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Influenza A virus (IAV) is one of the major causes of seasonal endemic diseases and
unpredictable periodic pandemics. Due to the high mutation rate and drug resistance, it
poses a persistent threat and challenge to public health. Isatis tinctoria L. (Banlangen,
BLG), a traditional herbal medicine widely used in Asian countries, has been reported to
possess strong efficacy on respiratory viruses, including IAV. However, its effective anti-
IAV components and the mechanism of actions (MOAs) are not yet fully elucidated. In this
study, we first summarized the chemical components and corresponding contents in BLG
according to current available chemical analysis literature. We then presented a network-
based in silico framework for identifying potential drug candidates against IAV from BLG. A
total of 269 components in BLG were initially screened by drug-likeness and ADME
(absorption, distribution, metabolism, and excretion) evaluation. Thereafter, network
predictive models were built via the integration of compound–target networks and
influenza virus–host proteins. We highlighted 23 compounds that possessed high
potential as anti-influenza virus agents. Through experimental evaluation, six
compounds, namely, eupatorin, dinatin, linarin, tryptanthrin, indirubin, and acacetin,
exhibited good inhibitory activity against wild-type H1N1 and H3N2. Particularly, they
also exerted significant effects on drug-resistant strains. Finally, we explored the anti-IAV
MOAs of BLG and showcased the potential biological pathways by systems
pharmacology analysis. In conclusion, this work provides important information on
BLG regarding its use in the development of anti-IAV drugs, and the network-based
prediction framework proposed here also offers a powerfulful strategy for the in silico
identification of novel drug candidates from complex components of herbal medicine.
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INTRODUCTION

Influenza (flu) is an acute respiratory viral infection that leads to the
continual emergence of seasonal epidemics and occasional global
pandemics in humans, causing significant morbidity and mortality
worldwide (Krammer et al., 2018). InfluenzaA virus (IAV), as one of
the most contagious viruses among the influenza types A, B, and C,
has always been a huge threat to public health that causes about
200,000 hospitalizations and 30,000 deaths per year (Xu et al., 2020).
More importantly, a recent study has demonstrated that IAV
possesses clear auxo-action on severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection, which could boost viral
entry into cells and increase the viral load, causing worse lung

damage in virus-infected mice. These results emphasize the great
importance of influenza prevention, particularly in the context of the
ongoing coronavirus disease-2019 (COVID-19) pandemic. One
important reason for the epidemiological “success” of IAV is the
highly variability owing to the constant production of new viral
strains (Xu et al., 2020). The rapid evolution of influenza viruses
reduces the effectiveness of current antiviral agents, which is thought
to be the main bottleneck in antiviral treatment. Owing to the
emergence of drug resistance of conventional anti-influenza drugs,
such as inhibitors of neuraminidase (NA), the M2 ion channel, and
RNA-dependent RNA polymerase (RdRp), the need for the
development of anti-IAV drugs with novel modes of action is
highly urgent (Zu et al., 2015; Xu et al., 2020).

TABLE 1 | Information on the chemical analysis using the high-performance liquid chromatography (HPLC) method for the herb Isatis tinctoria L. (Banlangen, BLG).

Ref. (PMID) Method Sample Form Component Contents

28894621 RP-HPLC Granules R-goitrin Mean � 0.162 (mg/g)
S-goitrin Mean � 0.127 (mg/g)

19160787 RP-HPLC Crude drug Epigoitrin 4.243 (mg/g)
Granules 0.412 (mg/g)

29844266 HPLC-UV-CD Crude drug Progoitrin Mean ± SD � 1.71 ± 1.99 (mg/g)
Epiprogoitrin Mean ± SD � 3.05 ± 3.16 (mg/g)
R-goitrin Mean ± SD � 0.18 ± 0.06 (mg/g)
S-goitrin Mean ± SD � 0.09 ± 0.03 (mg/g)

Decoction pieces Progoitrin Mean ± SD � 0.81 ± 1.06 (mg/g)
Epiprogoitrin Mean ± SD � 1.57 ± 1.92 (mg/g)
R-goitrin Mean ± SD � 0.22 ± 0.14 (mg/g)
S-goitrin Mean ± SD � 0.12 ± 0.07 (mg/g)

Granules R-goitrin Mean ± SD � 0.12 ± 0.15 (mg/g)
S-goitrin Mean ± SD � 0.06 ± 0.07 (mg/g)

32288995 HPLC–DAD–ESI/MS Dry raw material Cytidine Mean ± SD � 0.24 ± 0.10 (mg/g)
Uridine Mean ± SD � 0.37 ± 0.13 (mg/g)
Adenine Mean ± SD � 0.07 ± 0.04 (mg/g)
Guanosine Mean ± SD � 0.34 ± 0.17 (mg/g)
R,S-Goitrin Mean ± SD � 1.65 ± 1.09 (mg/g)
Adenosine Mean ± SD � 0.31 ± 0.16 (mg/g)

22942750 UPLC-PDA Prepared slices Hypoxanthine Mean ± SD � 0.08 ± 0.11 (mg/g)
Uridine Mean ± SD � 0.35 ± 0.07 (mg/g)
Progoitrin Mean ± SD � 2.52 ± 1.54 (mg/g)
Epiprogoitrin Mean ± SD � 2.68 ± 1.70 (mg/g)
Adenosine Mean ± SD � 0.36 ± 0.06 (mg/g)
Guanosine Mean ± SD � 0.4 ± 0.07 (mg/g)
R,S-goitrin Mean ± SD � 0.64 ± 0.19 (mg/g)
Luconapin Mean ± SD � 1.35 ± 1.21 (mg/g)
Hypoxanthine Mean ± SD � 8.38 ± 4.58 (mg/g)

Crude herbs Hypoxanthine Mean ± SD � 0.04 ± 0.01 (mg/g)
Uridine Mean ± SD � 0.07 ± 0.01 (mg/g)
Progoitrin Mean ± SD � 5.86 ± 1.1 (mg/g)
Epiprogoitrin Mean ± SD � 6.25 ± 0.4 (mg/g)
Adenosine Mean ± SD � 0.12 ± 0.01 (mg/g)
Guanosine Mean ± SD � 0.16 ± 0.08 (mg/g)
R,S-goitrin Mean ± SD � 0.08 ± 0.02 (mg/g)
Luconapin Mean ± SD � 8.39 ± 1.86 (mg/g)
Hypoxanthine Mean ± SD � 20.96 ± 2.44 (mg/g)

