained in Dulbecco’s modified Eagle medium/
high modified (with 4500mg/l dextrose and 4mM
L-glutamine) (DMEM; SAFC Biosciences, Lenexa, KS,
USA), supplemented with 10% vol/vol heat-inactivated
cosmic calf serum (CCS; Hyclone, Tauranga, New
Zealand), 100U/ml of penicillin and 100mg/ml of strepto-
mycin (Invitrogen, Mount Waverley, Victoria, Australia).
VSV-G pseudotyped HIV-1 was produced by co-transfec-
tion of the NL4.3 and NL(AD8) based plasmids with
pHCMV-G at a 1 : 0.6 molar ratio. HIV-1 luciferase
reporter viruses were produced by co-transfection of the
envelope, nef and rev defective NL4.3 and NL(AD8)-
based luciferase reporter plasmids with pNLA1 or
pNLA1(AD8) at a 1:1 molar ratio, which provided the

Figure 1. Schematic representation of the WT and mutant DIS stem-loop sequences in the HIV-1 RNA genome. The numerical values are based on
the RNA nucleotide position of NL4.3. The deletion sequences are indicated as dotted lines. The bold font highlights the palindrome sequences
within the stem-loop.
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HIV-1 envelope, nef and rev proteins in trans.
Supernatants were collected 36 h posttransfection.

PBMCs were isolated from buffy packs (supplied by the
Red Cross Blood Bank, Melbourne) as described pre-
viously (23). PBMCs were then stimulated with PHA
(10 mg/ml; Remel, Lenexa, KS, USA) for 3 days and
maintained in RPMI 1640 medium (Invitrogen) supple-
mented with 10% vol/vol heat-inactivated CCS, 2mM
L-glutamine (Invitrogen), 50 mg/ml gentamycin (Pfizer,
Bentley, WA, Australia) and 10 units of human interleukin
2 (IL-2; Roche, Mannheim, Germany) per milliliter.
Equivalent amounts of VSV-G pseudotyped virus input,
as determined by a HIV-1 antigen (p24 CA) Micro ELISA
assay (Vironostika: Biomerieux, Boxtel, The Netherlands)
were used to infect PHA stimulated PBMCs for 2 h at
378C. Cells were then pelleted at 130g for 10min and
washed twice with PBS. Cell pellets were resuspended in
fresh media and cells were cultured in 6-well plates.
Supernatants were collected at 7 days postinfection.

Viral particles from the transfection or infection
supernatant were purified and concentrated by filtration
and ultracentrifugation through a 20% sucrose cushion
using an L-90 ultracentrifuge (SW 41 rotor; Beckman,
Fullerton, CA, USA) at 100 000g for 1 h at 48C. Virus
pellets were then resuspended and quantified using a HIV-
1 antigen (p24 CA) Micro ELISA assay.

Replication kinetics and TCID50

Freshly isolated PBMCs were either stimulated or used for
monocyte and PBL isolation. Monocytes and PBLs were
isolated by plastic adherence as previously described (47).
Monocytes were cultured in Iscoves modified Dulbecco’s
media (Invitrogen) supplemented with 10% vol/vol heat-
inactivated human serum (CELLect pooled human serum,
MP Biomedicals, Solon, OH, USA), 2mM L-glutamine
and 50 mg/ml gentamycin adherent to plastic. Monocytes
were differentiated into MDMs for 5–7 days before
infection. PBMCs and PBLs were stimulated with PHA
(10 mg/ml) for 3 days and maintained in RPMI 1640
medium supplemented with 10% vol/vol heat-inactivated
CCS, 2mM L-glutamine, 50 mg/ml gentamycin and 10 units
of IL-2 per milliliter. Human T-cell lines (H9, A3.01,
CEM-SS, CEM-T4 and SupT1) were maintained in RPMI
1640 medium supplemented with 10% vol/vol heat-
inactivated CCS, 2mM L-glutamine and 50 mg/ml
gentamycin.

Sample virus stocks with equivalent levels of RT
activity, as determined by a micro-RT assay (48), were
added to 1� 105 cells in 96-well tissue culture plates.
Eight 10-fold serial dilutions of each virus were tested
in triplicate. Supernatants were collected on days 3, 7, 10
and 14 postinfection (supernatants were also collected
at Day 21 for MDM infections) and subsequently
stored at –808C. Viral infectivity was measured by
monitoring the production of viral RT activity by using
a micro-RT assay (48). The infectivities of WT and mutant
viral particles were quantified by using a 50% tissue
culture infective dose (TCID50) method as previously
described (49).

Luciferase reporter virus assay

A single round luciferase reporter virus assay was used to
assess the impact of HIV-1 DIS RNA mutants on the
early stages of viral replication. Infectivity was tested on
virus stocks obtained from transfection of 293T cells.
Equivalent amounts of virus input, as determined by a
HIV-1 antigen (p24 CA) Micro ELISA assay were used to
infect 5� 105 cells in 48-well plates. The success of
infection was determined by the level of luciferase activity
in the cells, which was measured using a Luciferase Assay
System (Promega, Madison, WI, USA). Forty-eight hours
after infection, cells were harvested and lysed in luciferase
lysis buffer [cell culture lysis buffer (CCLR)] at �2� 104

cells/ml. Ten microliters of cell lysate was added to 50 ml
of substrate buffer and luciferase activity was read using
a FLUOstar optima microplate reader (BMG Labtech,
Offenburg, Germany).

