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Methylation subgroup and molecular heterogeneity is a hallmark of
glioblastoma: implications for biopsy targeting, classification and therapy
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Background: Intratumoral heterogeneity at the cellular and molecular level is a hallmark of glioblastoma (GB) that
contributes to treatment resistance and poor clinical outcome. Little is known regarding epigenetic heterogeneity
and intratumoral phylogeny and their implication for molecular classification and targeted therapies.
Patients and methods: Multiple tissue biopsies (238 in total) were sampled from 56 newly-diagnosed, treatment-naive
GB patients from a prospective in-house cohort and publicly available data and profiled for DNA methylation using the
Illumina MethylationEPIC array. Methylation-based classification using the glioma classifier developed by Ceccarelli
et al. and estimation of the MGMT promoter methylation status via the MGMT-STP27 model were carried out. In
addition, copy number variations (CNVs) and phylogeny were analyzed.
Results: Almost half of the patients (22/56, 39%) harbored tumors composed of heterogeneous methylation subtypes.
We found two predominant subtype combinations: classic-/mesenchymal-like, and mesenchymal-/pilocytic
astrocytoma-like. Nine patients (16%) had tumors composed of subvolumes with and without MGMT promoter
methylation, whereas 20 patients (36%) were homogeneously methylated, and 27 patients (48%) were
homogeneously unmethylated. CNV analysis revealed high variations in many genes, including CDKN2A/B, EGFR, and
PTEN. Phylogenetic analysis correspondingly showed a general pattern of CDKN2A/B loss and gain of EGFR, PDGFRA,
and CDK4 during early stages of tumor development.
Conclusions: (Epi)genetic intratumoral heterogeneity is a hallmark of GB, both at DNA methylation and CNV level. This
intratumoral heterogeneity is of utmost importance for molecular classification as well as for defining therapeutic
targets in this disease, as single biopsies might underestimate the true molecular diversity in a tumor.
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INTRODUCTION

Glioblastoma [GB, World Health Organization (WHO) grade
4] is a rapidly progressing malignant, primary brain tumor
and is the most common such tumor in adults.1,2 GB is
characterized by extensive heterogeneity at the cellular
level, which is also exemplified in its old name ‘glioblastoma
multiforme’. This heterogeneity is reflected in genomic ab-
errations and transcriptomic expression, which adds to the
complexity of treating GB, as therapeutic response to
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radiation and chemotherapy varies between tumor
clones.3,4 Despite extensive research efforts motivated in
part by high-throughput discoveries of promising molecular
targets in GB, to date almost all phase II or phase III trials of
molecularly targeted therapies in GB failed to improve
survival.5

Molecular markers were integrated for the first time in
the WHO 2016 classification and were refined in the
recently published 2021 WHO classification of central ner-
vous system tumors. Genetic alterations most frequently
observed in IDH wild-type GB are TERT promoter mutations,
MGMT promoter methylation, and mutations in the PTEN
gene.6,7 Copy number variation (CNV) is another key
mechanism through which tumors undergo functional
adaptation, frequently through loss of tumor suppressor
genes or amplification of oncogenes. Besides classifications
based on individual molecular markers, computational
methods to leverage the rich information contained in (epi)
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genome-wide data have increasingly been used for
molecularly-driven stratification of tumors. As one such
example, Ceccarelli et al.7 report the discovery of six
methylation subgroups in adult gliomas (WHO grades 2-4).

Many of these large studies which have greatly advanced
our understanding of the molecular basis of GB rely, how-
ever, on a single biopsy per patient, thereby neglecting the
possibly significant contribution of molecular tumor het-
erogeneity to GB biology. Importantly, the presence of
multiple diverse subclones in a single tumor is very likely a
major reason for treatment failure.8 In order to successfully
translate molecularly targeted therapies into clinical use, a
better understanding of intratumoral heterogeneity and its
implications for molecular classification and therapy of GB is
necessary.

