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Abstract

Interstitial fluid is a solution that bathes and surrounds the human cells and provides them with nutrients and a way of
waste removal. It is generally believed that elevated tumor interstitial fluid pressure (IFP) is partly responsible for the poor
penetration and distribution of therapeutic agents in solid tumors, but the complex interplay of extravasation,
permeabilities, vascular heterogeneities and diffusive and convective drug transport remains poorly understood. Here we
consider–with the help of a theoretical model–the tumor IFP, interstitial fluid flow (IFF) and its impact upon drug delivery
within tumor depending on biophysical determinants such as vessel network morphology, permeabilities and diffusive vs.
convective transport. We developed a vascular tumor growth model, including vessel co-option, regression, and
angiogenesis, that we extend here by the interstitium (represented by a porous medium obeying Darcy’s law) and sources
(vessels) and sinks (lymphatics) for IFF. With it we compute the spatial variation of the IFP and IFF and determine its
correlation with the vascular network morphology and physiological parameters like vessel wall permeability, tissue
conductivity, distribution of lymphatics etc. We find that an increased vascular wall conductivity together with a reduction
of lymph function leads to increased tumor IFP, but also that the latter does not necessarily imply a decreased extravasation
rate: Generally the IF flow rate is positively correlated with the various conductivities in the system. The IFF field is then used
to determine the drug distribution after an injection via a convection diffusion reaction equation for intra- and extracellular
concentrations with parameters guided by experimental data for the drug Doxorubicin. We observe that the interplay of
convective and diffusive drug transport can lead to quite unexpected effects in the presence of a heterogeneous,
compartmentalized vasculature. Finally we discuss various strategies to increase drug exposure time of tumor cells.
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Introduction

Cancer is a complex disease which involves phenomena across

different scales from the molecular genetic level to the tissue as a

whole. Cancerous cells of solid tumors have undergone mutations

all of which combined lead to cancer [1]. These involve a

dysfunctional control of proliferation, the ability to survive under

low nutrient conditions and the stimulation of increased vascular-

ization through angiogenesis [2]. This leads to an advantage in the

competition over space and nutrients whereby cancer cells are also

able to evade the immune systems which would otherwise kill

malfunctioning cells. Solid tumors grow as compact masses. In

order to grow larger than a few millimeters they must acquire

additional nutrient supply through a blood vessel network. In

response to inadequate supply cells produce signaling substances

called growth factors which diffuse through the tissue and

stimulate sprouting of new blood vessels from preexisting host

vessels (angiogenesis). In tumors this angiogenic activity is located

within a few hundred micrometers from the tumor rim. Fueling

further growth, the resulting neovasculature is progressively co-

opted together with the original blood vessels by the expanding

tumor mass while also pushing the neovascularization zone further

into normal tissue. Chemical signaling by the tumor is however

abnormal, leading to chaotic non-hierarchical vascular organiza-

tion. Behind the invasive edge, angiogenic activity ceases. Further

proliferation of endothelial cells instead leads to circumferential

growth and dilated tumor vessels. Also vessel walls degenerate via

detachment of structural support cells like pericytes and smooth

muscle cells. In conjunction with decreased blood flow rates vessels

become prone to collapse leading to large unvascularized regions.

Some surviving vessels thread the tumor, distal to which the tumor

tissue becomes necrotic due to the lack of nutrients. As a whole

such a typical tumor vasculature is characterized by tortuous

vessels, chaotic connectivity and heterogeneous distribution as well

as a compartmentalization into a zone with high micro-vascular

density (MVD) near the invasive edge and a rapid density drop

towards the center.

The interstitial fluid (IF), which is a solution that bathes and

surrounds the human cells and originates from blood plasma

extravasating from capillaries through pores and intercellular clefts

in the vessel wall, plays an important role in the development and

treatment of tumors. Due to degenerate walls many tumor vessels

are leaky leading to a stronger coupling of the interstitial fluid

pressure (IFP) with the blood pressure. This leads to an interstitial

hypertension which can be elevated up to the blood pressure. The

resulting decreased pressure difference across vessel walls is

believed pose a barrier to drug delivery due to decreased

convective trans-vascular transport or even back-flow [3–8].
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Moreover functional lymphatics which would normally drain the

superfluous fluid are absent in most tumors aggravating the IFP

increase [2]. As a result the IFP profile assumes a plateau in the

center of the tumor and drops off rapidly across the boundary.

This gradient drives a strong outward directed convective flow at

around 0.1 mm=s. Signaling chemicals or tumor cells can therewith

be transported into normal tissue or into lymphatics, promoting

invasive behavior and metastatization [8,9]. Indeed high IFP is

associated with a negative prognosis. High IFP also has negative

implications for chemotherapeutic treatment. Through the out-

ward convection, drug may be removed from the peripheral

regions.

Mathematical modeling of interstitial fluid flow and delivery was

first approached in a radially symmetric geometry with homoge-

neously distributed source and sink terms using a porous media

model for the interstitial flow velocity [3]. This predicted in

agreement with experimental results an elevated IFP profile and

the corresponding velocity profile. Convective (drug) extravasation

was virtually limited to a small peripheral region. Later, extensions

were developed using explicit representations of the blood vessel

network in two dimensions. In [10] individual vessels were

arranged as rectangular grid and their blood pressure was coupled

to the IFP at their lattice sites, including the effect of fluid loss

through the vessel walls. A similar approach was taken in [11] but

with a tumor vasculature which was generated from in-growth

from two parent vessels. Except for [3] these studies did not

consider drug transport. Recently, simulations of IF flow and drug

transport were conducted based on imaging data from real tissues

[12]. An analysis of biophysical parameters governing the

distribution of the local drug concentration was performed in

[13] primarily focusing on the effects of varying tissue permeabil-

ities for diffusing drugs. The modeling incorporated a tumor

vasculature, realistic tumor lesions and cellular uptake and

binding. However convective transport was neglected. In [14] a

model was introduced in which interstitial fluid interacts with a

growing tumor, also incorporating a vascular network that evolves

dynamically from an initial capillary grid. IFF and hence

convective transport of macro-molecules depend crucially on the

spatial distribution and strength of IF sources and sinks within the

tumor, which are determined by the spatial arrangement of blood

vessels together and their local blood pressure. Even when

lymphatics are absent within the tumor, leaky vessels with low

blood pressure represent also sinks for IFF inducing non-trivial

flow patterns inside the tumor with unexpected effects for the

convective transport of macro-molecules. It is clear that the

predictive power of a computational model for IFF and drug

delivery depends critically on the physiological relevance of the

underlying model for the tumor vasculature. In the present paper

we present for the first time a IFF and drug delivery study with a

realistic, hierarchically organized arteriovenous initial vasculature,

circumferential growth of tumor vessels and IF back flow into

tumor vessels.

In earlier work we developed a mathematical model for

vascularized tumor growth which involved an initial vasculature

[15,16] arranged as a grid and updating rules representing

angiogenesis, dilation and collapse. More recently, it was extended

with an arteriovenous initial vasculature where quite realistically

few arteries and veins branch out in a tree-like manner down to

the lowest level where they are connected by capillaries [17–19].

Using this framework, biophysical aspects of tumor blood flow and

the spatial distribution of tumor blood vessel were analyzed but it

did not involve the IF explicitly nor the presence of drugs.

In this paper we want to compute the interstitial fluid pressure

and flow within a tumor and use this information to predict drug

delivery within the tumor and its various dependencies on

physiological parameters. These parameters include the blood

vessel network morphology as opposed to simplified vasculature

models, blood flow characteristics, blood pressure, permeabilities

of the vessel walls, the interstitium and lymphatic walls, the mass of

drug particles, i.e. the ratio of convection vs. diffusion. The tumor

phenotype that we consider is a vascularized solid tumor for

example a melanoma or glioma which grow in their natural

environment in a human host with characteristic features as

described above. Samples of such tumors were studied experi-

mentally in [20,21,32].