Real-time PCR

Quantification of HIV-1 reverse transcription products
and standardization of cell numbers was performed using
real-time PCR. PBMCs or SupT1 cells were infected with
equivalent amounts of virus as determined by a HIV-1
antigen (p24 CA) Micro ELISA assay. Concentrated virus
stocks were treated with 50 U/ml of DNase (Roche) for
15min at 378C before infection to remove any contam-
inating plasmid DNA from the transfection procedure.
A heat-inactivated virus control (2 h at 568C) was used to
confirm the level of any residual plasmid DNA for each
sample. Twenty-four hours postinfection cells were
pelleted and lysed in PCR lysis buffer containing
1� PCR buffer (Roche) with 0.5% vol/vol Triton-X100,
0.5% vol/vol NP-40 and 75 mg/ml proteinase K (Roche).
Samples were incubated at 568C for 1 h before proteinase
K was inactivated at 958C for 10min, samples were then
stored at –208C. Real-time PCR was performed on an
iCycler (BioRad, Hercules, CA, USA). Each PCR reaction
contained 1� SYBR Green I Master mix (BioRad),
400 nM each primer and 2.5ml cell lysate in a 25 ml
reaction volume. The HIV-1 specific primers M661/M667
(50) were used to detect complete HIV cDNA. HIV-1
PCR conditions were an initial denaturation at 958C for
10min followed by 40 rounds of cycling at 958C for 15 s,
then 618C for 30 s. Cell numbers were standardized for the
human CCR5 gene using the primers LK46 (sense; 50-
GCTGTGTTTGCGTCTCTCCCAGGA-30) and LK47
(antisense; 50-CTCACAGCCCTGTGCCTCTTCTTC-30).
CCR5 PCR conditions were an initial denaturation at
958C for 10min followed by 45 rounds of cycling at 948C
for 20 s, 58.38C for 30 s and 728 for 30 s.

RESULTS

Primary T-lymphocytes and macrophages are unique in
their ability to rescue the replication of DIS-defective
HIV-1 RNAmutants

Previous work has shown that the DIS stem-loop is criti-
cal for HIV-1 replication in T-cell lines (3,24,26–28).
Subsequently, we have made a novel observation that
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although the WT HIV-1 DIS is required for HIV-1
replication in the T-cell line, SupT1, the DIS stem-loop
is dispensable for HIV-1 replication in PBMCs (23).
In order to characterize the RNA structural requirements,
which govern this cell-type-dependent replication of HIV-1
DIS mutants a panel of five HIV-1 RNA mutants were
used in this study (NLACGCGT, NLGCGCGC, NLPalindrome

neg, NLExt Stem and NLExt Loop) (Figure 1). Two types of
mutants were used, those with deletions in the DIS stem-
loop, which were designed to abolish the stem-loop
structure and either remove (NLPalindrome neg) or alter the
palindrome sequence (NLACGCGT, NLGCGCGC); and those
with insertions in the DIS stem-loop, which aimed to
maintain a stem-loop structure but alter either the length of
the stem (NLExt Stem) or the loop (NLExt Loop). Replication
kinetics of these HIV-1 DIS mutants were examined in
both primary cells and a number of T-cell lines. Mutant
and WT HIV-1 were generated by transfecting the
indicated proviral DNA into 293T cells. In order to
examine whether the observed RNA-mediated restriction
of HIV-1 DIS mutants is limited to SupT1 cells or if it
is a widespread phenomenon across other T-cell lines
parallel infections were carried out using a panel of T-cell
lines and PHA-stimulated PBMCs (Figure 2). The
differential capacities of primary T-lymphocytes and
SupT1 cells to support DIS RNA mutants resembles
the ability of these cell types to support the replication of
HIV-1 Vif mutants. The cell lines used in this study were
chosen to evaluate whether the requirement for
the DIS RNAmutants to replicate is Vif/APOBEC related.
The T-cell lines used included �Vif permissive cell
lines (CEM-SS and SupT1), nonpermissive cell lines

(CEM-T4, H9) and a T-cell line, which is semi-permissive
(A3.01) (33).

All HIV-1 DIS mutants were replication defective in
SupT1 cells (Figure 2F), whereas the HIV-1 DIS mutants
were all replication competent in PBMCs (Figure 2A),
which is consistent with our previously reported data
using the NLACGCGT and NLGCGCGC DIS mutants (23).
In contrast to the SupT1 cells, the other T-cell lines tested
showed differing capacities to support the replication of
DIS defective HIV-1 (Figure 2B–E). In comparison to
primary PBMCs, all T-cell types tested demonstrated a
reduced capacity to support the replication of DIS
defective HIV-1 (from high to low replication capacity:
A3.01, CEM-SS, CEM-T4, H9 and SupT1).

The TCID50 values of each virus were also measured to
asses the relative infectivity among WT HIV-1 (NL4.3)
and the DIS mutants in both PBMCs and the panel of
T-cell lines (Table 1). The relative difference in TCID50

value from the best performing virus (NL4.3) to the worst
performing virus (NLPalindrome neg) varied between the cell
types, ranging from an �10-fold difference in PBMCs to a
>100 000-fold difference in SupT1, H9 and CEM-T4 cells
(Table 1). The TCID50 values obtained for WT HIV-1
were consistent between the different T-cell types (<2-fold
difference; Table 1), whereas the TCID50 values obtained
for the worst performing virus (NLPalindrome neg) varied by
up to >5000-fold, demonstrating that the observed cell-
type-dependent replication is specific for the DIS defective
HIV-1 RNA mutants.

A consistent pattern in the ability of the different DIS
RNA mutants to replicate within each cell type was also
observed. Mutants that contained deletions in the DIS

Figure 2. PBMCs but not T-cell lines can support the replication of HIV-1 DIS RNA mutants. WT HIV-1 and five HIV-1 DIS mutants (NLACGCGT,
NLGCGCGC, NLPalindrome neg, NLExt Stem and NLExt Loop) were normalized for viral RT activity and used to infect PHA-stimulated freshly isolated
PBMC (A) and a number of T-cell lines (B–F). Supernatants were collected 3, 7, 10 and 14 days postinfection and RT activity in each sample was
measured. Results represent means and standard deviations of triplicate samples and are representative of six different PBMC donors and either four
or six sets of independent experiments for the T-cells lines.
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stem-loop showed the largest reduction in infectivity with
the most severely affected mutant containing the largest
deletion covering both the palindromic DIS sequence and
the stem-loop (NLPalindrome neg). The best performing of
the DIS mutants in all cell types were consistently the
NLExt Stem and NLExt Loop, which both contain the WT
palindrome sequence and represent the most subtle of the
mutations tested.