16884885 LC-APCI-MS Granules (root) Tryptanthrin Mean ± SD � 0.33 ± 0.20 (μg/g)
Indigo Mean ± SD � 1.01 ± 0.79 (μg/g)
Indirubin Mean ± SD � 0.95 ± 0.85 (μg/g)

The contents of the compounds were obtained from previously published chemical analysis literature of Isatis tinctoria L. and unified as average values. Detailed information on the HPLC
methods and the detection results can be found in the original papers.
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FIGURE 1 | Schematic diagram illustrating the network methodology for the in silico identification of drug candidates against influenza A virus (IAV) from Isatis
tinctoria L. (BLG). (A) Construction of the compound–target (C–T) networks of BLG. Ingredients screened by drug-likeness and ADME (absorption, distribution,
metabolism, and excretion) evaluation, multi-source drug–target interactions, and influenza virus host proteins were integrated into the C–T network. (B) In silico
identification of IAV drug candidates using network-based predictive models. Associations between the subnetwork of compounds and the influenza virus host
protein set were calculated. (C) In vitro evaluation of potential anti-IAV candidates through cytopathic effect reduction assay on wild-type and drug-resistant virus strains.
(D) Systems pharmacology-based exploration of the anti-IAV mechanism of actions (MOAs) of BLG.
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Natural products isolated from herbal medicine possess
chemical diversity and promiscuous target profiles, which are
emerging as invaluable chemical resources for drug discovery
(Shen, 2015; Cai et al., 2021). Isatis tinctoria L. (Banlangen,
BLG) is a herbal medicine widely applied as regular seasonal
influenza treatment in Asian countries (Wu et al., 2020).
Previous experiments have showcased that the extracts of BLG
possess broad-spectrum inhibitory activity against human
influenza viruses (Yang et al., 2012; Li et al., 2017). BLG exerts
immunoregulatory effects in vitro and in vivo and seems to combat
viral infection by simultaneously targeting the host and the virus,
which has obvious advantage over the chemical synthesis drugs on
the market (Shin et al., 2010; ZiFeng et al., 2015). However, due to
the complexity of the chemical components and the intricate target
interactions, the active components and molecular mechanisms of
BLG against influenza remainmostly unknown. Although previous
studies integrating high-performance liquid chromatography
(HPLC) analysis had preliminarily investigated the major
chemical components in BLG, as summarized in Table 1, it is
difficult to determine the exact ingredients that exert the anti-IAV
effect. In addition, some trace ingredients may also have strong
potency, although they may not be detected by HPLC. Hence, it is
of great significance to excavate the potential medicinal ingredients
from BLG with a novel efficient strategy.

Nowadays, in silico approaches have been successfully applied in
drug discovery and have dramatically facilitated efficiency and
reduced costs (Cai et al., 2017). Structure-based and ligand-based
approaches, such as the quantitative structure–activity relationship
(QSAR) model, pharmacophore model, molecular docking, and
similarity searches, are extensively used. However, ligand-based
methods are always encumbered by the diversity and quality of
the sample, while structure-based methods have the drawbacks of a
slow computing speed and lack of crystal structures. Besides, these
approaches ignore the inherent synergistic interactions between
drugs and multiple therapeutic targets. Recently, network-based
methods inspired by systems pharmacology, which
comprehensively consider the information of the drug–target
network and disease-related genes, provide new insights into the
identification of active ingredients from the complex system of
herbal medicine (Fang et al., 2017a; Wu et al., 2020). For
instance, compound–target networks of natural products
integrated with wide-scale genomic profiles of triple-negative
breast cancer (TNBC) revealed wogonoside as a potent
angiogenesis inhibitor for TNBC therapy (Huang et al., 2019).
Researchers have built network-based models to infer the
potential therapeutic relationships of natural products on
coronary artery disease (Fang et al., 2019). Recently, we have
identified 49 natural products from over 500 traditional Chinese
herbs that have huge potential for cancer immunotherapy, and the
success rate reached up to 65.31% through validation with published
clinical and experimental evidence (Cai et al., 2021). Overall,
network-based approaches of drug discovery offer effective
strategies for discovering potential antiviral candidates against IAV.

In this work, we developed an in silico framework to identify
potential drug candidates against IAV from BLG (Figure 1 and
Supplementary Figure S1). We firstly collected comprehensive
components of BLG from public databases and the chemical

analysis literature. Subsequently, machine learning models were
applied for the initial screening of the drug-likeness and ADME
(absorption, distribution, metabolism, and excretion) properties of
chemicals. Subsequently, compound–target (C–T) networks were
constructed by consolidating computationally predicted and
experimentally validated compound–target interactions (CTIs) and
influenza virus host proteins. We further built network-based
predictive models via the integration of the C–T network and
influenza virus host protein set for identifying potential anti-IAV
candidates. Additionally, we performed in vitro experimental assays to
evaluate the inhibitory activity of the predicted positive compounds on
wild-type and resistant strains of IAV (H1N1 and H3N2). Finally, the
potential anti-IAV mechanism of actions (MOAs) of BLG, including
key regulatory proteins, molecular functions, and biological pathways,
were discussed via network analysis and gene enrichment.

MATERIALS AND METHODS

In Silico Experiment
Collection and Structure Clustering of Ingredients
in BLG
The constituent compounds of BLG were manually extracted
from previously published chemical analysis literature (Table 1)
and the following publicly available herbal medicine databases
(accessed in February 2020, unless otherwise indicated): 1)
TCM-MESH (Zhang et al., 2017); 2) Traditional Chinese
Medicine database (TCMDb); 3) Traditional Chinese
Medicine Integrated database (TCMID; accessed December
2018) (Huang et al., 2018); 4) Traditional Chinese Medicine
database@Taiwan (TCM@Taiwan) (Chen, 2012); 5) TM-MC
(Kim et al., 2015); 6) Traditional Chinese Medicine Systems
Pharmacology (TCMSP) (Ru et al., 2014); and 7) Database of
Traditional Chinese Medicine on Immuno-Oncology (TCMIO;
accessed January 2021) (Liu et al., 2020). The names of
compounds were standardized according to the PubChem
database, while structures were converted to canonical
SMILES and InChiKey formats using OpenBabelGUI (version
3.0.0) (O’boyle et al., 2011). After removing duplicate
compounds with identical structures, a total of 269
compounds were retained for further study (Supplementary
Table S1).