One particular question is how far an elevated IFP is an obstacle

to drug delivery. The general consensus is that elevated IFP

reduces the convective flux through the vessel walls, due to the

lowered pressure difference. However, our results indicate that this

does not necessarily need to be true and that the relation between

IFP and IFF is more complex, also involving vessel wall and tissue

conductivity. Moreover our model predicts Peclet numbers (ratio

of diffusion to convection) of the order of 1 in the tumor periphery.

There the IF flow is largest and almost perpendicular to the

boundary into normal tissue. Hence neither diffusion nor

convection can be neglected. Finally our model also allows to

study extreme cases like the delivery of very heavy drug particles,

which are transported purely by convection. Their distribution is

harder to predict than for a highly diffusive drug since it is

dependent on long range transport along chaotic IF flow patterns

which are eventually governed by vascular morphology.

This paper is organized as follows: Our mathematical model is

defined in the next section. We first define the representation of

the vessel network followed by remodeling rules during tumor

growth and the procedure to construct the initial network. Then

we define continuous parts, including the representation of tissue,

modeling of tumor growth, IF flow, chemical concentration fields

involved in tumor growth and finally drug transport. Finally a brief

overview of our numerical implementation and a derivation of

parameters are given. The subsequent results section comprises a

discussion of a typical base case including a brief presentation of

results obtained from tumor growth simulations and an in-depth

analysis of IF flow and drug delivery. After that various other cases

are analyzed before the paper is finally concluded.

Model

The model has been developed for simulations in three

dimensions in Cartesian space. It is a hybrid model with discrete

(vessels) and continuous parts (everything except vessels), see

Figure 1 for an illustration. Continuous distributions are defined in

the spatial domain V that we choose to be a cubic box. Discrete

vessels are defined on a face centered cubic (FCC) lattice L, which

has 60
0

branching angles between parent and child branches.

Varying branching angles would require modeling the vessel

network in continuous space, which is computationally much more

demanding but would not change the large scale morphology of

the resulting network. V overlaps with L and both are centered at

the origin. The lateral size of L is 8 mm and that of V is 4.5 mm.

The size of L is chosen to be larger to reduce boundary effects. V is

initially filled with normal tissue and contains a small tumor

nucleus located in its center.

We study IF flow and drug delivery for static tumor

configurations. This means the tumor growth is simulated up to

a specific time without explicit involvement of IF or modeling

effects of drugs. Then IFP and IF flow are computed, and finally

the spatiotemporal distribution of the drug concentration with the

tumor frozen in time. A coupling would be interesting in the
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context of studying various therapeutic protocols, which we defer

to forthcoming publications.

Blood Vessel Network
Let V~ffvg, fngg be the graph which formally describes

vessels (edges) fvg and junctions (nodes) fng. Vessels coincide with

bonds from L, starting at one site of L and ending at another. They

can span multiple bonds but must be straight. Each vessel carries

biophysical properties like radius or blood flow. We will introduce

them as needed.

Blood flow is an essential part of our model. For vessels we

compute the flow rate qv (volume through its cross-section per

time) and shear stress on the vessel wall fv and the blood pressure

pv at the endpoints. The indices are dropped in the following. We

assume ideal pipe flow within the vessels, obeying Hagen-

Poisseuille’s law

q~
p

8

r4

g

Dp

l

f ~
r

2

Dp

l
,

where Dp is the pressure difference between the vessel ends, l is the

vessel length, g the blood viscosity and r the vessel radius. g is

composed of the blood plasma viscosity 4:10{6 kPa s times the

relative viscosity gr(r,H) which is a function of the hematocrit H
and the radius. For gr we use a formula based on in vivo

experimental data [22]. For simplicity, we assume that H~0:45,

the average in the human body. Mass conservation at each node

requires that the flow rates of attached vessels sum to zero:

Svqv~0 (Kirchhof’s law). Together with appropriate boundary

conditions a system of linear equations for the nodal pressures

arises which is solved numerically. As boundary condition the

pressure is fixed at the arterial and venous roots of the vascular

trees. These boundary pressures are determined as function of the

vessel radius, also guided by experimental data [23] (see

Supplement S1 (1)). Note that we do not incorporate the

extravasated fluid into the mass balance, which is justified since,

as we will demonstrate in the results section, the amount of

extravasated liquid is orders of magnitudes smaller than the total

vascular blood flow. In the rest of the paper q and f will denote the

absolute value of the flow and shear force within a vessel - above

they carried a sign.

Blood vessel network remodeling, the process in which the

hierarchically structured initial network is reorganized by the

growing tumor is defined by a set of stochastic and continuous

processes which model angiogenesis, dilation, degeneration and

collapse. They are implemented as updating rules which are

applied consecutively in each time step. As a result, vessels are

created, deleted or they change their properties. These rules are

adopted straight forward from the 2d case [18] and presented here

again for completeness.

Our time stepping scheme advances the vessel network in fixed

steps of width Dt. Assuming that the frequency of a stochastic

event is determined by a rate parameter k we approximate the

probability for its occurrence in one time step as p~kDt. We

chose Dt sufficiently small such that pv1.The time evolution of

continuous processes described by differential equations of first

order in time is handled by Euler’s method with time step Dt. In

the following we describe the individual vascular remodeling

processes that are incorporated into our model, for an illustration

of theses processes (see Supplement S1).

Sprout initiation models the event when endothelial cells

(ECs) leave the parent vessel in order to grow a new sprout. It is a

stochastic process that adds new vessel segments to the existing

network. Lattice sites occupied by the existing network are visited

in random order and at each of these sites a new segment is

attached with probability Dt=t
(sprout)
EC provided that the following

conditions are met: the growth factor concentration is non-zero,

the distance to the next branching point is larger than l(spr) and the

time spent within the tumor is less than t
(switch)
EC . The new segments

are created along neighboring lattice edges where the growth

factor gradient is maximal and where no other vessels are already

present. A vessel is tagged as ‘‘within the tumor’’ if at least one of

the endpoints is within the tumor, which is true where the level set

function h(x)v0 (see below). Vessels also have a property which

can tag them as sprouts and tell for how long they have been

sprouts. We denote this ‘‘life-time as sprout’’ as t.

Sprout migration is the process in which initial sprout vessels

continue to grow. The probability is Dt=t
(sprout)
EC for vessels which

are tagged as sprout. A growth event is realized by appending a

vessel segment along a single lattice edge in the same direction as

the existing sprout. Sprout vessels are untagged and become

normal vessels if the tip fuses with another vessel such that blood

can flow or if their twt
(migr)
EC , where t

(migr)
EC is a parameter which

defines the maximal sprout growth time. If the tip fuses with

another sprout without creating a conducting branch then it

remains tagged as sprout. Sprout initiation can also start from

sprouts which emulates tip splitting as observed in-vivo and in-

vitro. Sprouts are excluded from the collapse, degeneration and

circumferential growth mechanisms.

Wall degeneration models the detachment and disintegration

of cell layers and membranes around the vessel lumen. Therefore

Figure 1. Illustration of the model components. L denotes the
lattice on which edges can be occupied with vessel segments. A few
exemplary segments are shown as blue bars. L coexists with V which
denotes the region over that continuum equations are defined. The
tumor region VT is indicated in yellow. The darker tone indicates
necrotic regions. Viable regions, denoted VV are brighter.
doi:10.1371/journal.pone.0070395.g001
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we implement the property w which reflects the vessel wall

thickness for normal vessels, and continuously decreases for tumor

vessels with the rate Dw until zero. For values smaller than e.g. the

size of an EC, w becomes an abstracted representation of the

stability and tightness which the remaining EC layer provides. w is

initialized (sprouts and initial vessels) with the wall thickness of real

healthy vessels in dependence on their radius [24] (see Supplement

S1).

