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Abstract: Psittacine birds are commonly kept as companion birds and the maintenance of these birds
in captivity may represent a zoonotic risk and contribute to the propagation of multidrug-resistant
and β-lactamase extended-spectrum (ESBLs)-producing pathogens. This study aimed to identify
and characterize strains of the Klebsiella pneumoniae complex isolated from diseased psittacine birds,
determining virulence and resistance profiles. K. pneumoniae strains were isolated from 16 birds
(16/46). All strains carried more than three virulence genes, with a high frequency of fimH and kpn
(93.75%), uge (87.52%), and irp-2 (81.25%) genes. The antimicrobial susceptibility revealed that 3/16
strains were ESBL producers. Genomic analysis revealed that CTX-M-15-positive strains belonged to
sequence types (STs) ST15, ST147, and ST307, characterized as international clones associated with
outbreaks of healthcare-associated infections (HAIs) worldwide.

Keywords: psittacine birds; virulence; ESBLS; antimicrobial resistance; zoonotic pathogens

1. Introduction

Members of the Klebsiella pneumoniae complex are adapted to survive in environments
and have a broad ecological range, including wastewater, human, and domestic animals.
The greatest concern about K. pneumoniae is associated with the potential to amplify and
spread clinically important antimicrobial resistance genes (AMR) [1]. K. pneumoniae is
highlighted as an opportunistic pathogen that causes urinary tract infection, pneumonia,
wound infections, hemorrhagic colitis, and sepsis [2]. Symptomatic and asymptomatic
individuals can function as a reservoir of an agent, after colonization of the nasopharyn-
geal and gastrointestinal tract, and represent a risk of transmission of multidrug-resistant
strains [1]. Specifically, some international clones of Klebsiella pneumoniae have become a
global public health issue due to virulence and/or multidrug-resistant profiles [1]. In this
regard, the most common resistant lineages of K. pneumoniae have been associated with
the production of extended-spectrum beta-lactamase (most CTX-M-15 variants) and/or
KPC-type carbapenemases, being categorized as critical priority pathogens by WHO
(2020) [3]. On the other hand, although clones belonging to clonal group CC58 have
been predominant in healthcare-associated infections (HAIs) worldwide, novel STs have
emerged as high-risk clones, such as ST15, ST147, and ST307, which are associated with
high human mortality [4–6].
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Since most surveillance studies focus on the impact of human nosocomial infections,
the pandemic clones of K. pneumoniae have been reported in companion animals, such
as dogs, and cats [1,7–9]. Chen et al. (2021) evaluated the dynamics of transmission
of K. pneumoniae between dogs and their owners. The authors showed a clonal diverse
population of K. pneumoniae in the gastrointestinal tracts of healthy humans, but some
dominant clones were present in pets that shared the same house, including mammals and
reptile pets [10].

The role of the microbial community of wild birds on the trafficking of AMR genes in
one health approach remains unknown [7–9]. Free-living psittacine birds are colonized by
Gram-positive bacteria, but they acquire the Gram-negative microbiota during captivity
in conservation and rescue centers. There they can spread resistant pathogens from stool.
Silva et al. (2021) reported the presence of KPC-producing E. coli in Psittaciformes rescued
from trafficking in Brazil. The authors highlighted the risks associated with reintroduction
or domestic breeding of these birds [11]. In a previous study, we reported the importance
of virulent strains of K. pneumoniae isolated from parrots and passerines seized from illegal
wildlife trade, which carried plasmid-mediated quinolone resistance, SHV-1, SHV-11, and
blaTEM-1 genes [9].

In this study, we report the occurrence and characterization of international clones
of CTX-M-15-positive K. pneumoniae causing respiratory diseases in companion parrots,
highlighting the zoonotic and anthropozoonotic potential of this critical priority pathogen,
within a One Health perspective.

2. Materials and Methods
2.1. Animals and Bacterial Strains

This study investigated 16 strains of K. pneumoniae isolated from psittacine birds in São
Paulo, Brazil (Ethics Committee of São Paulo University, CEUA 5174111215 and SISBIO:
46561-2). K. pneumoniae strains were isolated from clinical samples from 46 companion
parrots presenting respiratory symptoms (sinusitis and pneumonia). Clinical signs were
nasal discharge, edema periocular, caseous in the nostril, and dyspnea. Samples of organs,
secretion, and excretions were collected with sterile swabs and forwarded to the Avian
Medicine Laboratory, School of Veterinary Medicine and Animal Science, University of São
Paulo, Brazil. The species of psittacine assessed included Amazona aestiva (n = 30), Amazona
amazonica (n = 3), Amazona xanthops (n = 1), Anodorhynchus hyacinthinus (n = 3), Psephotus
haematonotus (n = 1), Agapornis spp. (n = 1), Psittacara leucophthalmus (n = 2), and Nymphicus
hollandicus (n = 5).