In GB, two studies have reported conflicting results on
the presence of intratumoral methylation heterogeneity:
whereas Wenger et al.10 detected intratumoral heteroge-
neity in 5/12 tumors, Verburg et al.9 reported a stable
intratumoral methylation profile, in particular when
adjusting for tumor purity.

To shed light on this matter, we investigated intratumoral
DNA methylation heterogeneity in detail. Multiple tissue
biopsies from 56 newly diagnosed, treatment-naive GB
patients were sampled both from a prospective in-house
cohort as well as publicly available data from Wenger
et al.10 and profiled for DNA methylation and CNV, forming
the largest investigated cohort to date. We show that GB
exhibits extensive methylation heterogeneity, ranging from
global epigenome-wide level in terms of molecular classi-
fication down to single molecular targets. Based on our
assessment of intratumoral phylogeny, we propose a
theoretical evolutionary trajectory featuring distinct CNVs
during early and late stages of disease progression.

MATERIAL AND METHODS

This study was approved by our local ethics committee
(284/16S). All local patients were part of a prospective GB
cohort from February 2018 to March 2021 and gave written
informed consent.
Cohort and sampling

Multiple spatially separated biopsies (range 2-9, median ¼
4) were collected from 45 primary adult, newly diagnosed,
treatment-naive GB patients. Biopsies from clearly sepa-
rated targets as determined by the neurosurgeon were
collected. All patients were classified as GB IDH wild type
according to the 2016 WHO classification.11 The tumor
content of the samples was assessed by a neuropathologist
and only samples with tumor content >70% were used for
further analysis. Genome-wide methylation profiling using
the Infinium MethylationEPIC BeadChip platform (Illumina,
San Diego, CA) was carried out according to the manufac-
turer’s specifications. Additionally, a similar dataset con-
sisting of 35 GB samples obtained from 11 patients
published by Wenger et al.10 (GEO accession GSE116298)
was included in the data analysis. In total, 238 samples from
2 https://doi.org/10.1016/j.esmoop.2022.100566
56 patients were available for computational analysis. For
all patients with available follow-up data, overall survival
was noted.

Methylation array processing

All subsequent analyses were carried out using R (version
4.0.5) and Bioconductor (version 3.12).12,13 Raw Illumina
MethylationEPIC array data were preprocessed with the
‘minfi’ package.14 Beta values were calculated in accordance
with the reference implementation by the manufacturer.15

Based on the total probe intensity, a detection P value
was calculated for each CpG site that quantifies a confi-
dence measure for the reported beta value. The total signal
intensity for each CpG site was compared with the back-
ground signal intensity using negative control probes on the
array. Samples with an average detection P value >0.01
were excluded from further analysis. In order to allow
comparison of methylation levels obtained from probes of
different types, subset-quantile within-array normalization
(SWAN) was applied to the dataset.16

Methylation data analysis

For genomic annotations like CpG islands and genes, the
UCSC genome browser and genome assembly GRCh37
(hg19) were used. EPIC array probes were mapped to the
genome using the mapToGenome function in minfi.

Tumor purity of the tissue biopsies was assessed using
the InfiniumPurify package.17 To increase confidence in
these estimates, additional purity predictions obtained from
the RFpurify package18 were compared, resulting in a strong
correlation between the two (Pearson’s r ¼ 0.923;
Supplementary Figure S1, available at https://doi.org/10.
1016/j.esmoop.2022.100566).

CNV analysis was carried out via the conumee package.19

Dr Martin Sill from the German Cancer Research Center
(personal communication) provided a reference cohort
consisting of 50 healthy male and 50 healthy female CNV
profiles. To correct for different tumor purities, the resulting
log2-ratios that quantify the copy number of a given
genomic segment were scaled by the inverse of tumor
purity, assuming a linear relationship between log2-ratio
magnitude and purity.

For global tumor classification/subtyping of GB samples,
the glioma classifier based on the work by Ceccarelli et al.7

as implemented in the TCGAbiolinks package was used.15

Possible classifications were mesenchymal-like, classic-like,
pilocytic astrocytoma-like, G-CIMP-high, G-CIMP-low, and
codel as explained in detail in the original publication.