Vessel collapse models pinch off of blood flow and complete

disintegration of the vessel. It is a stochastic process where a vessel

can be removed with probability Dt=t
(coll)
EC under the condition that

its wall stability variable wvw(coll) and its wall shear stress

f vf (coll). Thereby r(max), t
(switch)
EC , t

(coll)
EC , w(coll) and f (coll) are model

parameters. Recently the Ang-Tie system was modeled in a similar

context [25]. This is straight forward to include in future work.

Here we model the effects of it, rather than the system directly.

Vessel dilation models the switch to circumferential growth

within the tumor [21]. During circumferential growth the vessel

radius increases continuously with the rate Dr. The requirement is

hereby that rvr(max), the average growth factor concentration

over the segment is non-zero and the time spent within the tumor

is larger than t
(switch)
EC .

Initial Blood Vessel Network Construction
To our knowledge there are no data sets from real networks

available that cover a few millimeters of tissue and represent the

complete vasculature including micro vessels in a form which is

convertible to a ‘‘network of pipes’’ as required for our modeling

purposes. Therefore we decided to generate it algorithmically. Our

aim is to maximize the lattice occupation with a network which

exhibits a hierarchical topology and homogeneously distributed

capillaries.

A well known method is constraint constructive optimization

(CCO) [26] in which a tree is grown by successively adding branch

segments at locations given by some optimality criterion e.g.

minimal total surface area. The constraints are that there is no

geometrical overlap of the branch segments and that new

segments must reach certain previously unperfused tissue blocks.

The radii at branching points rb,rc behave according to Murray’s

law [27] ra
a~ra

bzra
c , where ra is the radius of the parent branch

and a is an exponent. a has been found to range between 2:55 and

3. The latter is a common choice which is also taken here.

In [28] a method was presented in which vascular trees on a

lattice are stochastically grown and remodeled. This has the

advantage of being relatively simple and being capable of building

connected networks comprising arteries, capillaries and veins,

whereas in CCO one typically has ‘‘dangling’’ terminal branches

where capillaries should connect to. In [18] we adopted this

method in order to obtain initial networks for 2d simulations.

Later we applied it on a cubic lattice [19] and here we apply it on

a FCC lattice. An illustration of the steps can be found in

Supplement S1.

The initial network construction is based on a relatively coarse

lattice with a lattice constant that corresponds to the mean inter-

capillary distance ~hhL~80mm. After the construction of the network

on the coarser network it has to be mapped on the finer lattice

with ~hhL~10mm for use in the subsequent simulation. FCC lattices

can be subdivided not unlike cubic lattices, meaning that sites and

edges of the coarse lattice coincide with site and edges on the fine

lattice. The tedious details are omitted here.

The construction is initialized by placing nodes which serve as

roots for the trees onto boundary sites of the lattice. The type of

these nodes is either arterial or venous, placed in alternating order.

The subsequent construction is then carried out in two stages. In

stage one, trees are grown by a stochastic process in which

‘‘structural elements’’ are successively appended to one of the

current tree leafs. As structural element we take either single

vessels or a Y-shaped aggregate of three vessels. The element, its

orientation and the leaf are determined by randomly (see

Supplement S1). Eventually the lattice is filled but arterial and

venous side are not interdigitating sufficiently to yield a

homogeneous capillary distribution.

This is corrected in a second remodeling stage. Capillaries are

temporarily inserted in-between neighboring arterial and venous

terminals. We set the capillary radii to 4mm. Radii of terminal

branches are set to 4:5mm for arteries and 5mm for veins. Radii of

higher level vessels are determined by Murray’s law. As a result an

intermediate functional vascular tree is obtain for which blood

flow is computed. Shear-stress dependent growth and shrinkage is

carried out by stochastic removal and attachment of vessels from

or to terminal branches. High shear-stress means higher proba-

bility to grow and vice versa. The idea originates from the

observation that high shear stress indeed promotes vessel survival

and stability [29]. We repeat this stage until the number of

capillaries reaches a plateau. Trees can potentially grow from each

of the root nodes. A few of these trees establish themselves while

most of them regress and disappear.

For this paper we extended the algorithm from [18,19] with an

‘‘outer’’ loop producing increasingly fine resolved networks in a

hierarchical fashion. This effectively reduces the tortuousity of

major vessels. The first level (coarsest network) is constructed as

described above. Then the lattice is refined, halving the lattice

spacing and doubling the number of sites in each direction.

Arteriovenous trees are kept in place and capillaries are discarded.

Each vessel segment now occupies two lattice bonds. The lattice

spacing is then reset to its former value. Hence, the spatial extend

and segment lengths are effectively doubled. Now the random

growth and remodeling steps are executed as above, where the

previous terminal nodes now serve as new roots. This up-scaling

and growth procedure is repeated a preset number of times. The

results shown here were generated from a 25|31|31 base lattice

and 2 up-scaling steps.

The Continuum Model for Tissue
Our tissue model is based on the framework developed in [30]

which describes the tissue as a mixture of various tissue

constituents. A mathematical model is formulated in terms of

smoothed fields of quantities such as density, velocity, stress, etc.

Several constituents can coexist at one material point due to

smoothing. Assuming incompressibility, one can describe the

composition in terms of volume fractions with the constraint that

the fractions sum up to one at every point in space. For brevity, we

just give the final set of equations. A derivation can be found in

[30], see also [31]. The result is a system of partial differential

equations of the diffusion convection reaction type.

First, let us denote tissue constituents and their volume fractions:

N wT : tumor cells

N wN : normal cells

N wD : necrotic cells

N w~wTzwNzwD

N m : ECM

N l~1:{w{m : interstitial fluid

Tumor cells and normal cells are immiscibly separated by the

interface LVT (t), where VT (t) is the tumor region.

Interstitial Fluid Flow and Drug Delivery
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w~
wTzwD, inVT ,

wNzwD, inV\VT

�

This is analogous to immiscible liquids, where cell-cell adhesion

forces correspond to the atomic forces in the liquids. We assume

however that the adhesion forces are very weak, which allows us to

neglect the surface tension term which would normally appear in

the momentum balance equation. It will be included in future

work.

All w constituents move with the same velocity field vw which is

driven by the gradient of a solid pressure (the isotropic component

of the stress tensor) pw. It is based on the assumption that inertia is

dominated by friction against a rigid ECM through which cells

flow like a liquid through a porous medium. Therefore we have

vw~{Kw+(wpw) ð1Þ

Lw

Lt
z+:(wvw)~Qw ð2Þ

LwD

Lt
z+:(wDvw)~QD ð3Þ

_xx:n~vw
:n, for x[LVT , ð4Þ

where (1) is the condensed momentum balance, Kw is a mobility

constant and Qw and QD are source terms to be defined below.

Note that this set of equations is applicable to tumors that have a

clearly delineated rim as for instance rat C6 gliomas and human

glioblastomas [21], human malignant melanoma [20], leiomyo-

mata [32], etc. It is not valid for non-solid cancers like Leukemia

and highly invasive tumors which do not have such a clearly

delineated rim.

The motion of LVT is formally defined by (4). In practice we use

the level set method [33] to represent VT and LVT and introduce

an auxiliary field h(x) which gives the closest distance to LVT . It is

signed so that h(x)v0 for x[VT . Over time it evolves according to

the advection equation

Lh

Lt
zvw

:+h~0: ð5Þ

We can now define wT~(1{Hh(h))(w{wD) and

wN~Hh(h)(w{wD), where h is the lattice spacing of the numerical

grid (see below) H denotes a smoothed Heaviside step function

with width (see Supplement S1).

For the pressure we take

pw(w)~ max½E(w{~ww0),0�:

For simplicity and the lack of better knowledge we use a linear

elastic law with elastic modulus E. Also, we assume that cells do

not exert pressure upon each other when w is less than the volume

fraction in a fully relaxed state ~ww0.