The swabs were incubated in brain heart infusion broth (Difco™) at 37 ◦C for 18 h and
cultured on MacConkey agar (Difco™) at 37 ◦C for 24 h. Selected colonies were subjected
to species identification by MALDI-TOF MS (Matrix-Assisted Laser Desorption/Ionization
Time-of-Flight Mass Spectrometry) [12].

2.2. Antimicrobial Susceptibility Tests

The antimicrobial resistance was determined by disk diffusion [13] for nalidixic acid,
enrofloxacin, levofloxacin, amikacin, gentamicin, tobramycin, amoxicillin-clavulanic acid,
cefotaxime, cefoxitin, chloramphenicol, sulphonamides, sulfamethoxazole-trimethoprim,
tetracycline, and imipenem. Escherichia coli ATCC25922 was used as a control. The ESBL
production was screened by the double-disc synergy test (DDST) [13]. Minimal inhibitory
concentrations (MICs) to cefotaxime, cefepime, ceftazidime, and ceftiofur were assessed by
agar dilution method on Mueller Hinton agar plates, as recommended by the Clinical and
Laboratory Standards Institute [13].

2.3. Virulence and Genotypic Profile of Klebsiella pneumoniae Strains

The virulence profile was investigated by PCR for screening of K. pneumoniae virulence
genes iroN, irp-2, rmpA, magA, kfu, uge, kpn, mrkD, fimH, cc258, allS, K1 and K2 capsular
polysaccharides [9].
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The genotypic profile was performed by single-enzyme amplified fragment length
polymorphism (AFLP), with HindIII restriction endonuclease (5′ AAGCTT 3′ 3′ TTCGAA
5′) (Invitrogen, Inc., Waltham, MA, USA) [14]. BioNumerics (version 7.6 AppliedMaths,
Sint-Martens-Latem, Belgium) was employed for cluster analysis of Dice similarity using
the Unweighted Pair-Group Method Using Arithmetic Average (UPGMA) method. A cutoff
point of 90% was employed for the determination of similar genotypic profiles [15].

2.4. Plasmid Analysis

ESBL-producing isolates were selected to demonstrate the transferability of the plas-
mids. Conjugation was conducted using Escherichia coli C600 as a receptor strain. Donor
and receptor strains (2:1) were inoculated in 5 mL of Luria Bertani broth (Difco™). Transcon-
jugants were selected after 24 h of incubation at 35 ◦C, 100 µL of the inoculum was
plated in MacConkey agar (Difco™) supplemented with 2000 mg/L of streptomycin and
2 mg/L of cefotaxime. For the isolate carrying both blaCTX-M-15 and blaCTX-M-8, ceftazidime
4 mg/mL was used instead of cefotaxime, to select colonies with only the plasmid car-
rying blaCTX-M-15 [16]. The plasmid sizes were determined by S1-nuclease PFGE and
the plasmids were typed by PCR-based replicon typing and replicon sequence typing of
IncF plasmids [17].

2.5. Whole Genome Sequencing and Analysis of ESBL-Producing K. pneumoniae Strains

All strains exhibiting ESBL phenotype were selected for whole-genome sequencing.
Genomic DNA was extracted and purified from overnight pure cultures using the PureLink
Genomic DNA purification Kit (Invitrogen) following the manufacturer’s recommenda-
tions. Nextera XT DNA Library kit (Illumina®) was used to generate paired-end libraries
(2 × 150 bp) according to the manufacturer’s instructions, followed by sequencing in the
Illumina NextSeq platform (Illumina, San Diego, CA, USA).