To investigate the chemical features of the ingredients in BLG,
we performed clustering analysis for the 269 compounds. The
chemical clustering analysis was conducted by calculating the
root mean square value of the Tanimoto distance of pairwise
compounds based on FCFP_6 fingerprint. Finally, the chemical
scaffolds of the 269 ingredients were clustered into five chemical
groups, and the structures of each cluster center were obtained.

Machine Learning Models for Drug-Likeness and
ADME Screening
The machine learning models for drug-likeness and ADME
screening were provided by the work of Jie et al. (2018).
Specifically, the drug-likeness model was trained based on
6,731 drugs from the DrugBank database (Wishart et al.,
2017) as positive samples and 6,769 molecules from the

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 7553964

Cai et al. Isatis tinctoria L. against Influenza

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


CHEMBL database (Anna et al., 2017) as negative ones. The
model constructed by random forest (RF) with molecular
descriptors from MACCS (Molecular Access System) achieved
the best performance, with an accuracy of 0.801 on fivefold cross-
validation. For the ADME models, the sample sources included
previous literature and the DrugBank database. The models were
built based on different machine learning algorithms, such as RF,
support vector machine (SVM), recursive partitioning regression
(RP), partial least square (PLS), naive Bayes (NB), and decision
tree (DT), while seven types of descriptors (2D, Estate, MACCS,
ECFP2, ECFP4, ECFP6, and FP2) were used to represent the
molecular properties and structural information. Subsequently,
the best model for each property was selected after
comprehensive assessment. In this study, the models of human
oral bioavailability and plasma protein binding (PPB) were
applied to evaluate the chemical properties of absorption and
distribution, respectively.

Construction of Compound–Target Networks for BLG
We constructed global C–T network and subnetworks for the
ingredients in BLG by integrating both experimentally validated
and computer-predicted CTIs. The experimentally validated
targets contained both physical binding (direct) and functional
(indirect) targets. Among them, the direct targets (Ki/Kd/IC50/EC50

< 10 μm) were extracted from BindingDB (Gilson et al., 2016) and
ChEMBL (v21) (Anna et al., 2017), while the indirect targets were
gathered from the Herbal Ingredients’ Targets (HIT) database (Hao
et al., 2011), STITCH (Search Tool for Interactions of Chemicals)
(Damian et al., 2016), and TCMID 2.0 (Huang et al., 2018). These
databases were accessed in December 2018. We further
supplemented the CTIs of BLG from our previously curated
natural product–target interaction dataset, which covers over 2,000
natural product-related pharmacological academic papers (dating
from January 2009 to December 2017). Only targets with standard
UniProt accession number or belonging to Homo sapiens were
retained.

In order to enrich the CTI network, computationally putative
targets predicted by the balanced substructure–drug–target
network-based inference (bSDTNBI) algorithm were imported.
The method could prioritize potential targets for natural products
using resource diffusion processes for the
substructure–drug–target network (Fang et al., 2017b). In this
study, the substructure items of each compound were calculated
using the molecular fingerprint Klekota–Roth from PaDEL-
Descriptor (version 2.18) (Yap, 2011). The parameters α, β, c,
and κ were set as 0.1, 0.1, −0.5, and 2, respectively. Parameter α
was utilized to control the initial resource allocation of various
node types, β was applied for the adjustment of the weighted
values of different edge types, cwas imported to balance the effect
of hub nodes in the process of resource diffusion, and κ represents
the number of resource diffusion processes. The final generated
predictive model showed satisfactory performance, with an area
under the receiver operating characteristic curve (AUC) value of
0.958 ± 0.005 in 10-fold cross-validation (Fang et al., 2017b).
Finally, the top 50 putative targets of each ingredient in BLG were
obtained.

Manual Curation and Integration of Influenza Virus
Host Protein Set
We comprehensively searched the published literature to obtain
the influenza virus host proteins. The names of the collected
proteins/genes were converted into unified gene symbol names
and Entrez ID according to the NCBI Gene Database (https://
www.ncbi.nlm.nih.gov/gene) and the Universal Protein Resource
(https://www.uniprot.org/; Consortium, 2019). These proteins/
genes were further consolidated into the influenza virus host
protein set after removing duplicates. In total, the influenza virus
host protein gene set consisted of 175 proteins (Supplementary
Table S2).

Network-Based Statistical Models for the
Identification of Anti-IAV Drugs
In this study, network-based models were constructed to measure
the statistical correlation between each C–T network of
ingredients in BLG and the influenza virus host protein gene
set. We hypothesize that a compound has a higher possibility of
being an anti-IAV drug if its regulatory target network is more
likely to map onto the influenza virus host protein set. The null
hypothesis asserts that the targets of a compound are randomly
located at the gene profiles of the influenza virus host proteins
across the human proteome. Here, we applied two types of
statistical methods to build the network predictive models.
The first model (model A) was constructed based on
permutation test, as given by Eq. 1.

P � #{sm(p)> sm}

#{ totalpermutations}
(1)

We randomly selected 175 genes, which is equal to the number of
genes in the influenza virus host protein gene set from the protein
profiles at the human genome-wide scale (covering 20,462 human
protein-coding genes) from the NCBI database (Sayers et al.,
2018). For each compound of BLG (drug candidate), a nominal P
was computed by counting the number of permutations (Sm(p))
larger than the observed influenza virus host protein genes (Sm).
The permutations were repeated 100,000 times and the resulting
p-values obtained from the permutation tests. A Z-score was
computed for each compound to be prioritized as potential drug
candidates for influenza virus during the permutation test (Eq. 2).

Z � x − μ

σ
(2)

where x is the actual number of influenza virus host proteins
targeted by a given drug candidate, μ is the average number of
influenza virus host proteins targeted by a given drug candidate
during 100,000 permutations, and σ is the standard deviation.