Methylation status of the MGMT promoter was predicted
using the MGMT-STP27 model with the default probability
cut-off of 0.358. As recommended by the authors, non-
normalized methylation values were used as input for this
task.20

t-Distributed stochastic neighbor embedding (t-SNE) was
carried out to transform high-dimensional data into a lower-
dimensional space for clustering and visual representation
using the Rtsne package.21
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In order to investigate evolutionary trajectories and
branching patterns across different tumor samples, an
adapted version of the TuMult algorithm was used to
analyze CNV profiles inferred from the methylation data.22

In brief, the TuMult algorithm computes a phylogeny from
microarray CNV data for multiple samples from the same
patient. The input data for this algorithm are copy number
values at n locations in the genome for k samples. Based on
these CNV profiles, TuMult divides each chromosome into m
segments of similar CNV status. The input data are reduced
from [n k] continuous data points to [m k] integer values,
where m << n. On this reduced dataset, TuMult fits a tree
topology that reconstructs the tumor lineage. Iteratively,
the two nodes that are most similar to each other are
joined and their common precursor is inferred from the
CNV events in common, building a tree from leaves to root.
For this analysis, TuMult was modified such that it can be
applied to CNV profiles generated from methylation data.
RESULTS

Patient cohort

In total, 56 patients with a treatment-naive, newly diag-
nosed GB according to the 2016 WHO classification were
included in this study. Of these, 31 (55%) were male and 25
female (45%). Mean age of the in-house cohort was 68.2
years (standard deviation 12.6 years). All patients were
diagnosed with an IDH wild-type GB. Spatially separated
biopsies (range 2-9, median ¼ 4) were stereotactically ac-
quired immediately before tumor resection.
Heterogeneous tumor class predictions and global
heterogeneity

Of all 238 samples, 127 samples (53%) were classified as
mesenchymal-like, 93 (39%) as classic-like, and 18 (8%) as PA-
like. Importantly, 22 patients (39%) harbored multiple glioma
subtypes within a single tumor, displaying a strong intra-
tumoral heterogeneity (Figure 1A). Classification heteroge-
neity was predominantly observed with respect to two
subtype combinations: classic-/mesenchymal-like, and
mesenchymal-/PA-like. Patient sfb14 was the only one
assigned all three subtypes associated with IDH wild-type GB.
The intratumoral heterogeneity was also reflected in a t-SNE
representation generated from the same 1300 probes dataset
evaluated by the Ceccarelli classifier (Figure 1B). Whereas
mostly for homogenous samples, a close clustering of samples
from the same patient was observed, subtype heterogeneous
samples tended to cluster distantly to the remaining samples
of the same patient. To account for differing tumor purities
potentially confounding subtype prediction, the influence of
purity on classification probabilities was evaluated, showing
no apparent correlation between classifier confidence purity
estimate (Supplementary Figure S2, available at https://doi.
org/10.1016/j.esmoop.2022.100566).

To investigate the influence of methylation class hetero-
geneity on prognosis, we compared median overall survival
for patients who harbored multiple methylation subtypes
Volume 7 - Issue 5 - 2022
(n ¼ 20; ‘heterogeneous’) with that of patients who were
subtype-homogeneous (n ¼ 14). Median overall survival for
subtype-heterogeneous patients was shorter than for
subtype-homogeneous patients {293 days [95% confidence
interval (CI) 214 days-infinite] versus 477 days (95% CI 176-
1145 days)}, although this was not statistically significant
(P ¼ 0.51, log-rank test and Supplementary Figure S3,
available at https://doi.org/10.1016/j.esmoop.2022.100566).