In addition to examining the replication of HIV-1 DIS
mutants in T-cell lines, the ability of our panel of HIV-1
DIS mutants to infect two natural target cells of HIV-1,
peripheral blood lymphocytes (PBLs) and MDMs was
also examined (Figure 3). The HIV-1 DIS mutants were
all replication competent in both PBLs (Figure 3A) and
MDMs (Figure 3B), with one of the mutants consistently
achieving TCID50 values similar to WT HIV-1 in both cell
types (NLExt Stem) (Table 2). The other DIS mutants
showed slightly reduced replication (�2- to 18-fold
reduction in TCID50 values) and slightly delayed replica-
tion for all the DIS mutants was observed in some donors
(Figure 3A). Although overall the TCID50 values for
MDMs were lower than those for the PBL infections, the
fold difference between the best performing virus (NL4.3)
to the worst performing virus (NLPalindrome neg) was the
same for both primary cell subtypes (�6-fold; Table 2).
Together these data show that, for equivalent input levels
of virus, HIV-1 DIS RNA mutants are replication
competent in a cell-type-dependent manner and that
primary T-lymphocytes and macrophages are unique in
their ability to rescue the replication of DIS-defective
HIV-1 RNA mutants.

DIS defective HIV-1 is blocked at an early step of HIV-1
replication in both laboratory T-cell lines and the natural
target cells of HIV-1

In order to identify whether the replication of HIV-1 DIS
mutants is blocked at early or late stages of the viral
replication cycle, single round luciferase reporter virus
constructs were used to infect both primary cells and the
T-cell line SupT1. Envelope, nef and rev defective
luciferase reporter virus constructs, which contain the
luciferase gene inserted into the HIV-1 nef coding region,
were produced by cotransfection with HIV-1 envelope
(either T- cell tropic or macrophage tropic), rev and nef
proteins supplemented in trans. In this system, the
luciferase reporter serves as a surrogate for the expression

of early proviral genes, with luciferase expression requir-
ing only completion of virus entry, reverse transcription,
nuclear translocation, proviral integration and transcrip-
tion of the integrated provirus.
HIV-1 luciferase reporter viruses were produced by

co-transfection of 293T cells and equivalent amounts of
input virus, as measured by HIV-1 p24 CA protein, were
used to carry out parallel infections of either, PBMCs and
SupT1 cells (Figure 4A), or PBLs and MDMs (Figure 4B).
All DIS mutants showed severely reduced luciferase
activity compared to WT HIV-1 (10–30%) in all cell
types tested demonstrating that the HIV-1 DIS mutants

Figure 3. PBLs and MDMs possess unique capacities to support the
replication of HIV-1 DIS RNA mutants. WT HIV-1 and five HIV-1
DIS mutants (NLACGCGT, NLGCGCGC, NLPalindrome neg, NLExt Stem and
NLExt Loop) were normalized for viral RT activity and used to infect
PHA-stimulated freshly isolated PBLs (A) or MDMs (B). Supernatants
were collected 3, 7, 10, 14 and 21 days postinfection and RT activity in
each sample was measured. Results represent means and standard
deviations of triplicate samples and are representative of four different
PBL donors and six different MDM donors.

Table 1. Virion infectivity (TCID50) of WT and DIS mutant HIV-1 in PBMCs and T-cell lines

Infectious particles/ml

PBMC A3.01 CEM-SS CEM-T4 H9 SupT1

NL4.3 3.16� 107 3.16� 107 3.16� 107 1.78� 107 3.16� 107 3.16� 107

NLACGCGT 1.78� 106 3.16� 106 1.78� 105 3.16� 103 3.16� 103 3.16� 102

NLGCGCGC 3.16� 106 3.16� 105 3.16� 105 3.16� 103 3.16� 103 3.16� 102

NLPalindrome neg 1.78� 106 1.78� 104 3.16� 103 3.16� 102 3.16� 102 3.16� 102

NLExt Stem 1.78� 107 3.16� 107 3.16� 105 3.16� 105 3.16� 105 3.16� 103

NLExt Loop 3.16� 106 1.78� 107 3.16� 106 1.78� 104 3.16� 104 5.62� 102

Results are representative of six different PBMC donors and either four or six sets of independent experiments for the T-cells lines.
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were much less efficient at completing the early steps of
viral replication. Surprisingly, the HIV-1 DIS mutants
showed significantly reduced luciferase activity in both
PBMCs and SupT1 cells, which does not directly reflect

the infectivity data generated using a multiple round
infection system, in which all HIV-1 DIS mutants were
replication competent in PBMCs but not in SupT1 cells
(Figure 2). Furthermore, the HIV-1 DIS mutant viruses
also showed a significantly reduced luciferase activity in
both PBLs and MDMs, which again does not reflect the
infectivity data generated using a multiple round infection
system (Figure 3). These data suggest that DIS defective
HIV-1 produced from 293T cells is blocked at an early
step in the viral replication cycle, at some point before the
expression of early proviral genes and protein production.

HIV-1 DIS mutants are defective in the synthesis of viral
cDNA in a producer cell-type-dependent manner

Interestingly, we have demonstrated that our panel of DIS
mutants display a cell-type-dependent ability to replicate
using a multiple round infection assay (Figure 2), whereas
using a single round reporter virus assay, all HIV-1 DIS
mutants show a severe and consistent defect in infectivity
in all cell types tested (Figure 4). One of the major
differences that might contribute to this disparity is the
identity of the virus producer cell. During multiple rounds
of viral replication, the target cells of infection also
become the virus producer cell from second round of
infection onwards, consequently, viruses derived from
293T cells might not readily recapture such defects in
single round infection assay. Therefore, whether the
identity of the virus producer cell affected the ability of
HIV-1 DIS mutant viruses to replicate was investigated.

Previous studies suggest that mutations in the HIV-1
DIS stem-loop lead to a defect in the early steps of viral
replication, with a specific impairment during the 2nd
template switch stage of reverse transcription (3,4),
leading to a reduction in the synthesis of the viral
cDNA. Results produced using a single round luciferase
reporter virus assay (Figure 4) demonstrate that the panel
of HIV-1 DIS mutants used in this study are unable to
complete the early stages of the viral replication cycle with
replication being blocked at some point before protein
production. In order to pinpoint the exact stage at which
the block to viral replication occurs, and to assess whether
the cell-type-dependent replication of our HIV-1 DIS
mutants represents a differing ability of the various cell
types to support the reverse transcription of DIS defective
HIV-1, real-time PCR analysis of HIV-1 reverse tran-
scription products was used.