Quality of raw reads was assessed by FastQC (v.0.72), and read trimming was con-
ducted using Trimmomatic (v.0.38.0). Genomes were de novo assembled by SPAdes (v.3.9.0)
and annotated with Prokka version 1.13 [18] and NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) (https://www.ncbi.nlm.nih.gov/genome/annotation_prok/, accessed
on 18 November 2020). Resistance genes, multilocus sequence typing, and plasmids
were in silico identified using tools of the Center for Genomic Epidemiology (MLST,
Resfinder, Plasmidfinder, pMLST) (http://www.genomicepidemiology.org/, accessed on
18 November 2020). Serotyping of K antigen was determined using the online tool Kap-
tive (v.0.7.2) [19]. The genetic environment of blaCTX-M genes was determined in silico
using the ISfinder database (https://isfinder.biotoul.fr, accessed on 27 November 2020)
and PCR gap closure when necessary. The Whole Genome Sequencing project was de-
posited at DDBJ/EMBL/GenBank under the accession number PRJNA832859. Three whole
genomes were deposited at GenBank under the accession numbers JALYBQ000000000,
JALYBR000000000, and JALYBS000000000.

3. Results

Sixteen Klebsiella spp. strains were isolated from 46 infected birds, and all colonies
were identified as K. pneumoniae by MALDI-TOF MS. All strains carried three to five
virulence genes, being positive for fimH (100%), kpn (93.75%), uge (87.50%), irp-2 (81.25%),
mrkD (68.75%), and kfu (37.50%). Results identified five different virulence profiles, with
predominance of irp2+uge+kpn+mrkD+fimH (8/16) and irp2+uge+kpn+kfu+fimH (5/16)
genotypic traits. The SE-AFLP classified these strains into 15 distinct patterns, with a
discriminatory index of 0.96. Studied strains were from noncontacting birds, located in
various places, and were heterogeneous (Figure 1).

Three strains were ESBL-producers and exhibited a multidrug-resistant (MDR) profile,
of which two were positive for the blaCTX-M-15 gene and one was positive for both blaCTX-M-15
and blaCTX-M-8 genes. These strains were selected for whole-genome sequencing. The
genomes ranged between 5,622,065 and 5,540,827 bp, which is according to the genome

https://www.ncbi.nlm.nih.gov/genome/annotation_prok/
http://www.genomicepidemiology.org/
https://isfinder.biotoul.fr
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size of K. pneumoniae (mgh). Genomic features of these strains are shown in Table 1. In
these isolates, it was possible to transfer resistance to third-generation cephalosporins to a
transconjugant strain through conjugation assays (Table 2).

MDR phenotype in CTX-M-15-producing K. pneumoniae strains was related to genes
conferring resistance to phenicols, beta-lactams, aminoglycosides, fosfomycin, quinolones,
sulphonamides, sulfamethoxazole-trimethoprim, and tetracyclines. Additionally, chro-
mosomal mutations in the gyrA and parC genes were responsible for elevated levels of
resistance to fluoroquinolones (Table 1).
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Table 1. Characteristics and genomic data of K. pneumoniae strains infecting companion birds.

Isolates Information
Strains

Kp41 Kp58 Kp137

Host Amazona aestiva
(nasal secretion)

Psittacara leucophtalmus
(oropharynx)

Amazona aestiva
(sepsis)

Codified Regions (CDS) 5548 5351 5436

RNAs 93 96 86

GC Content 57.1% 57.2% 57.1%

Sequence type ST147 ST15 ST307

Plasmids-group (size)
FII(K) (~220 kb)
L/M (~70 kb)

ColRNAI (3 kb)
FII(K)-FIA-FIB (~250 kb)

FIB (K) (~145 kb)
NT (48 kb)

ColRNAI (4 kb)

Capsule K64 K60 K173

Resistance genes

Aminoglycosides aac(3)-VIa, aph(3′ ′)-Ib, aac(3)-IIa,
aadA1, aph(6)-Id

aph(3′ ′)-Ib, aac(6′)Ib-cr, aph(6)-Id,
aadA2

aac(3)-IIa, aph(3′ ′)-Ib, aac(6′)Ib-cr,
aph(6)-Id

Beta-lactams
blaSHV-11, blaCTX-M-8,

blaCTX-M-15, blaTEM-1 A,
blaOXA-1, blaOXA-9

blaSHV-28, blaCTX-M-15,
blaTEM-1 B, blaOXA-1

blaSHV-28, blaCTX-M-15,
blaTEM-1 B, blaOXA-1

Quinolones qnrE, oqxAB, gyrA
(mutation)

aac(6′)Ib-cr, oqxAB, gyrA
(mutation)

aac(6′)Ib-cr, oqxAB, qnrB66, gyrA
(mutation)