We further utilized Fisher’s exact test to generate the other
network predictive model (model B). Fisher’s exact test is a
statistical significance test examining the significance of the
association (contingency) between two classifications. In this
model, the statistical significance of the enrichment of
influenza virus host proteins in the target profiles of each drug
candidate were obtained using Fisher’s exact test. The
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Benjamini–Hochberg method (Benjamini and Hochberg, 1995)
was used to correct the resulting p-values of the models, and the
negative logarithm values of q(−Log10(q)) were obtained. We
determined the ingredients with significant correlations with the
influenza host proteins based on the compound–target network.
A cutoff [adjusted p-value (q) threshold] of 0.05 was set to
differentiate the predicted positive and negative anti-IAV drug
candidates. For those compounds with q values lower than
0.05, the larger the value of the Z-score (model A) or
−Log10(q) (model B), the higher the possibility of being
anti-IAV drug candidates.

Gene Enrichment Analysis
Gene Ontology (GO) term enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
annotation were performed to explore the mechanisms (Kanehisa
and Goto, 2000). Firstly, the gene sets of interest were mapped to the
terms in the GO or KEGG database and the gene numbers were
computed for each term. A hypergeometric test was used to define
the significantly enriched GO or KEGG terms for the given gene sets
compared to the genome background (H. sapiens). False discovery
rate (FDR)was utilized to correct the calculated p-values, while terms
with FDR ≤ 0.05 were regarded as significant.

Network Visualization and Statistical Analysis
The network was visualized and analyzed with Gephi (v0.9.2;
https://gephi.org/) (Bastian et al., 2009). The statistical analysis,
which included permutation test, Fisher’s exact test, and
hypergeometric test, was performed with R (v3.01; http://www.
r-project.org/) and the Python platform (v3.2; http://www.
python.org/), while the figure plots were mainly drawn using
Perl, R, and Microsoft Office 2019.

In Vitro Experiment
Cell Culture, Virus, and Compounds
Madin–Darby canine kidney (MDCK) cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) in a humidified incubator
containing 5% CO2 atmosphere at 37°C. Influenza virus A/PR/
8/34 (H1N1), A/Minfang/151/2000 (H3N2), and
A/HebeiXinhua/SWL1106/2017 (oseltamivir- and
amantadine-resistant H1N1) were kindly donated by the
National Institute for Viral Disease Control and Prevention,
Chinese Center for Disease Control and Prevention. The
viruses were propagated in 7-day-old embryonated chicken
eggs and preserved at−80°C. The test compounds and the
positive control drug zanamivir were purchased from
TopScience Co. Ltd. (Rizhao, China) and Sigma-Aldrich (St.
Louis, MO, United States).

Cytotoxicity Test
MDCK cells grown into a monolayer in a 96-well plate were
washed once with serum-free medium. Subsequently, the cells
were treated with the test samples at different concentrations
ranging from 1 to 100 μg/ml for 48 h at 34°C in 5% CO2. A blank
medium served as the control. The crystal violet staining method
was applied for cell viability determination (Xiao et al., 2021). The

maximal non-toxic concentration (TC0) and median toxic
concentration (TC50) values were computed through plotting
the calculated percent cell viability as a function of the compound
concentration (Zu et al., 2012).

Cytopathic Effect Reduction Assay
Four different time points for drug administration were adopted
in the experiments: i) pretreatment: influenza virus at TCID50 �
100 were administered to the cells 1 h after the pretreatment of six
serial dilutions of the test samples; ii) simultaneous treatment: the
test samples were administered to the cells along with the
influenza virus strain; iii) posttreatment: the test samples were
administered to the cells 1 h after the adsorption of the influenza
virus; and iv) pre-incubation treatment: the influenza virus was
pre-incubated with the test samples for 1 h before being
administered to the cells.

The total volume of each well was 100 μl, and TC0 was utilized
as the maximum concentration and diluted to six triple gradient
concentrations. Zanamivir served as the positive control drug,
while infection control without drugs was also considered. The
plates were incubated for 48 h at 34°C in humidified 5% CO2. The
cytopathic effect (CPE) was determined with the crystal violet
staining method, and half maximal inhibitory concentrations
(IC50) were calculated using the resulting spectrophotometric
data. The experiment was repeated at least three times.

CPE inhibition% � (ODsample − ODmodel)/(ODnormal −
ODmodel) × 100%

RESULTS

Drug-Likeness Screening and ADME
Evaluation
In total, 269 compounds from BLG were collected, which can
be clustered into five groups according to their Tanimoto
distance (Figure 2A). Cluster 2 contained the most
compounds (n � 95), followed by cluster 4 (n � 54) and
cluster 1 (n � 51). The structures of each cluster center are
displayed in Figure 2B, which referred to the representative
chemical scaffolds of the ingredients in BLG. Here, we
evaluated the drug-likeness and ADME properties (PPB and
human oral bioavailability) for initially excluding unsuitable
candidates. Drug-likeness is utilized in drug design to describe
how “druglike” a particular molecule is with respect to various
molecular properties and structural features. As shown in
Figure 2C, the classification model of drug-likeness
eliminated 24 compounds with predicted positive
probability lower than 50%, which left 245 compounds.
Thereafter, oral bioavailability, one of the key
pharmacokinetic indexes reflecting the efficiency of
absorption, was further assessed. In this step, 88
compounds were predicted to have a bioavailability lower
than or equal to 20%. PPB ability has significant effects on
the pharmacodynamic action of a drug since one of the main
mechanisms for drug uptake and distribution is through PPB.
A compound with PPB <90% is considered suitable, while
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drugs with a high protein binding rate may have a low
therapeutic index (Jie et al., 2018). During this process,
three compounds were removed for inappropriate PPB
property. Finally, 115 out of the 269 compounds in BLG
were excluded, with the remaining 154 utilized for further
study (Supplementary Table S1).