Intratumor MGMT promoter methylation heterogeneity

Of all 56 patients, 20 (36%) carried a homogeneously
methylated MGMT promoter and 27 patients (48%) were
unmethylated in all their samples. Nine patients (16%),
however, contained both methylated and unmethylated
biopsy specimens (Figure 2). MGMT promoter methylation
heterogeneity was particularly apparent in patient sfb19,
for whom three samples were classified as methylated and
two as unmethylated. All other MGMT-heterogeneous pa-
tients exhibited different classifications in just one single
sample. A high classifier confidence for heterogeneous
MGMT methylation was observed for patient sfb41. Sample
sfb41_1 was assigned a methylation probability of 0.08,
whereas for biopsy sfb41_3 a probability of 0.87 was
computed.

Observed CNVs

As expected in GB, large-scale genomic instability in terms of
CNV was observed. Most prominent were chromosome 7
gains, and chromosome 9p and 10 losses (Figure 3A). Median
log2-ratios were averaged for each chromosome arm across
all samples, with chromosomes 10p and 10q exhibiting mean
losses of �0.33 and �0.34, respectively, and chromosomes
7p and 7q showing average gains of þ0.22 and þ0.2,
respectively. Also very aberrant were chromosomes 9p, 13q,
14q, and 22, with mean log2-ratios of �0.15, �0.15, �0.09,
and�0.10, respectively. The largest variance of copy number
values across samples was observed for chromosomes 10,
13q, 9p, 14q, 22q, and 7.

Next, discrete CNV events were assigned using a threshold
of �0.5 for gains/losses and assessed on a gene level
(Figure 3B), focusing on genes prominently involved in gli-
oma biology and/or therapeutic targets. The most frequently
observed event was loss of CDKN2A/B genes (n ¼ 177).
Other prominent events include loss of TET1 (n ¼ 69), PTEN
(n ¼ 61), MGMT (n ¼ 38), and RB1 (n ¼ 27). Copy number
gains were commonly observed in EGFR (n ¼ 102), PDGFRA
(n ¼ 43), CDK4 (n ¼ 43),MET (n ¼ 27), andMDM4 (n ¼ 26).
Chromosomes 7 and 10, in particular, contain many genes
associated with GB (e.g., EGFR, CDK6, MET, PTEN).

Intratumoral copy number heterogeneity

To assess intratumoral heterogeneity of CNV events,
patient-wise standard deviations (SD) of the purity-
corrected median log2-ratio in chromosomes and selected
genes were calculated. CDKN2A/B loss was the most
prominent and the most variant gene-level CNV among the
genes investigated. In 26 patients, it was the CNV with the
https://doi.org/10.1016/j.esmoop.2022.100566 3
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Figure 1. Methylation heterogeneity on an epigenome-wide level.
For each patient and biopsy, the respective classification from Ceccarelli et al.7 is displayed and subtype-heterogeneous patients are labeled in blue (A). t-Distributed
stochastic neighbor embedding clustering of biopsies reveals how samples from patients with heterogeneous methylation labels tend to disperse, highlighting their
heterogeneity (B).
PA, pilocytic astrocytoma.
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highest standard deviation and was the most intratumorally
heterogeneous gene-level CNV (mean SD ¼ 0.4). Second in
terms of standard deviation was the EGFR gene, with an
average intratumor mean SD ¼ 0.19, followed by PDGFRA
(mean SD ¼ 0.14), PTEN (mean SD ¼ 0.14), and MDM4
(mean SD ¼ 0.14) (Figure 4A).

Next, copy number gain and loss events were classified as
common (in all samples for a given patient), shared (more
than once in a patient), and unique (in only one sample for
4 https://doi.org/10.1016/j.esmoop.2022.100566
a given patient). Figure 4B illustrates how many of these
events were detected at each location (on chromosome and
gene level, respectively). From the detected gene-level CNV,
on average, 34% were classified as common, 35% as shared,
and 31% as unique. In some patients, none of the observed
events were classified as common, whereas in other pa-
tients all events were common. Among those gene-level
CNVs were PDGFRA gain, EGFR gain, CDKN2A/B deletion,
and CDK4 gain. The largest proportion of common events
Volume 7 - Issue 5 - 2022
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Figure 2. Heterogeneity of MGMT promoter methylation. In 9/56 patients, areas with and without MGMT promoter methylation co-exist.