As SupT1 cells and other T-cell lines are unable to
produce sufficient quantities of DIS mutant HIV-1 viruses
for analysis, WT and DIS mutant HIV-1 viruses were
produced by either transfection of 293T cells or infection
of PBMCs. 293T cells were used as a surrogate for virus
production in SupT1 cells. It is expected that if the virus
producer cell is the major determinant of this cell-type-
dependent replication of HIV-1 DIS-RNA mutants,
HIV-1 DIS mutants generated from primary cells will
have an enhanced capacity to synthesize viral cDNA than
HIV-1 DIS mutants produced from laboratory adapted
cells, such as 293T and SupT1 cells. Equivalent amounts
of virus, as measured by HIV-1 p24 CA protein, were used
to infect either SupT1 cells or PBMCs. Twenty-four hours

Figure 4. 293T derived HIV-1 DIS mutant viruses are unable to
establish effective infection in PBMCs and SupT1 cells using a single
round reporter virus system. WT HIV-1 and five HIV-1 DIS mutants
(NLACGCGT, NLGCGCGC, NLPalindrome neg, NLExt Stem and NLExt Loop)
containing the luciferase reporter gene were normalized for p24 capsid
protein content and used to infect PBMC and SupT1 cells (A) or PBL
and MDM (B). The level of luciferase activity was used as an indicator
of infectivity, which was reported as a percentage (mean�SE) of the
WT control.

Table 2. Virion infectivity (TCID50) of WT and DIS mutant HIV-1 in

PBLs and MDMs

Infectious particles/ml

PBL MDM

NL4.3 3.16� 107 1.78� 104

NLACGCGT 3.16� 107 3.16� 103

NLGCGCGC 1.78� 107 3.16� 103

NLPalindrome neg 5.62� 106 3.16� 103

NLExt Stem 3.16� 107 1.78� 104

NLExt Loop 3.16� 107 5.62� 103

Results are representative of four different PBL donors and six different
MDM donors.
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after infection cells were lysed and subjected to quantita-
tive real-time PCR amplification to detect HIV-1 reverse
transcription products. Full length viral DNA was
detected by PCR using M661/M667 (LTR/gag) primers
(50), which flank the PBS of the HIV-1 genome and
represent the last region of the minus strand of viral DNA
that is synthesized. Parallel infections using a heat
inactivated virus control (2 h at 568C) were carried out
for each virus to asses the level of any contaminating
plasmid DNA. Average background levels were <5% of
WT virus for all samples (Supplementary Figure S1).

Quantification of late reverse transcription products
(complete cDNA) in HIV-1 infected cells showed that all
293T cell derived HIV-1 DIS RNA mutants were impaired
in the production of viral DNA compared to WT HIV-1
(5–30%). This defect is found in both SupT1 cells and
PBMCs when the virus was derived from 293T cells
(Figure 5A and B). No significant difference in the levels
of reverse transcription between the different DIS mutants
was observed. In contrast, when virus derived from
PBMCs was used to infect SupT1 cells and PBMCs, an
increase in the amount of reverse transcription products
for was observed for all of the HIV-1 DIS mutants, except
NLPalindrome neg, in both cell types (Figure 5A and B).
Importantly, the differences in the levels of reverse
transcription between the different DIS mutants in
PBMCs mirror the variability in TCID50 values seen in
PBMCs (Table 1). In contrast to the other HIV-1 DIS
mutants tested, the ability of the NLPalindrome neg mutant
virus to complete reverse transcription was not producer
cell dependent. Consequently, the differences in infectivity
of the NLPalindrome neg mutant in primary cells versus T-
cells line cannot be explained by our reverse transcription
data alone. This observation indicates that the
NLPalindrome neg mutant suffers additional defects at
other stages in the viral life cycle.

In summary, our data show that HIV-1 DIS mutants
are defective in the synthesis of viral cDNA in a producer
cell-type-dependent manner, demonstrating that the abil-
ity of DIS defective HIV-1 to replicate is associated with
the identity of the virus producing cell, not the target cell.
These observations imply the presence of a cellular factor
within the virus producing cell, which can regulate the
ability of DIS defective HIV-1 to replicate.

DISCUSSION

In this study, we provide evidence that mutations in a
noncoding region of the HIV-1 RNA genome affect the
ability of the virus to synthesize viral cDNA in a cell-type-
dependent manner, illustrating the importance of virus–
host cell interplays via an RNA-trigger. Using a panel of
five DIS mutants, we have demonstrated that both the
DIS stem-loop structure and the presence of a palindromic
sequence are not required for viral replication in the
natural target cells of HIV-1 and that laboratory T-cell
lines display varying abilities to support the replication
of DIS defective HIV-1. We have also demonstrated that
this cell-type-dependent replication is determined by
the identity of the virus producing cell with primary

T-lymphocytes rescuing the replication of HIV-1 DIS
mutants by facilitating reverse transcription.
The dimerization of retroviral RNA genomes is a

conserved phenomenon that is critical for viral replication.
The process of HIV-1 RNA dimerization is thought to be
largely regulated by the DIS, which is found near the 50

end of the HIV-1 RNA genome. We have previously
observed that requirement of the HIV-1 DIS RNA
sequence in viral replication is cell-type dependent (23).
In this study, a panel of five DIS mutants were utilized to