The source terms are composed of contributions from T ,N and

D as follows

Qw~Qz
N zQ{

N zQz
T zQ{

T zQx
NzQx

T ,

QD~{Qx
T{Qx

N ,

where Q+
a stands for proliferation and apoptosis of phase a and

Qx
a stands for necrosis.

We assume proliferation depends on packing density [34], i.e.

volume fraction w, and on available nutrients co. Cells do not

proliferate in regions with high density where apoptosis reduces

the density towards the so called homeostatic (equilibrium) density

w0,a. At w~w0,a, and for sufficiently high co, apoptosis and

proliferation rates cancel so that the net production rate Qz
a zQ{

a

vanishes. Moreover Qz
a varies linearly with w{w0,a. Under low

nutrient conditions proliferative activity stops, i.e. Qz
a ~0 for

covfz, where fz is a threshold parameter. Consequently,

apoptosis and possibly necrosis reduce the cell density. The

difference between these events is that apoptosis leaves no debris as

cells are deconstructed in an orderly fashion, i.e. the respective

cellular material vanishes. Necrosis occurs under very low nutrient

conditions if covfx
vfz, where fx is also a threshold parameter.

The fraction of cells undergoing necrosis is transferred to wD via

the rates Qx
a . In total this behavior is summarized in the following

formulas:

Qz
a ~wa max½min½c

z
a

sw
(w0,a{w)zc{

a , cz
a H(co{fz)�,0�

Q{
a ~{wac{

a

Qx
a~{wacx

a(1{H(co{fx)),

for a~T ,N, where cz
a , c{

a and cx
a are constant rate coefficients

(proliferation, apoptosis and necrosis), sw determines the sensitivity

to density variations and H is the Heaviside function. Note, the use

of ‘‘min’’ in conjunction with the Heaviside function. It limits the

proliferation rate by either cz
a or 0 (no proliferation) depending on

nutrients.

Interstitial Fluid Flow
IF is commonly modeled as a liquid within a porous medium,

e.g. [11,12,14,35]. We follow this approach and assume that cells

and ECM collectively constitute the porous medium. Here we

consider only stationary states, with a static tumor and a rigid

medium, thus Ll=Lt~0. Mass balance for the IF fraction l requires

that

+:(lv l)~Ql , ð6Þ

with its velocity vl and source distribution Ql . Neglecting inertia

terms one obtains the momentum balance equation

0~+:Tlzf l , ð7Þ

where Tl is the stress tensor of the liquid, (+)ij~LTij=Lxj and fl an

interaction force with the other constituents. We use the results in

Interstitial Fluid Flow and Drug Delivery
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[31] and [30] where constitutive relations for Tl and fl were

obtained for the case of a solid-fluid mixture. Assuming that the

interstitial fluid is an ideal inviscid liquid, its stress tensor consists

only of the contribution from the interstitial fluid pressure pressure

pi or in the following just p.

Tl~{lpI ð8Þ

The interaction force is defined in such a way that we later obtain

a variant of Darcy’s law

fl~{
1

Kl

v lzp+l: ð9Þ

The first term represents friction with cells and ECM fibers,

where Kl is a tissue dependent permeability coefficient. Substitu-

tion of equations (8) and (9) in (7) yields a variant of Darcy’s law

v l~{lKl+p, ð10Þ

which leads to an elliptic equation for the pressure

{+:(l2Kl+p)~Ql : ð11Þ

Note that l2Kl is the classical conductivity of the porous medium.

We define Kl~Kl(h) so that it smoothly interpolates between

parameter values for tumor Kl,T and normal tissue Kl,N . Kl,T and

Kl,N are chosen so that the conductivity in the bulk assumes

experimentally determined values. Note that l is almost constant

distal to the tumor boundary and varies over a small value range

since w [ ½0:5,0:6�.
The source term is composed of contributions from the vessel

network Qlv and lymphatic sinks Qll so that Ql~QlvzQll . Both

are determined by the flux across the channel walls. For vessels,

this flux is driven by the pressure difference pv{pi and an osmotic

contribution s½pv{pi� (Starlings equation) [36]. For lymphatics

we assume an analogous relation but neglect osmosis due to the

lack of data.

Qlv~L
(v)
l S=V (pv{pi{s½pv{pi�) ð12Þ

Qll~L
(L)
l S(L)=V (pL{pi), ð13Þ

where pL is the lymphatic pressure, L
(v)
l and L

(L)
l are permeabil-

ities, S=V and S(L)=V are the channel surface area densities per

volume and pi and pv denote the so called oncotic pressures. s, the

reflection coefficient, is a tissue specific value.

The standard approach for modeling exchange with vessels on a

small scale would use boundary conditions at the vessel walls,

while tessellating the surrounding space with a fine grained mesh.

However this would make the large length scale which we are

interested in inaccessible due to the size (we have of the order of

106 vessel segments). Instead we integrate the flux approximately

over the vessel surfaces within each numerical grid cells and add it

as source term. An approximation inherent to this method is that

the space covered by the vasculature is not excluded from the

interstitial space.

Hence (12) is not applied in this exact form. The source flux is

implemented as superposition of smoothed delta functions dE (see

Supplement S1 ). Their locations y are generated from a stochastic

uniform sampling of the surfaces of the cylindrical pipes which

make up the vessel network. We write this formally as y [ v, where

v symbolizes a vessel. For a numerical grid cell with index i and

center xi, Qlv then becomes

(Qlv)i~
X

v

X
y[v

c
v,y
i (pv(y){pi{s½pv{pi�) ð14Þ

c
v,y
i ~dh(xi{y)Lv

l Sv,y=h3,

where h is the grid spacing, Lv
l the wall permeability, Sv,y is the

area corresponding to a sample on v, and pv(y) is the blood

pressure in v at position y, linearly interpolated between the nodes.

Different degrees of vessel leakiness are incorporated based on

the maturity state w. We assume that w reflects the vessel wall

thickness for sufficiently large vessels and that the wall’s resistance

(Lv
l ){1 increases proportionally to the wall’s thickness. This

eventually leads us to

(Lv
l ){1~ max (ll,T ){1,

(ll,N ){1

w(init)(r~5mm)
wv

( )
, ð15Þ

where ll,T and ll,N are experimentally determined permeabilities

for capillaries in tumor and normal tissue, respectively, and

w(init)(r) is a formula based on experimental data [24] from which

we obtain the physiologically normal thickness of the vessel wall

depending on the radius (see Supplement S1 (2)). For small w the

identification with the wall thickness breaks down and it becomes a

mere abstract quantity inversely related to the amount of leakiness.

In order to obtain realistic permeabilities for tumor vessels as well,

we are therefore free to bound Lv
l from above by ll,T .

Lymphatics on the other hand are modeled as continuous sink

distribution, where their surface area S(L) depends on the tissue

type via h analogous to Kl and moreover L
(L)
l and pL are assumed

to be constant. Hence we can use (13) directly in the numerical

implementation.

Chemical Concentration Fields
The basis for the description of dissolved chemicals is the

following diffusion convection reaction equation which determines

the evolution of the concentration c(a) in constituent a [30].

Lac(a)

Lt
z+:(ac(a)va)~+: aD(a)

c +c(a)
� �

zQ(a)
c , ð16Þ

where D(a)
c are effective diffusion constants (assumed to be scalar)

and Q(a)
c a source term. For nutrients and growth factors, we

approximate the concentration as the equal in all phases c(a):c

under the assumption that the exchange among constituents is

very fast. Then, summation of (16) over all a gives

Lc

Lt
z+:(c c ~+:(Dc+c)zQc ð17Þ

vc~wvwzlv lzmvm,
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where Dc is the composite effective diffusion coefficient, and vc the

composite velocity of the mixture. In the following we will use

subscripts to c to denote specific chemical species: co denote

nutrients, cg are growth factors. For drug we distinguish

concentrations in two different compartments si : ~cd,i for which

i~1,2 denote the extra-and intra cellular space, respectively.