Compound–Target Network Analysis of
Ingredients in BLG
The C–T network was composed of interactions linking the
screened compounds of BLG and their corresponding targets,

which contained 7,845 CTIs connecting 154 compounds with
472 protein targets (Figure 3 and Supplementary Table S3).
We further mapped the profiles of the influenza virus host
proteins onto the C–T network and calculated the degree of each
node. In total, there were 607 pairs of CTIs linked to
30 influenza-related targets. The average compound degree
(D) of an influenza-related protein was 20.2, while the
average influenza-related target degree (K) of a compound
was 3.9. Among the top 20 targets with highest degree,
ALDH1A1 (D � 150), MAPK1 (D � 149), and TP53 (D �
146) were influenza-related targets, indicating their important
role in the anti-influenza effect of BLG. Interestingly, we found

FIGURE 2 |Chemical scaffold clustering analysis and preliminary screening of the 269 ingredients in Isatis tinctoria L. (BLG). (A) Statistics of the structures in the five
cluster groups. Compounds with similar Tanimoto distance were clustered together. (B) Representative structures of the five cluster centers. (C) Drug-likeness and
ADME (absorption, distribution, metabolism, and excretion) screening based onmachine learningmodels. Detailed information is provided inSupplementary Table S1.
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that each of the 154 compounds possessed at least one influenza
virus host protein target. The top 5 compounds with the most
influenza-related targets were acacetin (K � 11), hispidulin (K �
9), indigo red (K � 8), tryptanthrin (K � 8), and calycosin (K �
8). These compounds have been reported to exert potential as
antiviral drug candidates against multiple viral infectious
diseases, such as respiratory syncytial virus, severe acute
respiratory syndrome (SARS), Middle East respiratory
syndrome (MERS), COVID-19, human immunodeficiency
virus-1 (HIV-1), coxsackie virus B3 (CVB3), and
influenza–parainfluenza (Adhikari et al., 2021; Omrani et al.,
2021; Mok et al., 2014; Chen et al., 2011; 2020; Mani et al., 2020).
Overall, the C–T network revealed that the constituent

components of BLG could exert synergistic anti-flu effects
through targeting multiple influenza virus host proteins.

Network-Based Identification of Potential
Anti-IAV Ingredients From BLG
Based on the C–T network of the 154 compounds and the
influenza virus host protein set, two network predictive
models were built to identify novel anti-IAV agents from BLG.
By setting the threshold of q < 0.05, models A and B identified 71
and 23 compounds as potent active compounds, respectively
(Figure 4A and Supplementary Table S4). To improve the
prediction accuracy, we merged the prediction results of the

FIGURE 3 | Compound–target (C–T) network for 154 candidates derived from Isatis tinctoria L. (BLG). The font size of the label and node is proportional to the
degree (connectivity) of the item. Squares and spots in the network represent the compounds and protein targets, respectively. Compounds were classified according to
chemical scaffold clustering analysis and displayed in different colors. Labels of the top 20 protein targets with the highest degree and compounds possessing at least
five influenza virus host protein targets are displayed.
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FIGURE 4 | Identification of the potential anti-influenza A virus (IAV) candidates in Isatis tinctoria L. (BLG) using statistical network models. (A) Circos plot exhibiting
the 71 predicted positive compounds (q < 0.05) bymodels based on permutation test (model A) and Fisher’s exact test (model B). Compounds simultaneously predicted
as positive by the twomodels are highlighted in bold font. (B) Target distribution of the 23 compounds that were simultaneously identified as potential anti-IAV candidates
by the two models.
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two models and obtained an intersection of the two sets of
predicted positive compounds. The 23 compounds that had
been predicted as potential anti-IAV agents simultaneously
could serve as more promising candidates (Figure 4B).
Indeed, some of them exhibited broad-spectrum antiviral
effects in previously published experiments. For instance,
indirubin was found to possess concentration-dependent
inhibitory activity on Japanese encephalitis virus (JEV)
replicated in vitro and exhibited good protective effects in a

mouse model with lethal JEV challenge (Chang et al., 2012). It
has also been reported to decrease the H1N1 susceptibility and
alleviate lung damage in a restraint-stressed mouse model by
regulating the mitochondrial antiviral signaling pathway (Chong
et al., 2017). In addition, tryptanthrin was confirmed to effectively
inhibit the CPE and virus yield (IC50 � 1.52 μM) in HCoV-NL63-
infected cells (Tsai et al., 2020). It also showed promise as a
potential candidate against SARS-CoV-2 and other viruses (Mani
et al., 2020; Xu et al., 2020). To sum up, evidence from literature

FIGURE 5 | Compound structures and physicochemical properties of the six predicted anti-influenza A virus (IAV) ingredients (eupatorine, dinatin, linarin,
tryptanthrin, indirubin, and acacetin) selected for in vitro evaluation. The radar plot exhibits the physicochemical properties of each compound (in blue) and the reference
optimal scope (in yellow and red). The optimal range of the chemical and physicochemical properties is provided by ADMETlab 2.0 (Xiong et al., 2021). Detailed
explanations of the endpoints can be found in Supplementary Table S5.
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preliminarily confirmed the reliability of the predicted results of
network-based models, suggesting that the antiviral ability of
these compounds against IAV deserves to be further
experimentally validated, especially on resistant strains.

Evaluation of the In Vitro Efficacy of Drug
Candidates on IAVs
In vitro experimental evaluation was performed to further verify
the in silico prediction of the potential anti-IAV candidates. By
comprehensive considerion of the network-based predicted
ranking, in terms of chemical structure, physicochemical
property, availability, and accessibility, we finally selected the
six most promising candidates from the 23 predicted compounds
for evaluation of their anti-IAV efficacy: eupatorin, dinatin,
linarin, tryptanthrin, indirubin, and acacetin (Figure 5). A
cytotoxicity test was performed to determine whether the
concentrations of the test samples used for the experiments
would affect cell viability. The results showed that the TC0

and TC50 values of each compound were greater than 100 μg/ml.
CPE reduction assay was performed to evaluate the inhibition

activity of the six compounds with two wild-type and one drug-
resistant IAV strains: A/PR/8/34 (H1N1), A/Minfang/151/2000
(H3N2), and A/HebeiXinhua/SWL1106/2017 (oseltamivir- and

amantadine-resistant H1N1). Our experiments included four
different time points for drug administration: pretreatment,
simultaneous treatment, posttreatment, and pre-incubation
treatment assay. As listed in Table 2, all of the six compounds
showed efficacy (selection index, SI > 1) against the wild-type
strain A/PR/8/34 (H1N1). When the H1N1 virus was treated
simultaneously or pre-incubated with the test compounds, these
candidates tended to have stronger antiviral activity compared
with other action modes, suggesting that they may directly
suppress the H1N1 activity or impair viral adsorption. For the
wild-type strain A/Minfang/151/2000 (H3N2), all the drug
candidates except for dinatin also showed antiviral effects in
the CPE reduction assay (Table 3). Among them, acacetin
showed the best inhibitory activity with an IC50 of 7.62 ±
1.45 µg/ml when it was added to the cells before virus
infection, which indicates its potential anti-flu prophylactic effect.