Figure 3. Overview of copy number status for all biopsies on segment-wise (A) and gene-wise (B) level, showing ‘typical’ glioblastoma profiles such as (A)D7/L10
or (B) gain of EGFR and loss of CDKN2A/B, but also relevant variability.

J. Gempt et al. ESMO Open

Volume 7 - Issue 5 - 2022 https://doi.org/10.1016/j.esmoop.2022.100566 5

https://doi.org/10.1016/j.esmoop.2022.100566
https://doi.org/10.1016/j.esmoop.2022.100566


Figure 4. Individual CNV plots per sample for selected genes (A). In (B), genes were grouped as common (in all samples for a given patient), shared (more than
once in a patient), and unique (in only one sample for a given patient).
CNV, copy number variation.
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compared with shared and unique events was found in the
EGFR gene. CDKN2A/B deletion also tended to occur ho-
mogeneously (common in 28 patients), but showed
6 https://doi.org/10.1016/j.esmoop.2022.100566
heterogeneity in 16 patients and was a unique event in only
4 patients. CDK4 gain was observed as common in eight and
shared in three patients, respectively, and PDGFRA gain was
Volume 7 - Issue 5 - 2022
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Figure 5. Exemplary phylogenetic tree for patient sfb31.
Here, EGFR gain and CDKN2A/B loss are precursor alterations occurring near the root, followed by a branching out of the tree.

J. Gempt et al. ESMO Open
common in five, shared in six, and unique in two cases.
Copy number aberrations frequently classified as unique
involved genes MET (8/14), TET1 (12/31), PTEN (9/25), and
NF2 (4/5).
Evolutionary trajectory via phylogenetic trees

To investigate the evolution of intratumoral heterogeneity,
phylogenetic trees were generated with a modified version
Volume 7 - Issue 5 - 2022
of the TuMult algorithm for all patients with three or more
samples (n ¼ 59). An example of such an evolutionary tree,
generated for patient sfb31, is shown in Figure 5. Eleven
patients were assigned a strictly linear evolutionary
trajectory.

Most prominent was CDKN2A/B deletion as the first event
(31/48). In the remaining 17 patients exhibiting CDKN2A/B
loss, this event was always observed in very early stages of
the phylogeny. In addition, EGFR amplification is among
https://doi.org/10.1016/j.esmoop.2022.100566 7
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those events occurring at early stages of tumor develop-
ment. Of all 27 patients exhibiting EGFR gain, this event
appeared at the root of tumor diversification in 22 cases.
PDGFRA gain also occurred early during tumorigenesis in
8/13 cases. CDK4 gain was also frequently observed as an
initial event (9/11). PTEN loss and MET gain, however, were
found to occur during the middle and late stages of tumor
evolution. TET1 loss, MGMT loss, and MDM4 gain were
placed heterogeneously in the phylogenies.

In summary, evolutionary trajectory of GB as inferred by
phylogenetic analysis could be described as follows:
CDKN2A/B loss and gain of EGFR, PDGFRA, and CDK4 genes
occurred in the early stages of tumor development. This
was accompanied by chromosome 7 gain and chromosome
10 loss. At later phases of disease progression, subclone
populations developed individual variations involving loss of
TET1, PTEN, and MGMT genes as well as MDM4 and MET
gain.
DISCUSSION