Nutrients are represented by the most prominent one, namely

oxygen with its concentration co. The time scale on which co

relaxes after changes is negligible, of the order of seconds, and thus

co is assumed to be always in a quasi stationary state,

instantaneously adapting to changes in the system. Convection is

neglected due to the dominance of diffusion. Consequently we

obtain

0~Do+2co{c{
o cozLoS=V (cv

o{co), ð18Þ

where we already replaced Q with a particular form of the source

term: The second term represents consumption with the tissue

dependent rate c{
o . The third term represents the diffusive flux

across the vessel wall, which we treat analogous to the interstitial

fluid source term (14), only Lv
l is replaced by Lv

o, and pv by the

blood oxygen concentration cv
o. Since we already assumed that the

hematocrit is constant over the whole vasculature, we further

assume for simplicity that the oxygen concentration cv
o also

constant over the perfused parts and zero in unperfused vessels.

Growth factors are collectively represented as a single diffusible

species with its concentration cg. A prominent representative is

VEGF which is over expressed in under-oxygenated tumor cells.

We assume a constant production rate by tumor cells in locations

where covfz and that it diffuses, binds and degrades everywhere

equally. Instead of solving a diffusion equation we use a simpler

and faster approximation based on a Green’s function approach:

every source site generates a linearly decaying contribution to cg

with the cutoff or diffusion radius Rg. Thus we have

cg(x)~

ð
d3x0 G(jx0{xj)wt(x

0)H(fz{co(x0)) ð19Þ

where we define G(x)!max(0,1{x=Rg), with a normalization

constant so that
Ð

G(jxj)~1. Note that consequently, by

definition of the angiogenesis rules, sprouting occurs within Rg

of oxygen deprived TCs and a cg gradient arises along which

sprouts are oriented.

Transport and uptake of drug is modeled as diffusion advection

process in the interstitial fluid and sequestration into the cell

constituent. We distinguish between the concentrations s1 in the IF

and s2 within cells as average over the solvent volume. The tissue

volume average reads s~s1lzs2w with the volume fractions l and

w as defined above. Following (16), we define specialized mass

balance equations as

l
Ls1

Lt
z+:(s1lv l)~+:(lDs+s1)zQs1

zQ12 ð20Þ

w
Ls2

Lt
~{Q12, ð21Þ

where Q12 is the exchange rate between the two compartments,

Qs1
the source contributions from vessels and lymphatics and Ds

the diffusion coefficient in the IF. For a simple derivation of Q12,

we assume the total flux of molecules across the cell-fluid interface

area S within some volume V has the form J~S(~kk21s2{~kk12s1)

with the rate constants ~kkij which model the combined effect of

diffusion through the cell membrane and intracellular binding and

unbinding. We write S in terms of the single cell volume Vc and

surface area Sc as S~lwVSc=Vc, assuming that only the fraction l
of the cell surface is in contact with the IF. Then we obtain with

kij~
Sc

Vc

~kkij

Q12~J=V~wl(k21s2{k12s1): ð22Þ

Furthermore the contributions from vascular and lymphatic

exchange are given by

Qs1
~Qz

lv sv{(Q{
lv zQ{

ll )s1zLv
sS=Vl(sv{s1), ð23Þ

where S has the original meaning of vessel surface area again. The

diffusive permeability Lv
s is defined exactly like Lv

l in (14) and (15)

with correspondingly exchanged subscripts including the perme-

abilities of tumor vessels ls,T and normal capillaries ls,N . Qz
lv

stands for extravasated fluid volume per mixture volume carrying

the concentration sv which is the concentration within the vessels.

We assume that sv is homogeneous over the whole network but

time dependent where the dependency is given as closed formula

e.g. an exponential decay after a hypothetical injection at t~0.

Q{
lv stands for fluid uptake by vessels. Analogously Q{

ll for uptake

through lymphatic. Since these terms represent flow out of the

interstitial space, they are multiplied by s1 in order to obtain the

respective solute flux. We could define a Qz
ll for symmetry but in

practice fluid always flows into lymphatics, never in the opposite

direction. We treat Q+
lb analogously to Qlb, for b~l,v in (12) and

(13) with the exception that only contributions are added where

the blood or lymphatic pressure is larger (z) or lower ({) than the

IF pressure. Indeed Qz
lv zQ{

lv zQz
ll zQ{

ll ~Ql .

Numerical Implementation
Solutions to partial differential equations are computed by finite

difference schemes on a regular uniform staggered grid [37].

Numerical values for concentrations, volume fractions, etc. are

defined on grid cells, while velocities and fluxes are defined on

faces. The grid spacing h is 30 mm which corresponds approxi-

mately to two to three tissue cells. The diffusion terms are

discretized by standard 9 point centered difference stencils. All

system of linear equations are solved with (algebraic multigrid - if

needed) preconditioned conjugate gradient method. Specifically,

we use the solvers in [38]. Advection terms are treated by a central

scheme for conservation laws [39]. In the time, the operator

splitting technique [37] allows treatment of various sub-systems

separately, i.e. sub-systems are advanced one by one, always using

the newest available state. The cell volume fractions w and wD are

updated simultaneously with the 2nd order improved Euler

method. The level set function h is updated likewise. The vessel

network is updated in 1 hour steps. In these periods for w,wD and h
smaller sub-steps must be taken the length of which is dictated by

the stability conditions of the time integration methods. In practice

these steps are about 0:02h wide. Sometimes h must be

‘‘redistanced’’ in order to restore the distance function property

j+hj~1. The WENO method presented in [40] works very well

for our purposes. The computation of cg and co as well as

redistancing are not performed every step. We determine the time

between updating these fields by the time it takes tissue cells to

cross a numerical grid cell and also by the time scale of the source
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term, which gives the time min (h=vw,(LQw=Lt){1), where we take

the minimum over space and time since the last update. The

numerical solution of the drug concentrations s1 and s2 is carried

out using the central advection scheme [39] and the improved

Euler method.

Parameters
A list of parameters for our base case system can be found in

tables 1 and 2. The sprouting parameters t
(sprout)
EC and t

(migr)
EC are

estimated from in-vitro endothelial cell (EC) migration experi-

ments in [41]. It is known that angiogenesis is inhibited in ECs

near existing branching points. For this l(spr)~20mm seem

reasonable, which are about two nearby ECs. The vessel dilation

rate Dr and maximal radius r(max) was extracted from [21] where

the spatial compartmentalization of human melanoma was

described. The wall thickness w is initialized at t~0 depending

on the vessel radius (see Supplement S1 (2)) guided by

experimental data [24]. The wall degradation rate was estimated

from [21] based on tissue section at increasing stages of tumor

progression. We simply observed how long it takes until the

supporting wall structures of a vessel with a certain radius are

removed. For the critical collapse shear stress f (coll) we assumed

that it is a low percentage of the average shear stress within the

system, also guided by comparison of predicted vascular density

levels with data from [20].

The oxygen level in our model is dimensionless and normalized

to 1 which is the level within vessels. We divide the diffusion

equation (18) by Do. Hence it is left to determine the quotients

with the consumption rates c{
o,a=Do and vessel permeability

lo,a=Do for a~N,T . For this purpose we use that the penetration

depth (i.e. the length scale on which the solution decays around

vessels) in tumor tissue is about 100mm and can be expressed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Do=c{

o,T

q
. We assume that c{

o,T~4cz
o,N . The precise number is

arbitrary and non-crucial but reflects that tumor cells have a

higher oxygen consumption rate leading to decreased tissue

oxygen levels. We then tuned lo,N=Do so that the oxygen level in

normal tissue is above ca. 1=2. For simplicity we assume that the

permeabilities in tumor and normal tissue are equal lo,T~lo,N .