Fosfomycin fosA fosA fosA

Tetracyclines tet(A) -

Sulfonamides sul1, sul2 sul1, sul2 sul2

Trimethoprim dfrA14 dfrA14, dfrA12 dfrA14

Phenicols catB4 catA1, catB4 catB4

In silico analysis showed that these strains belonged to ST15, ST147, and ST307. ST15
isolate (Kp58.3) was isolated from the oropharynx of a Psittacara leucophtalmus specimen.
This isolate presents the blaCTX-M-15 gene in a ~250 Kb plasmid belonging to K5:A10: B-
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replicon sequence type (RST) (Tables 1 and 2). Through BLAST alignments, we found this
isolates the presence of the kpi operon. This chaperone-usher pili system is related to the
ability to produce remarkable adherent phenotypes with abundant fimbriae structures.
Our ST15 isolate has a 6628 bp DNA fragment in the genome that encodes seven genes
(kpiA, kpiB, kpiC, kpiD, kpiE, kpiF, kpiG) and showed 100% similarity to the kpi operon of
the Kp3380 strain, an MDR ST15 strain K. pneumoniae previously isolated from a hospital
outbreak in Spain [20].

Table 2. Minimum inhibitory concentration and plasmid sizes of CTX-M-15-producing isolates and
respective transconjugants.

Strain Plasmid Sizes
MIC (mg/L)

Cefotaxime Ceftazidime Cefepime Ceftiofur

Kp41
220 kb
70 kb
3 kb

>128 128 >128 >128

Tc-41a 220 kb >128 32 >128 >128

Kp58 250 kb >128 128 >128 >128

Tc-58a 250 kb >128 64 >128 >128

Kp137
145 Kb
48 kb
4 kb

>128 128 >128 >128

Tc-137a 145 Kb >128 64 >128 >128

EC-C600 - 0.125 0.5 0.125 0.125

The strain belonging to ST307 (Kp137) was isolated from a respiratory secretion of
the Amazona aestiva parrot that died of sepsis. This strain harbors three plasmids, with
blaCTX-M-15 located in an IncFIB(K) plasmid sizing ~145 Kb. On the other hand, the isolate
Kp41 was recovered from a nasal secretion of an Amazona aestiva parrot and belonged
to ST147. Kp41 strain possesses an ~220 kb K9:A-:B-plasmid carrying blaCTX-M-15, and
other plasmids belonging to the IncM1 family, harboring blaCTX-M-8 (Table 1). The IncM1
plasmid was analyzed in a previous study [21]. The blaCTX-M-8 gene was inserted in an
IS26-composite transposon, composed of an IS10 copy and two IS26 copies present in that
IncM1 plasmid.

In all three strains, the blaCTX-M-15 gene was found upstream ISEcp1 element, with
ORF477 downstream. This module presented intact repeat regions (IRs) of ISEcp1, a classic
genetic environment of blaCTX-M-15. In the isolates belonging to ST15 and ST307, this struc-
ture was downstream to a resistance region carrying resistance genes to aminoglycosides
(aph(3”)-Ib, aph(6)-Id), beta-lactams (blaTEM-1), and sulphonamides (sul2) (Figure 2).
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These CTX-M-15-producing K. pneumoniae strains showed an MDR phenotype. Using
in silico analysis it was possible to correlate with many acquired genes conferring resistance
to antimicrobial drugs (Table 1). In addition to the acquired resistance genes, it was possible
to determine chromosomal mutations in the gyrA and parC genes, which confer elevated
levels of resistance to fluoroquinolones.

4. Discussion

Convergence of virulence and multidrug resistance in Klebsiella pneumoniae is consid-
ered a major public health concern [22,23]. This species is one of the most common MDR
bacteria isolated in nosocomial and community-acquired infections in humans [24]. The
reports about infection by K. pneumoniae in veterinary medicine have been associated with
cats and dogs [7,25–28], and little is known about the impact of this pathogen in companion
and wildlife bird species. In a previous study, colonization of passerine and psittacine
seized from illegal trade in Brazil, by K. pneumoniae, was reported [9]. In this study, the
occurrence of K. pneumoniae among psittacine birds was 34.78%, and most of these strains
presented virulence factors, including genes associated with fimbriae (fimH—93.75%, fim1-
like kpn—93.75% and type 3 fimbriae mrkD—62.50%) and siderophores (irp-2—81.25% and
kfu—43.75%). According to Lawlor et al. (2007), yersiniabactin is the most important iron
acquisition system of K. pneumoniae during in vivo pulmonary infection [29]. Holt et al.
(2015) suggested that the acquisition of iron-scavenging systems increases the risk of severe
invasive disease and highlighted the public health concern of the yersiniabactin in the ESBL
clones, including ST15 K. pneumoniae [22].