Figure 5. Production of HIV-1 DIS RNA mutants from PBMCs
partially rescues defects in viral cDNA synthesis. WT and DIS mutant
HIV-1 viruses were produced either by transfection of 293T cells or
infection of PHA-stimulated freshly isolated PBMCs. Equivalent
amounts of DNase treated virus were used to infect either SupT1
cells (A) or PBMCs (B). Cells were lysed 24 h postinfection and HIV-1
cDNA was measured by real-time PCR. HIV-1 DNA copies were
normalized by CCR5. Results are reported as a percentage of the WT
control and represent means (�SE) of separate experiments.
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examine the mechanism and the RNA structural require-
ments of the cell-type-dependent replication of DIS
defective HIV-1. Infection of primary cells with these
mutants revealed that all DIS mutants were able to
replicate in both primary T-lymphocytes and MDMs,
demonstrating the both the DIS stem-loop and the
presence of a palindromic sequence are not required for
viral replication in the natural target cells of HIV-1. In
contrast, none of the DIS mutants tested were able to
replicate in the laboratory adapted T-cell line SupT1,
suggesting that the integrity of the entire native DIS stem-
loop structure is absolutely required for HIV-1 replication
in this T-cell line. Further analysis of these HIV-1 DIS
mutants in additional T-cell lines demonstrated that
primary cells are unique in their abilities to rescue the
replication of HIV-1 DIS RNA mutants.
Infections using single round HIV-1 reporter virus

constructs containing the same panel of DIS mutants
demonstrated that these mutants were impaired at an
early stage of the viral replication cycle, which is
consistent with previously published work showing that
mutations in the HIV-1 DIS can affect the reverse
transcription process (4,51). Interestingly, despite being
able to demonstrate a cell type dependent replication of
HIV-1 DIS mutants in multiple round infectivity assays
(Figures 2 and 3), this cell-type-dependent response was
not evident in the single round HIV-1 reporter virus assay
when viruses were derived from laboratory adapted cell
lines, in which both PBMCs and SupT1 were used as
target cells for analysis (Figure 4). These data suggest that
it is not the virus target cell which determines the ability to
support the replication of DIS defective HIV-1. Real-time
PCR for HIV-1 reverse transcription products demon-
strated that viral cDNA levels were significantly increased
when the infection input virus was derived from PBMCs
compared to virus derived from 293T cells with the
exception of the NLPalindrome neg mutant (Figure 5). This
observation may indicate that the NLPalindrome neg mutant
suffers additional defects at other stages in the viral life
cycle, which may not be present in the other DIS mutants
tested. Thus, the cell-type-dependent replication of HIV-1
DIS mutants is largely, but not exclusively, associated
with the identity of virus producer cell and not the target
cell.
Our observations of the producer cell-dependent

replication of HIV-1 DIS mutants imply the presence of
a cellular factor (or group of cellular factors) within the
virus producing cell, which can compensate for the
requirement of a fully functional dimerization initiation
site during subsequent rounds of HIV-1 replication. This
observation that different cell types display varying DIS
stem-loop mutant ‘permissiveness’ is reminiscent of the
well-described interplay between HIV-1 Vif and the host
cell APOBEC proteins (52–55), which is another cell-type-
dependent phenomenon and is only evident during
infection with a mutated HIV-1 virus. While our observa-
tions show some similarities to the effects of Vif/APOBEC
on HIV-1 biology, we did not find any correlation between
�Vif permissiveness and DIS mutant permissiveness.
Another difference between our observations and some

of the better known host-cell restriction is that previous

studies provide examples of protein-mediated viral restric-
tions (33–35), while our work describes an unusual RNA-
triggered viral replication defect. Our observed effect
could be mediated either through direct packaging of a
host cells factor(s) into HIV-1 virions or via an indirect
effect during viral assembly. Although our observation
suggests the presence of a cellular factor, our data cannot
distinguish between the existence of a positive factor
present in primary cells or a negative factor present in
laboratory adapted T-cell lines. The discrepancy in the
propagation of DIS stem-loop mutants in primary cells
compared with T-cell lines could suggest the loss of
specific host-cell factors during T-cell transformation, a
process which is known to alter cellular gene expression
(56). Such cellular factors might facilitate reverse tran-
scription through direct or indirect interaction with the
DIS stem during virion uncoating, perhaps by participat-
ing in template switching or recombination during the
synthesis of viral cDNA. Heterokaryon formation has
been classically used to examine cell-type-dependent
responses to viral infection, but unfortunately, hetero-
karyon cell fusion experiments between primary
T-lymphocytes and laboratory adapted T-cell lines have
proven to be impossible due to the poor fusion potential
of primary cells. A systematic array analysis of the mRNA
profiles amongst the DIS RNA mutant permissive and
nonpermissive cells, following by corresponding gene
knock-down or knock-in experiments will be needed to
identify this host-cell factor(s).

Our observed RNA-mediated cell-type-dependent repli-
cation defect of HIV-1 is unusual, but not impossible.
Recent investigations have enriched our appreciation of
the role of RNA in the regulation of a number of
biological processes. It is worth noting that only 2% of the
human genome is devoted to the synthesis of proteins (57)
and the vast majority of RNA transcripts are nonprotein
coding (noncoding) sequences without ascribed functions
(58,59). There is growing evidence to suggest that these
noncoding RNAs can function as ‘signaling’ molecules,
which serve to regulate many cellular functions (60,61). As
viruses have evolved to mimic host-cell machinery to
support their own propagation, it is not surprising that
HIV-1 has also evolved to utilize a noncoding RNA-
mediated strategy. In support of this view, it has recently
been shown that well-known members of the noncoding
RNA family, the microRNAs (miRNAs), are manipulated
by HIV-1 during viral replication (62).

In addition to describing an unusual RNA mediated
cell-type-dependent block to HIV-1 replication, our data
also help to reconcile the discrepancy between the impor-
tance of the DIS in genomic RNA selection (39,40) and
the existence of recombinant HIV-1 forms that originate
from HIV-1 subtypes containing mismatched DIS
sequences (63–65). Previous work has suggested that
mismatching DIS sequences are a severe restriction to
the formation of heterodimeric RNA genomes and
intersubtype recombination (39). However, HIV-1 gen-
omes with mismatching DIS sequences must be capable of
forming dimers, being packaged and facilitating reverse
transcription as intersubtype recombinant viruses, such
as HIV-1 B/C recombinants, exist in nature (63–65).
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Our observations demonstrate that the natural target cells
of HIV-1 are able to facilitate the reverse transcription
process in the absence of a fully functional DIS, suggesting
the DIS is not the only determining factor for recombina-
tion and helps to explain the occurrence of HIV-1
intersubtype recombinant forms between subtypes with
mismatching DIS sequences in vivo. Our study illustrates
the ability of primary T-lymphocytes and macrophages to
rescue the replication of HIV-1 RNA mutants and implies
a role for host-cell factors in maintaining the viral
diversity of HIV-1. Delineating the mechanistic contribu-
tions of these host-cell factors in HIV-1 biology will
ultimately reduce the capacity of mutant HIV-1 to be
rescued in vivo and decrease the opportunity for these
viruses to pass on beneficial mutations to progeny virions
through retroviral recombination.