We assume that tumor and tissue cells have the same fastest

possible proliferation rate (cz
N and cz

T ) of once per day. The time

to live for normal cells is assumed to be 10 days after which they

undergo apoptosis, yielding c{
N . Tumor cells have acquired

mutations which enable them to circumvent the apoptotic

mechanisms. Therefore we set c{
T ~0. Cells under severe hypoxia

are assumed to die off relatively quickly within 48 h (cx
T and cx

N )

and become necrotic tissue.

The oxygen threshold below which cells become necrotic is

fx~0:03. Cells stop proliferating when the oxygen level is below

fz~0:3 which is ca. 60% of the lowest level in normal tissue.

Since only tumor cells are ever exposed to low oxygen levels, we

also do not distinguish between tumor and normal tissue here.

Our cell volume fractions reflect a high-density prototypical

tissue. We assume that tumor cells have become less sensitive to

solid pressure from nearby cells and so their homeostatic level is

0.6 (w0,T ) while it is 0.4 (w0,N ) for normal cells. Here we follow [34],

where the idea for this pressure regulated proliferation originated.

A similar model was also employed in [42] but with different

parameters.

Parameters for interstitial fluid flow and drug transport are

summarized in table 2. The permeability coefficients Kl,a and ll,a

as well as osmosis parameters pi, pv and s are obtained from [35]

and the references therein. Where the actual permeability is

provided, e.g. l2Kl , we compute the coefficient by dividing with

the typical l&0:2 in the respective tissue. For lymphatics we

assume a wall permeability (L
(L)
l ) which is of the same order of

magnitude as for capillaries (ll,N ). The lymphatic surface area per

volume (S
(L)
N =V ) is estimated by assuming that there is a grid-like

network with a channel every 100mm and a radius of 10mm. We

leave the tumor without lymphatics (S
(L)
T ~0), since these are

absent or dysfunctional in tumors (see [5] and the references

therein).

The drug distribution model is guided by experimental data on

the pharmacokinetics of Doxorubicin, which has been used for a

Table 1. Model Parameters: Tumor Growth.

Parameter Value Unit Description

nL (825,990,961) Lattice size

hL 10 mm Lattice spacing

nV (150,150,150) Lattice size

hV:h 30 mm Lattice spacing

500 mm Initial tumor diameter

t
(switch)
EC

24 h Circumferential growth switch delay

t
(sprout)
EC

0:5 mm=h Sprout extension speed

t
(migr)
EC

100 h Sprout activity duration

l(spr) 20 mm Sprout sites minimum separation

r(sprout) 4 mm Initial sprout vessel radius

Dr 0:4 mm=h Vessel dilation rate

r(max) 25 mm Maximum dilation radius

f (coll) 2 Pa Critical wall shear-stress

t
(coll)
EC

20 h Unstable vessel survival time

Dw {0:05 mm=h Vessel wall degradation (w ) rate

m 0:2 ECM fraction

~ww0
0:4 Relaxed cell fraction

KwE 5103 mm2=h Cell mobility | elastic modulus

cz
T 1=24 h{1 Tumor cell proliferation rate

cz
N 1=24 h{1 Normal cell proliferation rate

c{
T 0 h{1 Tumor cell apoptosis rate

c{
N 1=240 h{1 Normal cell apoptosis rate

cx
T 1=48 h{1 Tumor cell necrosis rate

cx
N 1=48 h{1 Normal cell necrosis rate

sw 0:2 Cell pressure sensitivity

w0,T 0:6 Homeostatic tumor cell fraction

w0,N 0:4 Homeostatic normal cell fraction

fz 0:3 Oxygen threshold for proliferation

fx 0:03 Oxygen threshold for necrosis

c{
o,T=Do 80{2 mm{2 Oxygen consumption rate in tumor

c{
o,N=Do 200{2 mm{2 Oxygen consumption rate in normal

tissue

c{
o,D=Do 200{2 mm{2 Oxygen consumption rate in necrotic

tissue

lo=Do 0:04 mm{2 Vessel permeability to oxygen

Rg 200 mm Growth factor diffusion range

List of parameters for tumor growth.
doi:10.1371/journal.pone.0070395.t001
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long time to treat various cancers. For the diffusion coefficient Ds

and exchange rates kij we follow [13] who presented a similar

model with additional cellular compartments. The diffusion

constant stems from [43] where it was estimated as ca.

1000mm2=min, which we use as well. Given an isolated system

with two compartments and transition rates k12 and k21, the steady

state concentration ratio equals the ratio of the rates. In

experiments with cell cultures [44], intra-cellular to medium ratios

of ca. 100 were observed. It seems reasonable to associate k12, the

cell uptake rate with diffusion through the vessel wall. In [13] this

rate was estimated as 5:4min{1. Thus we simply use

k12~10{2s{1 and k21~10{4s{1. Note that k21 is close to the

estimated lysosomal release rate which is also the slowest rate in

the model proposed in [13], so this may be identified as bottleneck

for release. It remains to determine the vascular permeabilities.

We estimate these based on the diffusivity in plasma. As an

approximation we write the permeability of a planar sheet of

thickness L as D=L, where D is the diffusion constant. We take

180mm2=s for D in plasma and we identify L~10mm with the

thickness of the capillary wall. We assume that drug only diffuses

through the gaps between endothelial cells (ECs). Assuming that in

very leaky tumor vessels, there would be a circular gap with 1:5mm
radius per EC [35], we arrive at the fraction of gaps over the vessel

surface G~0:017, assuming 102mm2 per EC, thus ls,T~DG=L.

Assuming the difference between tumor and normal capillaries is

due to leakiness, we determine ls,N by requiring that the ratios are

equal: ls,N=ls,T~ll,N=ll,T .

Results

Tumor Growth
Snapshots from a simulation are displayed in Figure 2. We

performed 15 simulation runs, producing 15 final states which

differ in their initial blood vessel networks (and the seeds for the

random number generator used for the stochastic events during

the simulation). For a video visualizing the spatiotemporal

evolution of the model see Supplements S14 and S14.

Initially, the tumor is prepared as a small sphere in which the

tissue consists of tumor cells instead of normal cells. We define the

distance function h at t~0 as the signed distance from the sphere

boundary. The tumor is located in the center of the simulation box

and has a radius of 0.5 mm. Increased oxygen consumption leads

to decreased oxygen levels within the tumor which leads to

expression of growth factors which again stimulates angiogenesis

within Rg. Eventually blood-perfused neovasculature raises the

oxygen level in the tumor periphery and enables further tumor

growth. The first snapshot in Figure 2 shows the system after

100 h. At this point the system is in a state displaying the typical

compartmentalization into high micro vascular density (MVD)

rim, decreasing MVD toward the tumor center, isolated vessels

threading the tumor, necrotic regions associated with unvascular-

ized regions and tumor proliferation confined to its rim. The

tumor continues to grow by vascularizing and pushing into the

surrounding tissue, leaving a torturous chaotic tumor network

behind. The final snapshot is taken at t = 700 h where the tumor

has reached the edge of the continuum domain V. Its final radius

is ca. 2.5 mm. By design of the tumor-vessel interactions similar

observations were reported in earlier work in [15], [16], [18],

where much simpler tumor models were used. See also Figure 3

where important system variables as a function of the distance

from the invasive edge h are shown.

To generate these plots we sorted data points based on their

spatial position into bins, or shells surrounding the invasive edge

according to their h value. The width of the bins is 30mm. Unless

stated otherwise, we computed the averages of the binned values

for each simulation run. The plotted data displays the means and

standard deviations of the ensemble, not the spatial fluctuations.

Spatial fluctuations can be seen in the map plots and are analyzed

Table 2. Model Parameters: Interstitial Fluid and Drug.

Kl,N 20 mm2kPa{1s{1 Normal tissue permeability coeff.