We further evaluated whether the candidates are also effective
against the drug-resistant strain. The results of the CPE reduction
assay of the six predicted compounds toward A/HebeiXinhua/
SWL1106/2017 (oseltamivir- and amantadine-resistant H1N1)
are presented in Figure 6 and Table 4. As listed in Table 4,
oseltamivir and ribavirin showed inefficacy in the four modes of
drug administration tested for the resistant H1N1 strain, while all
other tested candidates demonstrated inhibitory efficacy to some

TABLE 2 | Cytopathic effect (CPE) reduction assay results of the six predicted compounds toward the wild-type strain A/PR/8/34 (H1N1)

Compound Pretreatment Simultaneous treatment Posttreatment Pre-incubation treatment

IC50 SI IC50 SI IC50 SI IC50 SI

Acacetin 7.62 ± 1.45 >13.12 9.22 ± 1.23 >10.85 11.34 ± 2.93 >8.82 20.41 ± 1.24 >4.9
Eupatorin 59.46 ± 3.58 >1.68 63.99 ± 3.38 >1.56 55.77 ± 3.86 >1.79 88.92 ± 7.34 >1.12
Dinatin ND ND 37.64 ± 2.29 >2.66 ND ND ND ND
Linarin 63.22 ± 3.32 >1.58 54.27 ± 3.01 >1.84 72.21 ± 2.42 >1.38 56.26 ± 0.78 >1.78
Tryptanthrin 25.55 ± 2.19 >3.91 35.04 ± 2.98 >2.85 64.7 ± 3.57 >1.55 42.79 ± 0.59 >2.34
Indirubin 58.45 ± 10.23 >1.71 63.45 ± 5.27 >1.58 86.3 ± 5.68 >1.16 69.49 ± 1.36 >1.44
Zanamivira 0.93 ± 0.16 >107.53 0.12 ± 0.03 >833.33 0.35 ± 0.09 >285.71 0.16 ± 0.03 >625

The experiments were conductedwith four different time points for drug administration (pretreatment, simultaneous treatment, posttreatment, and pre-incubation treatment) and repeated
three times. Detailed description of the drug administration mode can be found in Materials and Methods. Data are expressed as the mean ± SD (n � 3).
IC50, 50% effective concentration (in micrograms per milliliter); ND, not detected (IC50 > 100 μg/ml); SI, selection index (TC50/IC50)
aPositive control drug

TABLE 3 | Cytopathic effect (CPE) reduction assay results of the six predicted compounds toward the wild-type strain A/Minfang/151/2000 (H3N2)

Compound Pretreatment Simultaneous treatment Posttreatment Pre-incubation treatment

IC50 SI IC50 SI IC50 SI IC50 SI

Acacetin 7.7 ± 1.6 >12.99 13.62 ± 2.72 >7.34 9.21 ± 0.87 >10.86 9.41 ± 0.54 >10.63
Eupatorin 69.31 ± 1.97 >1.44 40.75 ± 1.15 >2.45 73.85 ± 1.34 >1.35 92.58 ± 0.33 >1.08
Dinatin ND ND ND ND ND ND ND ND
Linarin 81.85 ± 2.76 >1.22 41.96 ± 1.29 >2.38 86.35 ± 9.88 >1.16 77.71 ± 3.08 >1.29
Tryptanthrin 46.35 ± 2.05 >2.16 40.32 ± 1.81 >2.48 91.84 ± 13.1 >1.09 71.72 ± 0.44 >1.39
Indirubin 77.23 ± 6 >1.29 ND ND 84.93 ± 5.09 >1.18 55.45 ± 2.03 >1.8
Zanamivira 0.78 ± 0.29 >128.21 0.38 ± 0.05 >263.16 0.98 ± 0.14 >102.04 1.02 ± 0.28 >98.04

The experiments were conductedwith four different time points for drug administration (pretreatment, simultaneous treatment, posttreatment, and pre-incubation treatment) and repeated
three times. Detailed description of the drug administration mode can be found in Materials and Methods. Data are expressed as the mean ± SD (n � 3).
IC50, 50% effective concentration (in micrograms per milliliter); ND, not detected (IC50 > 100 µg/ml); SI, selection index (TC50/IC50)
aPositive control drug
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FIGURE 6 | Cytopathic effect (CPE) reduction assay results of the six predicted compounds (eupatorin, dinatin, linarin, tryptanthrin, indirubin, and acacetin) and
positive control drug (zanamivir) toward the oseltamivir- and amantadine-resistant H1N1. The 50% effective concentration (IC50) values are provided in Table 4.
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degree. Among them, acacetin and tryptanthrin exhibited
stronger antiviral activity (Figure 6). Previous studies have
shown their promising inhibitory effect against multiple
viruses, such as coronavirus, respiratory syncytial virus, and
influenza–parainfluenza viruses (Tsai et al., 2020; Adhikari
et al., 2021). Additionally, according to the results of the drug
administration modes (pretreatment, simultaneous treatment,
and posttreatment), the earlier the samples were added to the
cells, the better the protective effect they may possess on cells
against the virus. Taking acacetin as an example, the average IC50

values for the drug-resistant IAV strain with pretreatment,
simultaneous treatment, and posttreatment were 8.44 ± 0.39,
24.33 ± 2.44, and 25.81 ± 1.85 μg/ml, respectively.
Correspondingly, its SI (TC50/IC50) decreased. Besides,
acacetin (IC50 � 9.25 ± 0.87 μg/ml) and tryptanthrin (IC50 �
7.02 ± 0.65 μg/ml) also exhibited good activities with pre-
incubation treatment, indicating that they may have a direct
inhibition function on the drug-resistant H1N1 strain. Overall,
the six predicted anti-IAV candidates exhibited inhibitory
efficacy in the CPE reduction assay both on wild-type and
drug-resistant strains and tended to possess better activity with
the pretreatment drug administration mode. Although the action
intensities of the candidates were lower than that of the positive
control drug zanamivir, the preliminary anti-IAV activities
suggested their high potential as hit compounds that deserve
to be further optimized.