In this study, none of the strains presented genes magA and rpmA, associated with
hypermucoviscosity. However, 87.20% were positive for the uridine diphosphate galactur-
onate 4-epimerase gene (uge), which is associated with the integrity of smooth LPS [30].

Among the multidrug-resistant lineages, some clonal groups (CGs) such as CG258,
CG307, CG101, CG147, and CG15 are globally disseminated and responsible for an exten-
sive range of infections in humans [2,31]. In this study, three of these STs were found to
cause respiratory disease in parrots. In this regard, ST307 has been a pandemic lineage
related to CTX-M-15-production, emerging in the middle of the 1990 decade [1]. Genomic
studies reveal that ST307 presents a conserved genome, differing only in the mobilome
(i.e., plasmids, phages, and resistance genes) [32]. CG307 has some characteristics that
favor the colonization of humans and the hospital environment, such as virulence factors
and plasmids. Recently, CTX-M-15-positive ST307 strains were implicated in nosocomial
outbreaks in Germany and The Netherlands [33,34]. In Brazil, ST307 strains were recovered
from wastewater and a urinary tract infection in cats and dogs [7,35,36].

In addition, our study also detected the lineages ST147 and ST15 in psittacine isolates.
These lineages of K. pneumoniae producing CTX-M-15 have been described in companion
animals, including dogs with urinary tract infections and horses [37,38]. Our results
reinforce the link of transmission between humans and pets, including companion birds.

The three ESBL-producing strains here studied belong to the CTX-M-15 variant. CTX-
M-15 is the most common ESBL enzyme in Klebsiella pneumoniae isolated from human
nosocomial infections worldwide. Through a wide literature review, Calbo and Garau
(2015) showed that the epidemiology of ESBL-producing K. pneumoniae changed in the
2000s, and CTX-M-15 has completely replaced other ESBL enzymes, including TEM, SHV,
and other CTX-M variants worldwide [39].

One of the reasons for the successful dissemination of CTX-M-15 in hospitals may be
the fact that it is an enzyme that has an increased catalytic activity against ceftazidime,
a third-generation cephalosporin produced for the treatment of Pseudomonas spp. Un-
like other worldwide disseminated variants of CTX-M, CTX-M-15 and hybrid-CTX-M-15
enzymes producing bacteria are resistant to ceftazidime.

Plasmids have a key role in the dissemination of CTX-M genes enzymes. IncF and IncN
plasmids are associated with the worldwide dissemination of blaCTX-M-15 [40]. In our study,
the gene was present in IncF (K) plasmids. The three strains analyzed presented blaCTX-M-15
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gene upstream ISEcp1 element, with ORF477 downstream, which is the worldwide reported
structure [41,42]. These sequences show 100% similarity to the IncF (K) plasmids described
in K. pneumoniae isolates in Colombia, the United States, and Australia (GenBank access
CP024566, CP024516, CP016925, and CP10390). Previous studies in Brazil have identified
the blaCTX-M-15 gene in plasmids of the IncR family, in K. pneumoniae isolated from food-
producing animals [43].

In our work, the CTX-M-8 variant was inserted in an IS26-composite transposon,
composed of an IS10 copy and two IS26 copies. An identical transposon has been identified
in plasmids of the Incl1 and IncM1 families in environmental isolates in Brazil [35], and
in chicken meat imported from Brazil [44]. In addition to blaCTX-M-8, pKp41 M plasmid
contained a resistance region composed of Tn1331, truncated by a 4,108 pb module con-
taining ISEcp-qnrE1-araJ-∆ahp. The qnrE1 gene, which confers resistance to quinolones,
was described in a human clinical strain of K. pneumoniae in Argentina [45]. However, the
genetic environmental described by Albornoz [45] was not associated with Tn1331, as in
the pKp41 M plasmid.

5. Conclusions

In conclusion, our results showed that international clones of CTX-M-15-positive
K. pneumoniae can cause infectious diseases in companion birds, highlighting the zoonotic and
anthropozoonotic potential of this critical priority pathogen, within a One Health perspective.
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