Kl,T 20 mm2kPa{1s{1 Tumor tissue permeability coeff.

Kl,D 200 mm2kPa{1s{1 Necrotic tissue permeability coeff.

pL {0:5 kPa Lymphatic fluid pressure

S
(L)
N =V 0:01 mm{1 Lymphatic surface area per volume in normal tissue

S
(L)
T =V 0 Lymphatic surface area per volume in tumor tissue

L
(L)
l

0:02 mmkPa{1s{1 Lymphatic wall permeability

sl,N 0:85 Osmotic reflection coefficient in normal tissue

sl,T 0 Osmotic reflection coefficient in tumor tissue

pv 2:7 kPa Vessel oncotic pressure

pi 1:33 kPa Interstitial oncotic pressure

ll,T 1 mmkPa{1s{1 Tumor vessel wall permeability

ll,N 0:01 mmkPa{1s{1 Normal capillary wall permeability

Ds 16 mm2=s Drug diffusion coefficient

ls,N 0:17103 mm=s Vessel permeability to drug in normal tissue

ls,T 17103 mm=s Vessel permeability to drug in tumor tissue

k12 0:1 s{1 Drug transport rate, extra-to intracellular

k21 0:001 s{1 Drug transport rate, intra-to extracellular

List of parameters for interstitial fluid flow and drug delivery.
doi:10.1371/journal.pone.0070395.t002
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in more detail only for the distribution of drug. Note that we may

define averages over (parts of the) vessel network formally as line

integrals over the vessel center lines divided by the total length of

respective parts. In practice we generate sampling points on

center-lines and sort these into bins as we do with numerical grid

values. This is applied e.g. in Figure 3B (vessel radius).

The predictions described above are in good agreement with

experimental data from [20] and [21] for human melanoma

xenografts and gliomas respectively. Our new continuum model

describes tissue more realistically by the incorporation of actual

host tissue cells, cell motility and cell-cell adhesion. We will report

a more detailed analysis of the resulting morphological aspects

elsewhere.

Interstitial Fluid Flow
Pressure, velocity and source terms were computed numerically

for the final tumor configurations at t = 700 h. For the IF flow

studies we assumed that the tumors are static from this time on.

Generally the motion of the IF is coupled to the motion of the

other tissue constituents since ‘‘empty’’ spaces are filled with the

IF. However in our case the velocity of the fluid is orders of

magnitude larger than the velocity of cells, for which reason we

can neglect these interactions.

Figure 4 shows slices through simulation data of one sample.

Figure 4A displays the vessel volume fraction hv. The data are

generated by superposition of smoothed delta functions which are

distributed stochastically within the cylindrical volumes comprising

the network edges. In Figure 4C we plotted the source term Ql

which is the IF volume flowing in or out of the interstitial space per

volume and time. By definition, lymphatics are absent within the

tumor, thus therein the only sources and sinks are blood vessels,

which appear as lengthy blobs with positive (extravasation) or

negative (uptake) contributions. Uptake is possible since the blood

pressure can also be lower than the local IFP. At the tumor rim we

see a significant amount of fluid being taken up, since there is a

strong outward flux from the tumor which is absorbed into

lymphatics and potentially also into parts of the neovascular

plexus.

The IFP profile is elevated within the tumor and decays rapidly

over its boundary. See Figure 4D and Figure 5A. The peak

pressure in the tumor center is ca 6 kPa (45 mmHg). Outside it is

0.5 kPa (3.75 mmHg). We set the lymphatic pressure to 20.5 kPa,

and the average blood pressure is ca 6.25 kPa (47 mmHg). In

Figure 2. Snapshots from the simulation of a growing tumor. (A) to (C) depict 400mm thick slices through the origin. The scale bar indicates
1mm. (A) is a close-up. (B) and (C) have the same scale. The snapshots are taken after 100 h, 400 h, 700 h. (D) shows the same time as (C) from a
different point of view where a quadrant was cut out. The boundary to the viable tumor mass is rendered as solid yellow surface. Necrotic regions
appear as void spaces within the tumor. The blood vessel network is rendered as collection of cylinders, color coded by blood pressure. Red is high
(arteries), and blue is low (veins).
doi:10.1371/journal.pone.0070395.g002
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Figure 3. Radial distributions of biophysical properties in the tumor growth model. (A) MVD, (B) vessel radius, (C) cell velocity, (D) oxygen,
(E) wall thickness, (F) wall shear stress. The distributions are plotted vs. the distance from the tumor surface h. Each data point corresponds to the
average over a small h-interval. The errorbars indicate the standard deviation among different simulation runs (see text). The inset in (C) shows the
approximate radius of the tumor and a linear fit. This radius is determined by averaging the distance from the origin over numerical grid cells where
{hvhvh.
doi:10.1371/journal.pone.0070395.g003

Figure 4. Snapshots of interstitial fluid flow quantities. (A) Vessel volume fraction, (B) IFP, (C) Fluid source term, (D) x-component of the IF
velocity, (E) Magnitude of the IF velocity, (F) Projection of IF velocity onto the outward direction, i.e. onto the gradient of h. The plots were generated
from 2d slices through the center of a typical simulation result from the base case. The contour line indicates the boundary of the viable tumor mass.
The internal regions consist of necrotic tissue, while the outer area is normal host tissue.
doi:10.1371/journal.pone.0070395.g004
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models using pure capillary networks a pressure range from 15 to

25 mmHg is commonly either directly set or imposed via

boundary conditions, e.g. in [10,12,14,15]. In the presence of

higher level arteries (as in our model) a much higher IFP can be

observed, because of the elevated pressure in arteries and

connected vessels. Mean in vivo tumor IFPs are reported in [35]

from 0 to 5 kP (38 mmHg) for various tumor types. Most tumors

exhibit a high degree of heterogeneity, with deviations from the

mean of 100%. The elevated IFP has a finite ‘‘penetration depth’’

into normal tissue (see below). Beyond that the IFP appears

relatively homogeneous. Fine grained fluctuations are introduced

by fluctuations of the capillary surface area per grid cell.

The order of magnitude of the interstitial fluid velocity is

considered to be 0.1 to 1mm=s [4,45–47]. In particular, it is found

to be highest close to the tumor boundary where the pressure

gradient is steepest, leading to a strong outward flux. Our results,

shown in Figure 4A and Figure 5B are in agreement with this

experimental observation. The velocity peak in the region is at

0:2mm=s.

Furthermore the velocity patterns in our data show a significant

amount of fluid being transported in between tumor vessels. In

Figure 4D this can be directly observed. For the whole ensemble

we measured the outward projection of the velocity vector

vjj:vl
:+h=j+hj together with the velocity magnitude jvj:jvl j,

which are plotted in Figure 5. Spatial distributions from one

simulation can be seen in Figure 4E and F. Within the tumor

center, vjj vanishes whereas jvj decreases to ca. 0.05 mm=s. This

means that the flow becomes increasingly isotropic toward the

center, where the IF apparently flows in between isolated tumor

vessels instead of to the tumor boundary. This flow is more than an

order of magnitude faster than IFF in normal tissue.

In the tumor periphery fluid uptake by lymphatics is signifi-

cantly increased compared to normal tissue further away

(Figure 5C, Qll ) because since lymphatic vessel are absent in the

tumor, the extravasated fluid must cross the tumor boundary to be

absorbed in normal tissue. The determining equation for the IF

pressure p, and the equations for oxygen and growth factors, have

a structure like +2u{cu~r, for some constant c, dependent

variable u(x) and arbitrary distribution r(x). For this equation any

local change in r causes an exponentially decaying disturbance in

u. The length scale of the decay is 1=
ffiffiffi
c
p

. Since

c~L
(L)
l S(L)=V (Kll

2){1 for the IFP, we see a ‘‘penetration depth’’

of 98mm.