Exploration of theMolecularMechanisms of
BLG Against IAV
As the CPE reduction experiments exhibited, all six tested
compounds showed inhibitory activity against IAV. The high
hit rates further proved the reliability of our prediction and
demonstrated the high potential as anti-IAV agents of the
remaining 17 compounds that have not been experimentally
validated yet. Hence, it is plausible to hypothesize that these
23 compounds predicted by the network models are the main
active anti-IAV constituents of BLG. We next explored the
synergistic effects of these compounds to showcase the

underlying MOAs of BLG against IAV. As shown in
Figure 4B, the 23 compounds acted on 27 influenza virus host
protein targets. These compounds shared a lot of common
protein targets, while each target was also targeted by multiple
compounds. Among the protein targets, TP53 interacted with
most compounds (n � 22), followed by ALDH1A1 (n � 20) and
MAPK1 (n � 16). TP53 was identified as the most extensive
essential host factor-interacting virus-targeting protein (EHF-
interacting VTP) for IAV, which holds great potential in the
discovery of host-directed antiviral agents (Xie et al., 2015). In
addition, it was reported that ALDH1A1 downregulates and
translocates to the nucleus from the cytoplasm during H3N2
virus infection, which may be associated with lipid metabolism
that plays multifaceted roles in the life cycle of influenza virus and
in virus–host interactions of (Chan et al., 2010; Heaton and
Randall, 2011; Wu et al., 2013). The host protein kinase MAPK1
was also validated as essential for the replication of influenza virus
(Bakre et al., 2013). These findings suggest the key regulatory
targets of BLG for exerting its anti-IAV effects.

Based on the 27 identified key targets, we further performed
gene enrichment analysis, including GO term enrichment
analysis and KEGG pathway annotation (Kanehisa and Goto,
2000), to explore the underlying molecular mechanisms of BLG
against IAV. The top 20 molecular function terms in GO
enrichment analysis are presented in Figure 7A. It is shown
that these targets were involved in various basic molecular
functions related to virus infection, such as the binding and
activity of protein kinase, enzyme, and transcription factor.
KEGG pathway annotation further elucidated the biological
pathways that may be regulated by BLG (Supplementary
Table S6). As shown in Figure 7B, most of these pathways
were associated with virus infection. For instance, among the
organismal system-related pathways, immune system is the
largest group, with 13 pathways. It is universally acknowledged
that respiratory virus infection usually induces effective
immunity, including innate immune response and adaptive
immune response, but overactive responses are correlated with
pathophysiology (Stambas et al., 2020). In the category of human
disease, 18 pathways are related to infectious diseases and 9 are

TABLE 4 | Cytopathic effect (CPE) reduction assay results of the six predicted compounds toward the oseltamivir- and amantadine-resistant H1N1.

Compound Pretreatment Simultaneous treatment Posttreatment Pre-incubation treatment

IC50 SI IC50 SI IC50 SI IC50 SI

Acacetin 8.44 ± 0.39 >11.85 24.33 ± 2.44 >4.11 25.81 ± 1.85 >3.87 9.25 ± 0.87 >10.81
Eupatorin 71.82 ± 6.58 >1.39 87.17 ± 5.23 >1.15 69.16 ± 2.12 >1.45 89.29 ± 5.22 >1.12
Dinatin 42.19 ± 4.61 >2.37 70.49 ± 3.85 >1.42 42.45 ± 1.57 >2.36 20.16 ± 1.28 >4.96
Linarin 64.67 ± 5.58 >1.55 73.93 ± 8.16 >1.35 58.57 ± 3.55 >1.71 29.24 ± 4.04 >3.42
Tryptanthrin 13.8 ± 0.47 >7.25 28.25 ± 2.04 >3.54 15.18 ± 0.58 >6.59 7.02 ± 0.65 >14.25
Indirubin 51 ± 4.05 >1.96 64.76 ± 1.67 >1.54 52.18 ± 0.87 >1.92 28.85 ± 0.22 >3.47
Oseltamivir ND ND ND ND ND ND ND ND
Amantadine ND ND ND ND ND ND ND ND
Zanamivira 0.2 ± 0.03 >500 0.27 ± 0.09 >370.37 4.43 ± 1.23 >22.57 0.35 ± 0.12 >285.71

The experiments were conductedwith four different time points for drug administration (pretreatment, simultaneous treatment, posttreatment, and pre-incubation treatment) and repeated
three times. Data are expressed as the mean ± SD (n � 3). Detailed description of the drug administration mode can be found in Materials and Methods.
IC50, 50% effective concentration (in micrograms per milliliter); ND, not detected (IC50 > 100 µg/ml); SI, selection index (TC50/IC50)
aPositive control drug
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correlated with drug resistance. Moreover, a lot of pathways are
associated with signaling transduction, cell growth, and death.
Figure 7C exhibits the top 20 enriched KEGG pathways with the
highest q values. Accumulating pieces of evidence have
demonstrated that these pathways are interconnected with the
anti-influenza effect of drugs. For instance, the hypoxia inducible
factor-1 (HIF-1) signaling pathway (ko04066) was one of the
significantly enriched pathways with a q value of 6E−6. HIF-1α is
an important factor in the development and repair of acute lung
injury and could regulate glycolysis and AMPKα-ULK1-
mediated autophagy, which ultimately affects IAV replication
(Zhao et al., 2020). In addition, IAV infection is a complicated

process, and its outcome is largely determined by the extensive
release of chemokines and pro-inflammatory cytokines after its
spread to the lung. Obviously, the chemokine signaling pathway
(ko04062, q � 2E−6) plays an important role in this process
(Zhang et al., 2020). A recent in vitro study has shown that the
polysaccharides of BLG significantly decreased the expressions of
chemokines stimulated by A/PR/8/34 (H1N1), including IP-10,
MIG, and CCL-5 (Li et al., 2017). Taken together, the gene
enrichment analysis highlighted the influenza-related
molecular functions and biological pathways that merit
attention, helping to understand the potential anti-IAV
mechanisms of BLG.