SUPPLEMENTARY DATA

Supplementary data are available at NAR Online.

ACKNOWLEDGEMENTS

Kate Jones is a recipient of a Monash University Faculty
International Postgraduate Scholarship. Johnson Mak is a
recipient of a Pfizer Foundation Fellowship. This work is
supported in part by grants from The National Health and
Medical Research Council (NHMRC). Funding to pay
the Open Access publication charges for this article was
provided by NHMRC project grants and the Burnet
Institute.

Conflict of interest statement. None declared.

REFERENCES

1. Paillart,J.C., Shehu-Xhilaga,M., Marquet,R. and Mak,J. (2004)
Dimerization of retroviral RNA genomes: an inseparable pair. Nat.
Rev. Microbiol., 2, 461–472.

2. Paillart,J.C., Marquet,R., Skripkin,E., Ehresmann,C. and
Ehresmann,B. (1996) Dimerization of retroviral genomic RNAs:
structural and functional implications. Biochimie, 78, 639–653.

3. Paillart,J.C., Berthoux,L., Ottmann,M., Darlix,J.L., Marquet,R.,
Ehresmann,B. and Ehresmann,C. (1996) A dual role of the putative
RNA dimerization initiation site of human immunodeficiency virus
type 1 in genomic RNA packaging and proviral DNA synthesis.
J. Virol., 70, 8348–8354.

4. Shen,N., Jette,L., Liang,C., Wainberg,M.A. and Laughrea,M.
(2000) Impact of human immunodeficiency virus type 1 RNA
dimerization on viral infectivity and of stem-loop B on RNA
dimerization and reverse transcription and dissociation of dimer-
ization from packaging. J. Virol., 74, 5729–5735.

5. Moore,M.D., Fu,W., Nikolaitchik,O., Chen,J., Ptak,R.G. and
Hu,W.S. (2007) Dimer initiation signal of human immunodeficiency
virus type 1: its role in partner selection during RNA copackaging
and its effects on recombination. J. Virol., 81, 4002–4011.

6. Balakrishnan,M., Fay,P.J. and Bambara,R.A. (2001) The kissing
hairpin sequence promotes recombination within the HIV-I 5’
leader region. J. Biol. Chem., 276, 36482–36492.

7. Temin,H.M. (1991) Sex and recombination in retroviruses. Trends
Genet., 7, 71–74.

8. Moutouh,L., Corbeil,J. and Richman,D.D. (1996) Recombination
leads to the rapid emergence of HIV-1 dually resistant mutants
under selective drug pressure. Proc. Natl Acad. Sci. USA, 93,
6106–6111.

9. Yusa,K., Kavlick,M.F., Kosalaraksa,P. and Mitsuya,H. (1997)
HIV-1 acquires resistance to two classes of antiviral drugs through
homologous recombination. Antiviral Res., 36, 179–189.

10. Laughrea,M. and Jette,L. (1994) A 19-nucleotide sequence upstream
of the 5’ major splice donor is part of the dimerization domain of
human immunodeficiency virus 1 genomic RNA. Biochemistry, 33,
13464–13474.

11. Skripkin,E., Paillart,J.C., Marquet,R., Ehresmann,B. and
Ehresmann,C. (1994) Identification of the primary site of the human
immunodeficiency virus type 1 RNA dimerization in vitro.
Proc. Natl Acad. Sci. USA, 91, 4945–4949.

12. Paillart,J.C., Marquet,R., Skripkin,E., Ehresmann,B. and
Ehresmann,C. (1994) Mutational analysis of the bipartite dimer
linkage structure of human immunodeficiency virus type 1 genomic
RNA. J. Biol. Chem., 269, 27486–27493.

13. Muriaux,D., Girard,P.M., Bonnet-Mathoniere,B. and Paoletti,J.
(1995) Dimerization of HIV-1Lai RNA at low ionic strength. An
autocomplementary sequence in the 50 leader region is evidenced by
an antisense oligonucleotide. J. Biol. Chem., 270, 8209–8216.

14. Berkhout,B. (1996) Structure and function of the human
immunodeficiency virus leader RNA. Prog. Nucleic Acid Res Mol.
Biol., 54, 1–34.

15. Harrison,G.P. and Lever,A.M. (1992) The human immunodefi-
ciency virus type 1 packaging signal and major splice donor region
have a conserved stable secondary structure. J. Virol., 66,
4144–4153.

16. St Louis,D.C., Gotte,D., Sanders-Buell,E., Ritchey,D.W.,
Salminen,M.O., Carr,J.K. and McCutchan,F.E. (1998) Infectious
molecular clones with the nonhomologous dimer initiation
sequences found in different subtypes of human immunodeficiency
virus type 1 can recombine and initiate a spreading infection
in vitro. J. Virol., 72, 3991–3998.

17. Muriaux,D., Fosse,P. and Paoletti,J. (1996) A kissing complex
together with a stable dimer is involved in the HIV-1Lai RNA
dimerization process in vitro. Biochemistry, 35, 5075–5082.

18. Laughrea,M. and Jette,L. (1996) Kissing-loop model of HIV-1
genome dimerization: HIV-1 RNAs can assume alternative
dimeric forms, and all sequences upstream or downstream of
hairpin 248-271 are dispensable for dimer formation. Biochemistry,
35, 1589–1598.

19. Paillart,J.C., Skripkin,E., Ehresmann,B., Ehresmann,C. and
Marquet,R. (1996) A loop-loop ‘‘kissing’’ complex is the essential
part of the dimer linkage of genomic HIV-1 RNA. Proc. Natl Acad.
Sci. USA, 93, 5572–5577.

20. Ennifar,E., Yusupov,M., Walter,P., Marquet,R., Ehresmann,B.,
Ehresmann,C. and Dumas,P. (1999) The crystal structure of the
dimerization initiation site of genomic HIV-1 RNA reveals an
extended duplex with two adenine bulges. Structure, 7, 1439–1449.