Our study revealed extensive intratumoral heterogeneity on
methylation and copy number levels, affecting both mo-
lecular classification of tumors and therapeutically relevant
molecular markers. In addition, reconstruction of intra-
tumoral evolution revealed a clear pattern of CDKN2A/B
loss and gain of EGFR, PDGFRA, and CDK4 during early
stages of tumor development. With increasing insights into
the biology of gliomas, stemming largely from high-
throughput studies, molecular-based classifications of gli-
omas have been proposed.23-25 Importantly, by explicitly
incorporating the molecular basis of tumors, such classifi-
cations promise an improved prognostication of tumors and
identification of potential therapeutic targets. Individual
studies have indeed identified molecular subgroups with
benefit from a specific therapy, such as patients with a
proneural GB potentially having improved survival with the
addition of bevacizumab to temozolomide.26 This enthu-
siasm has not been met with success in targeted phase II
and III trials, however, where targeted therapies, such as
EGFR inhibition, failed to improve the survival of patients.
Our study contributes to an emerging picture4 of intra-
tumoral heterogeneity as a main challenge to a successful
implementation of targeted therapies in clinical routine. We
observe methylation subgroup heterogeneity in almost half
of the patients (40%). This is corroborated by a two-
dimensional t-SNE embedding of methylation data
(Figure 1B). Although many samples of a patient tend to
form clusters, this analysis also demonstrated a clear spatial
shift of samples away from the other samples of the
respective patient. In view of reports attributing differential
effects of therapies on different molecular subtypes, this
finding clearly highlights the importance of considering
intratumoral heterogeneity for treatment decisions. Further,
we observed a relevantly longer median overall survival for
subtype-homogeneous patients (477 versus 293 days,
Supplementary Figure S3, available at https://doi.org/10.
1016/j.esmoop.2022.100566). Although this difference
8 https://doi.org/10.1016/j.esmoop.2022.100566
was not statistically significant (likely due to sample size),
this matches another recent report on the influence of
intratumoral heterogeneity on outcome27 and underlines
the importance of future studies in this direction.

Predicting the MGMT promoter methylation status
revealed a heterogeneous methylation status in nine pa-
tients. Intratumoral MGMT methylation heterogeneity was
previously documented,8 and could be confirmed by us.
Given the importance of MGMT promoter methylation for
therapy stratification,28 this is another clear indication of
the role of intratumoral heterogeneity for therapy resis-
tance in GB. Besides methylation, we also report major
heterogeneity in copy number events. We found genome-
wide chromosomal instability affecting chromosomes 7,
9p, 10, 13, 14, and 15. The observed frequencies of genetic
CNVs accurately coincide with previous reported studies.5

EPHA3 overexpression, which is investigated as a target
for novel therapies, was not reflected in CNV status as it was
never significantly amplified and in some cases was reduced
in copy number. We also report a high intratumoral vari-
ability of CDKN2A/B loss. In view of the role of CDKN2A/B
loss for prognostication29 and classification,1,30 this again
cautions against a potential sampling bias with (false-
negative) assessment of CDKN2A/B status in neuropatho-
logical routine assessment of gliomas.

Lastly, we investigated intratumoral evolutionary trajec-
tories from copy number data. We were able to reconstruct
a general pattern of CDKN2A/B loss and gain of EGFR,
PDGFRA, and CDK4 during early stages of tumor develop-
ment, followed by observation of individual variation in
TET1, PTEN, and MGMT genes in later phases of disease
progression. This is partially in line with other findings,
which also identified EGFR and CDKN2A/B as tumor-
initiating events.31 In contrast to that report, we identi-
fied PDGFRA gain as another early event in patient-wise
tumor phylogenies. ‘RTK I PDGFRA’, a methylation sub-
group defined by Sturm et al.23 is indeed characterized by
PDGFRA amplification, supporting our result of PDGFRA
gain as an early (and thus common) event in intratumoral
evolution. Nonetheless, future, large-scale studies will be
necessary to provide further insight. It remains to be
investigated if the evolutionary trajectory constructed
through CNV-based phylogenetic trees is also represented
in the spatial positions of the tissue biopsies and if it is
consistent with the local dynamics of tumor growth.

A recently published study by Verburg et al.9 investigated
the methylation landscape of 16 adult patients with diffuse
gliomas. In contrast to our results, they find that methylation
subtypes are conserved in space and much of the heteroge-
neity seen can be explained by differences in tumor purity.
We investigated the relationship between methylation class
probability and tumor purity and found no correlation
(Supplementary Figure S2, available at https://doi.org/10.
1016/j.esmoop.2022.100566; Pearson’s r ¼ �0.039).
Further, we also found methylation class heterogeneity be-
tween samples from the same patient when both samples
had high (>60%) tumor cell content, clearly indicating that
even when considering purity as a potential confounder,
Volume 7 - Issue 5 - 2022
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intratumoral heterogeneity is a defining trait of a GB. Along
this line, in the purity-corrected CNV data we also observed
evident signs of heterogeneity.