FIGURE 7 | Exploration of the molecular mechanisms of Isatis tinctoria L. (BLG) against influenza A virus (IAV) through gene enrichment analysis. Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were performed on the 27 influenza virus host genes that may be regulated by the 23
predicted anti-IAV compounds in BLG identified by network analysis. (A) Top 20molecular function terms in GO enrichment with the lowest q values. (B) KEGG pathway
annotation. Different KEGG classes are displayed in various colors. (C) Top 20 terms in KEGG enrichment with the lowest q values.
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DISCUSSION

Influenza is an acute respiratory infectious disease caused by
influenza virus infection that brings serious threat and heavy
burden to public health. As the most contagious influenza virus
type, IAVs have always been the major cause of seasonal and
pandemic influenza in humans. Owing to the extensive use of
antiviral treatment, the problem of drug resistance has been
increasing (Wu et al., 2020). For instance, in Europe, the
number of seasonal H1N1 infections that are resistant to
oseltamivir was up to 25% (Fiore et al., 2011). As an
alternative treatment strategy, herbal medicine may
significantly reduce the likelihood of emergence of viral
resistance due to its heterogeneous ingredients and multiple
target interactions (ZiFeng et al., 2015). Isatis tinctoria L.
(BLG) is a popular anti-influenza virus herbal medicine widely
used in China and other Asian countries. Previous in vitro and in
vivo studies have proven that some of its components possess
antiviral potential toward multiple influenza viruses (Yang et al.,
2013; Su et al., 2016; Chen et al., 2021). However, to the best of our
knowledge, there are only a few studies focusing on the
comprehensive screening of promising compounds against
IAV from BLG. In this work, we proposed a framework
combining in silico prediction and in vitro evaluation to
elucidate the effective substances and underlying molecular
mechanisms of BLG against IAV (Figure 1 and
Supplementary Figure S1). The framework consisted of the
following aspects: 1) drug-likeness and ADME virtual
screening based on robust machine learning models; 2)
construction of a global C–T network of BLG via integration
of literature-derived and computationally putative CTIs and
high-quality influenza virus host protein gene set; 3)
prioritization of the potential anti-IAV ingredients in BLG
using network-based predictive models; 4) in vitro evaluation
of the most promising predicted candidates for anti-IAV activity;
and 5) exploration of the anti-IAV mechanism through systems
pharmacology analysis including key target identification and
gene enrichment.

Recently, several in silico studies have reported on the
discovery of anti-influenza drugs. In these studies, the
structure-based drug design strategy is the mainstream
method. Molecular docking techniques were widely applied
for the identification of small molecule inhibitors binding to
influenza-related targets, such as polymerase acidic (PA)
protein (Watanabe et al., 2017), hemagglutinin (Mathew
et al., 2018), and nucleoprotein (Makau et al., 2017).
However, these structure-based approaches have always only
considered the information of a single drug target, while the
complex relationship among drugs, multi-targets, and disease,
which is precisely the pharmacological characteristic of herbal
medicine, has been ignored. Compared to previous studies, the
framework proposed in this study showcased several
advantages. Firstly, the in silico approach applied here took
into account both the chemical properties and the drug–target
interactions. We applied statistical methods, including
permutation test and Fisher’s exact test, to build predictive
models based on the C–T network and influenza virus–host

proteins, which significantly narrowed down the study scope of
the ingredients in BLG and facilitated the identification of
potential anti-IAV candidates. Secondly, our predictive
models showed good applicability and accuracy. We
identified 23 potential active ingredients that may exert
major anti-IAV effects in BLG, of which six (eupatorin,
dinatin, linarin, tryptanthrin, indirubin, and acacetin) were
confirmed to have inhibitory activity both on wild-type and
drug-resistant strains of IAV (H1N1 and H3N2) in MDCK cells.
Thirdly, compared with other modeling methods, the network-
based method maintained good interpretability of the molecular
mechanisms. Combining with systems pharmacology analysis,
we highlighted the key influenza host targets and the underlying
signaling pathways that may be regulated by BLG, providing a
reference for future related studies.

But several limitations of the presented study should be
recognized. Firstly, although multiple sources of CTIs, such as
experimentally validated and network-based inferred, were
imported to construct the CTI network of BLG,
incompleteness and imperfections may inevitably exist.
Secondly, the network-based models for the identification of
active ingredients can prioritize the potential against IAV,
which is essentially qualitative rather than quantitative
prediction. Thirdly, although previous chemical analysis
(Wang et al., 2013) and authoritative herbal medicine
databases, such as TCMSP (Ru et al., 2014), ETCM (Xu et al.,
2019), TCMIO (Liu et al., 2020), and YaTCM (Li et al., 2018),
have confirmed the existence of the predicted compounds in
BLG, their exact contents or concentrations in the extract require
further detection. Fourthly, the in vitro assays revealed that 6 of
the 23 predicted candidates showcased efficacy in H1N1- and
H3N2-infected MDCK cells; however, their inhibitory activity
toward other IAVs, such as H5N1 and H7N9, should be further
investigated. Furthermore, the remaining unvalidated
compounds also deserved to be studied using experimental
assays. Finally, the experiment at the cellular level was merely
a preliminary exploration; further in-depth in vivo and clinical
validations are necessary in a follow-up study.

CONCLUSION

This study provides a useful strategy for discovering the active
ingredients and exploring the therapeutic mechanisms of BLG
against IAV. The network-based framework showcased
availability and accuracy for lead identification of anti-
influenza compounds, which successfully identified six active
candidates after evaluation using in vitro assays. On the basis of
continuous optimization of the performance of the predictive
model by further integrating broader multi-omics data, this
study strategy of in silico prediction combined with
experimental evaluation may serve as a novel and valuable
protocol to accelerate the development of novel anti-IAV
agents from herbal medicine or a large scale natural product
library, but additional in-depth experimental studies are
required to further validate the bioactivity and define the
molecular of mechanisms.
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