21. Takahashi,K., Baba,S., Koyanagi,Y., Yamamoto,N., Takaku,H.
and Kawai,G. (2001) Two basic regions of NCp7 are sufficient for
conformational conversion of HIV-1 dimerization initiation site
from kissing-loop dimer to extended-duplex dimer. J. Biol. Chem.,
276, 31274–31278.

22. Takahashi,K., Baba,S., Hayashi,Y., Koyanagi,Y., Yamamoto,N.,
Takaku,H. and Kawai,G. (2000) NMR analysis of intra- and inter-
molecular stems in the dimerization initiation site of the HIV-1
genome. J. Biochem., 127, 681–686.

23. Hill,M.K., Shehu-Xhilaga,M., Campbell,S.M., Poumbourios,P.,
Crowe,S.M. and Mak,J. (2003) The dimer initiation sequence stem-
loop of human immunodeficiency virus type 1 is dispensable for
viral replication in peripheral blood mononuclear cells. J. Virol., 77,
8329–8335.

24. Clever,J.L. and Parslow,T.G. (1997) Mutant human immunodefi-
ciency virus type 1 genomes with defects in RNA dimerization or
encapsidation. J. Virol., 71, 3407–3414.

25. Zhang,S., Hara,H., Kaji,H. and Kaji,A. (1997) Inhibition of HIV
type 1 RNA dimerization by antisense DNA corresponding to the
17-nucleotide sequence downstream from the splice donor site of
HIV type 1 RNA. AIDS Res. Hum. Retroviruses, 13, 865–873.

26. Laughrea,M., Jette,L., Mak,J., Kleiman,L., Liang,C. and
Wainberg,M.A. (1997) Mutations in the kissing-loop hairpin of
human immunodeficiency virus type 1 reduce viral infectivity as
well as genomic RNA packaging and dimerization. J. Virol., 71,
3397–3406.

Nucleic Acids Research, 2008, Vol. 36, No. 5 1587



27. Berkhout,B. and van Wamel,J.L. (1996) Role of the DIS hairpin in
replication of human immunodeficiency virus type 1. J. Virol., 70,
6723–6732.

28. Haddrick,M., Lear,A.L., Cann,A.J. and Heaphy,S. (1996) Evidence
that a kissing loop structure facilitates genomic RNA dimerisation
in HIV-1. J. Mol. Biol., 259, 58–68.

29. Houzet,L., Paillart,J.C., Smagulova,F., Maurel,S., Morichaud,Z.,
Marquet,R. and Mougel,M. (2007) HIV controls the selective
packaging of genomic, spliced viral and cellular RNAs into virions
through different mechanisms. Nucleic Acids Res., 35, 2695–2704.

30. Sakuragi,J., Sakuragi,S. and Shioda,T. (2007) Minimal region
sufficient for genome dimerization in the human immunodeficiency
virus type 1 virion and its potential roles in the early stages of viral
replication. J. Virol., 81, 7985–7992.

31. Huthoff,H., Das,A.T., Vink,M., Klaver,B., Zorgdrager,F.,
Cornelissen,M. and Berkhout,B. (2004) A human immunodeficiency
virus type 1-infected individual with low viral load harbors a virus
variant that exhibits an in vitro RNA dimerization defect. J. Virol.,
78, 4907–4913.

32. Russell,R.S., Roldan,A., Detorio,M., Hu,J., Wainberg,M.A. and
Liang,C. (2003) Effects of a single amino acid substitution within
the p2 region of human immunodeficiency virus type 1 on
packaging of spliced viral RNA. J. Virol., 77, 12986–12995.

33. Sheehy,A.M., Gaddis,N.C., Choi,J.D. and Malim,M.H. (2002)
Isolation of a human gene that inhibits HIV-1 infection and is
suppressed by the viral Vif protein. Nature, 418, 646–650.

34. Stremlau,M., Owens,C.M., Perron,M.J., Kiessling,M., Autissier,P.
and Sodroski,J. (2004) The cytoplasmic body component
TRIM5alpha restricts HIV-1 infection in Old World monkeys.
Nature, 427, 848–853.

35. Varthakavi,V., Smith,R.M., Bour,S.P., Strebel,K. and Spearman,P.
(2003) Viral protein U counteracts a human host cell restriction that
inhibits HIV-1 particle production. Proc. Natl Acad. Sci., 100,
15154–15159.

36. Mironov,A.S., Gusarov,I., Rafikov,R., Lopez,L.E., Shatalin,K.,
Kreneva,R.A., Perumov,D.A. and Nudler,E. (2002) Sensing small
molecules by nascent RNA: a mechanism to control transcription in
bacteria. Cell, 111, 747–756.

37. Cheah,M.T., Wachter,A., Sudarsan,N. and Breaker,R.R. (2007)
Control of alternative RNA splicing and gene expression by
eukaryotic riboswitches. Nature, 447, 497–500.

38. Winkler,W., Nahvi,A. and Breaker,R.R. (2002) Thiamine deriva-
tives bind messenger RNAs directly to regulate bacterial gene
expression. Nature, 419, 952–956.

39. Chin,M.P., Rhodes,T.D., Chen,J., Fu,W. and Hu,W.S. (2005)
Identification of a major restriction in HIV-1 intersubtype
recombination. Proc. Natl Acad. Sci. USA, 102, 9002–9007.

40. Andersen,E.S., Jeeninga,R.E., Damgaard,C.K., Berkhout,B. and
Kjems,J. (2003) Dimerization and template switching in the
50 untranslated region between various subtypes of human
immunodeficiency virus type 1. J. Virol., 77, 3020–3030.

41. Peeters,M., Liegeois,F., Torimiro,N., Bourgeois,A., Mpoudi,E.,
Vergne,L., Saman,E., Delaporte,E. and Saragosti,S. (1999)
Characterization of a highly replicative intergroup M/O human
immunodeficiency virus type 1 recombinant isolated from a
Cameroonian patient. J. Virol., 73, 7368–7375.