Classifiers evaluating genome-wide molecular data like
DNA methylation that use machine learning algorithms
have shown promising results and are currently being
tested in clinical settings.32,33 One problem of this glioma
subtyping is widespread heterogeneity, as demonstrated
here. Each tissue biopsy can only capture tumor properties
at that single point in space and time in a complex and
dynamical system of evolving subclone populations. As
microarray- and sequencing-based genotyping technologies
become cheaper, algorithmic tumor classification from
multiple tissue samples might present a feasible way of
making routine analysis cost and time effective while
explicitly incorporating heterogeneity in this assessment,
making a comprehensive diagnosis more accessible.

Another potential way forward lies in advanced,
computational assessment of magnetic resonance imag-
ing.34 Radiomics is a rapidly advancing field, linking the
imaging phenotype to the underlying genotype. Previous
studies have, for example, demonstrated how assessment
of perfusion imaging can predict IDH status and the activity
of angiogenic pathways in gliomas.35 Given its ‘bird’s eye
view’ of the entire tumor, imaging and advanced image
analysis provide a fascinating opportunity to better char-
acterize and unravel intratumoral heterogeneity, as well as
its development over time.
Study limitations

This work benefited from a reasonably large study cohort
(56 patients, 238 samples) compared with similar studies
investigating GB intratumor methylation heterogeneity.31

There are, however, some limitations. First of all, no
distinction between 5-methylcytosine (5mC) and 5-
hydroxymethylcytosine (5hmC) was made. Although the
role of 5hmC in the genome is receiving increasing atten-
tion, particularly in the context of cerebral tissue,36

methods involving standard bisulfite treatment are inca-
pable of differentiating between the two. It remains to be
investigated if patterns and dynamics of 5hmC can be
distinguished from 5mC profiles in the GB methylome. In
addition, the predefined selection of CpG sites on the EPIC
array should be kept in mind, as it queries only w850 000
of the overall 30 million CpG dinucleotides in the human
genome. As such, the effect of open-sea non-gene-related
DNA methylation might be underrepresented. Since most of
the probes found to be differentially methylated within
tumors were located in open-sea regions, their role remains
to be investigated. Approaches to ‘bridge this gap’, however,
are being developed.37

The range of biopsies varies from two to nine per patient
and was dictated by size and resectability of tumors.
Therefore, it is possible that our study even underestimates
the true extent of intratumoral heterogeneity (for example
missing subtype heterogeneity in patients with only two
samples).
Volume 7 - Issue 5 - 2022
Furthermore, part of the observed intratumor hetero-
geneity might be related to differing concentrations of tu-
mor cells in the samples. Through manual assessment by a
neuropathologist, however, a minimum tumor content of
70% for each sample was ensured, which somewhat re-
duces the possible variability of sample-wise tumor cell
concentration.

The process of identifying CNV events using absolute
thresholds on conumee log2-ratios causes a loss of infor-
mation and disregards the complex nature of the measure-
ment process that is affected by differing concentrations of
tumor cells and subclone populations in each sample, thus
many CNV events that are actually present in the data are
ignored.

Conclusion

GB exhibits extensive heterogeneity at both the DNA
methylation and copy number levels, affecting molecular
classification of tumors as well as therapeutic targets. The
observed heterogeneity within tumors is therefore of
utmost clinical importance, such that multiple tumor bi-
opsies may be mandatory in future to effectively charac-
terize this disease. Phylogenetic analysis of tumors revealed
patterns of intratumoral evolution, with a general pattern
of CDKN2A/B loss and gain of EGFR, PDGFRA, and CDK4
during early stages of tumor development.
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