42. Takehisa,J., Zekeng,L., Ido,E., Yamaguchi-Kabata,Y.,
Mboudjeka,I., Harada,Y., Miura,T., Kaptu,L. and Hayami,M.
(1999) Human immunodeficiency virus type 1 intergroup (M/O)
recombination in Cameroon. J. Virol., 73, 6810–6820.

43. Adachi,A., Gendelman,H.E., Koenig,S., Folks,T., Willey,R.,
Rabson,A. and Martin,M.A. (1986) Production of acquired
immunodeficiency syndrome-associated retrovirus in human and
nonhuman cells transfected with an infectious molecular clone.
J. Virol., 59, 284–291.

44. Freed,E.O., Englund,G. and Martin,M.A. (1995) Role of the basic
domain of human immunodeficiency virus type 1 matrix in
macrophage infection. J. Virol., 69, 3949–3954.

45. He,J., Choe,S., Walker,R., Di Marzio,P., Morgan,D.O. and
Landau,N.R. (1995) Human immunodeficiency virus type 1 viral
protein R (Vpr) arrests cells in the G2 phase of the cell cycle by
inhibiting p34cdc2 activity. J. Virol., 69, 6705–6711.

46. Connor,R.I., Chen,B.K., Choe,S. and Landau,N.R. (1995)
Vpr is required for efficient replication of human immuno-
deficiency virus type-1 in mononuclear phagocytes. Virology, 206,
935–944.

47. Sonza,S., Maerz,A., Deacon,N., Meanger,J., Mills,J. and Crowe,S.
(1996) Human immunodeficiency virus type 1 replication is blocked
prior to reverse transcription and integration in freshly isolated
peripheral blood monocytes. J. Virol., 70, 3863–3869.

48. Goff,S., Traktman,P. and Baltimore,D. (1981) Isolation and
properties of Moloney murine leukemia virus mutants: use of a
rapid assay for release of virion reverse transcriptase. J. Virol., 38,
239–248.

49. Reed,L.J. and Muench,H. (1938) A simple method of estimating 50
per cent end-points. Am. J. Hyg., 27, 493–497.

50. Zack,J.A., Arrigo,S.J., Weitsman,S.R., Go,A.S., Haislip,A. and
Chen,I.S. (1990) HIV-1 entry into quiescent primary lymphocytes:
molecular analysis reveals a labile, latent viral structure. Cell, 61,
213–222.

51. Berkhout,B., Das,A.T. and van Wamel,J.L. (1998) The native
structure of the human immunodeficiency virus type 1 RNA
genome is required for the first strand transfer of reverse
transcription. Virology, 249, 211–218.

52. Harris,R.S. and Liddament,M.T. (2004) Retroviral restriction by
APOBEC proteins. Nat. Rev. Immunol., 4, 868–877.

53. Franca,R., Spadari,S. and Maga,G. (2006) APOBEC deaminases as
cellular antiviral factors: a novel natural host defense mechanism.
Med. Sci. Monit., 12, RA92–RA98.

54. Takaori-Kondo,A. (2006) APOBEC family proteins: novel antiviral
innate immunity. Int. J. Hematol., 83, 213–216.

55. Jones,K.L. and Mak,J. (2005) Innate immunity and intracellular
trafficking: insights for novel anti-HIV-1 therapeutics. Curr.
Pharmacogenom., 3, 97–117.

56. Harhaj,E.W., Good,L., Xiao,G. and Sun,S.C. (1999) Gene
expression profiles in HTLV-I-immortalized T cells: deregulated
expression of genes involved in apoptosis regulation. Oncogene, 18,
1341–1349.

57. Lander,E.S., Linton,L.M., Birren,B., Nusbaum,C., Zody,M.C.,
Baldwin,J., Devon,K., Dewar,K., Doyle,M. et al. (2001) Initial
sequencing and analysis of the human genome. Nature, 409,
860–921.

58. Cheng,J., Kapranov,P., Drenkow,J., Dike,S., Brubaker,S., Patel,S.,
Long,J., Stern,D., Tammana,H. et al. (2005) Transcriptional maps
of 10 human chromosomes at 5-nucleotide resolution. Science, 308,
1149–1154.

59. Kapranov,P., Cawley,S.E., Drenkow,J., Bekiranov,S.,
Strausberg,R.L., Fodor,S.P. and Gingeras,T.R. (2002) Large-scale
transcriptional activity in chromosomes 21 and 22. Science, 296,
916–919.

60. Mattick,J.S. and Makunin,I.V. (2006) Non-coding RNA. Hum.
Mol. Genet., 15(Suppl 1), R17–R29.

61. Eddy,S.R. (2001) Non-coding RNA genes and the modern RNA
world. Nat. Rev. Genet., 2, 919–929.

62. Triboulet,R., Mari,B., Lin,Y.L., Chable-Bessia,C., Bennasser,Y.,
Lebrigand,K., Cardinaud,B., Maurin,T., Barbry,P. et al. (2007)
Suppression of microRNA-silencing pathway by HIV-1 during virus
replication. Science, 315, 1579–1582.

63. Gao,F., Robertson,D.L., Morrison,S.G., Hui,H., Craig,S.,
Decker,J., Fultz,P.N., Girard,M., Shaw,G.M. et al. (1996) The
heterosexual human immunodeficiency virus type 1 epidemic in
Thailand is caused by an intersubtype (A/E) recombinant of African
origin. J. Virol., 70, 7013–7029.

64. Piyasirisilp,S., McCutchan,F.E., Carr,J.K., Sanders-Buell,E.,
Liu,W., Chen,J., Wagner,R., Wolf,H., Shao,Y. et al. (2000)
A recent outbreak of human immunodeficiency virus type 1
infection in southern China was initiated by two highly homo-
geneous, geographically separated strains, circulating recombinant
form AE and a novel BC recombinant. J. Virol., 74, 11286–11295.

65. Motomura,K., Kusagawa,S., Kato,K., Nohtomi,K., Lwin,H.H.,
Tun,K.M., Thwe,M., Oo,K.Y., Lwin,S. et al. (2000) Emergence of
new forms of human immunodeficiency virus type 1 intersubtype
recombinants in central Myanmar. AIDS Res. Hum. Retroviruses,
16, 1831–1843.

1588 Nucleic Acids Research, 2008, Vol. 36, No. 5