Furthermore, in addition to the fluid that originates from the

tumor interior, we find that the neovascular plexus extravasates a

huge amount of fluid (Figure 5C, Qz
lv ). The collective surface area

of these vessels is large due to the amount of vessels, they are very

permeable and the pv{pi difference is relatively large, so this is

not surprising but it has implications for the escape of tumor cells

from the rim into the lymphatic system, and subsequently

metastasis.

At this point we should discuss the validity of our approximation

that neglects the loss of blood plasma from the vasculature due to

extravasation. Apart from the study of IF flow this approximation

is standard but in particular for tumor blood flow the coupling

through leaky thread-like vessels it is a more severe simplification,

where one would ideally solve for the IFP and blood pressure

simultaneously and fully coupled. To clarify this we first

determined the fraction of extravasated fluid relative to the total

vascular blood flow into the tumor. To be precise we computed

Q
z(rel)
l ~

Ð
VT

Qz
lv dxP

v[V\LVT
qv

,

where V\LVT symbolizes the set of all vessels which intersect

LVT with blood flow directed into the tumor. We obtain

Q
z(rel)
l ~4+1:6 :10{4 over our base case states, which suggest

that a fully coupled solution would not differ significantly from our

solution. For completeness, the absolute values are presented in

Table 3.

Moreover, we estimate the length scale over which IFP coupling

would cause a decrease of the blood pressure along a single

isolated vessel. For this purpose let q(x) be the flow rate as volume

per time through a blood vessel with the axial coordinate x. It is

determined by q~{Ap
0
, i.e. Poiseuille’s law, where

0
denotes the

derivative with respect to x, A a conductivity constant and p~p(x)
the blood pressure. The fluid loss through the gaps of the vascular

walls is the derivative of q, i.e. q
0
~B(pi{p), whereby we have

incorporated the osmosis contribution s(pv{pi) into an effective

blood pressure p. B is defined as B~2prLv
l , where Lv

l is the wall

permeability constant. pi denotes the interstitial pressure.

If we now assume that pi:const, we can easily derive a

characteristic length scale l over which p approaches pi. By

combining the above equations, we solve for p(x) and obtain

p(x)~ exp (x=l)C1z exp ({x=l)C2zC3xzC4, where

Figure 5. Radial distributions of interstitial fluid flow quanti-
ties. (A) IFP, blood pressure and the pressure drop across the vessel
wall. (B) IF velocity: jvj plots the magnitude and vjj the projection onto
the direction of the shortest path to the tumor boundary vl+h=j+hj,
respectively. (C) The total fluid source term Ql as well as contributions
to it which are: extravasation Qz

lv , uptake by vessels Q{
lv and uptake by

lymphatics Q{
ll . Each data point corresponds to the average over a

small h-interval. The error bars indicate the standard deviation among
different simulation runs (see text).
doi:10.1371/journal.pone.0070395.g005
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C1,C2,C3 and C4 are constants which must be determined by

boundary conditions. For l one obtains l~
ffiffiffiffiffiffiffiffiffiffi
A=B

p
i.e. the root of

the ratio of flow to wall conductivity. Note that for l?? one can

recover the standard Poiseuille’s law. Based on our model

parameters, the order of magnitude of l is estimated to lie within

103 to 106mm, depending on the vessel. Actual measured values

are shown in Figure 6D. Within the tumor l is actually longer than

the system size. For capillaries l may be around 1 mm, which is

still much longer than the length of typical capillaries. The value of

l for major normal vessels is similar to tumor vessels. Other

relevant variables namely B, q
0

and q are shown in Figure 6A, B,

and C, respectively. In spite of the simplifications used we think

this justifies the uncoupled evaluation of the interstitial fluid flow.

In the following we further comment on blood flow and

extravasation. In silico data for B~2prLv
l in Figure 6A shows a 20

fold increase from normal tissue to tumor tissue. Remarkably we

can distinguish between an increase of r and Lv
l . The clustering

with short ramp-up is associated with initially thin vessels which

dilate to the maximal radius r(max). Their permeability Lv
l

increases simultaneously and eventually hits is upper bound ll,T .

A plateau of maximal B forms where r and Lv
l reached their

bounds which is here about 250mm behind the tumor boundary.

The lower ramp corresponds to thicker vessels, too thick to dilate

(because rwr(max)), but for which Lv
l increases.

The flow rate q, shown in Figure 6C, displays a clear distinction

between tumor and normal tissue as do most other variables. In

the tumor center it is more uniform and orders of magnitude

higher than in normal tissue. q varies with the radius like r4, thus

dilated vessels provide very well conducting pathways acting as

arteriovenous shunts. Most of the data points in normal tissue stem

from capillaries which have respectively slow flow rates. Going up

the vascular hierarchy, we find increasing flow rates beyond those

of tumor vessels and of course less vessels. In the neovascular

plexus close to the tumor boundary we observe lower-than-normal

flow rates, which is plausible since the blood volume is distributed

over more vessels, which implies slower flow velocities in order to

to satisfy mass conservation. See also our results and discussion in

[18].

The flow rate through the vessel wall q
0
, shown in Figure 6B,

correlates well with the wall permeability B weighted by the vessel

circumference. Its magnitude within the tumor is about an order of

magnitude larger than in normal tissue. This contradicts the

common hypothesis that increased interstitial pressure hinders

fluid extravasation. However, the permeability increase dominates

the decreased IF pressure difference, which is only halved within

the tumor compared to normal tissue.

Drug Transport
Here we analyze the spatiotemporal evolution of the concen-

tration distribution s of some substance over the time frame of 96

Table 3. Tumor volume, blood flow and interstitial fluid
sources.

jVT j 2:72+0:04:1010 mm3 Tumor volume

jVT j=jVj 0:286+0:004 Fractional tumor volumeP
v[V\LVT

qv 7:7+3:4:109 mm3s{1 Blood flow through tumor
boundaryÐ

VT
Qz

l dx 2:5+0:3:106 mm3s{1 IF influx (tumor)Ð
VT

Q{
l dx {1:3+1:105 mm3s{1 IF uptake (tumor)

V\VT
Qz

l dx 1:16+0:06:107 mm3s{1 IF influx (normal)

V\VT
Q{

l dx {1:40,+0:08:107 mm3s{1 IF uptake (normal)

Q
z(rel)
l

4+1:6:10{4 Ratio of IF extravasation to
blood flow.

jVT j and the quantities involving Q were computed by numerical integration,
i.e. summation over grid cells, weighted by H(h) or 1{H(h) as required by the
respective region. Tumor blood flow was computed by summing qv over
vessels where (i) the sign of h changes between the endpoints, (ii) blood flow is
directed into the tumor, which is straight forward to check based on the nodal
blood pressures and h. Of course, mass is preserved, i.e. inflow and outflow are
equal (in particular since we neglect extravasated fluid). Also due to mass
conservation, the IF uptake in normal tissue is slightly higher than influx
because flux from the tumor is absorbed as well. Uptake within the tumor is low

due to the lack of lymphatics. Q
z(rel)
l is the ratio of

P
v[V\LVT

qv to
Ð
VT

Qz
l dx,

indicating that only a very small fraction of the blood plasma which is entering
the tumor is lost into the tumor interstitium.
doi:10.1371/journal.pone.0070395.t003

Figure 6. Radial scatter plots of properties related to (trans)-
vascular flow. (A) the vessel wall permeability multiplied by the
circumference Lv

l 2prv (B) the transvascular flow Lv
l 2pr(pv{pi), which is

the fluid volume that flows through the vessel wall per vessel length
and time. (C) the flow rate of vessels q, i.e. the blood volume per time
that flows through the cross section. (D) an approximate length scale
over which pv decays toward pi (see text). Data points stem from
uniformly distributed sampling points on the vascular networks of 15
simulation runs.
doi:10.1371/journal.pone.0070395.g006
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hours. s was computed numerically according to (20) based on the

data from previous simulations of tumor growth and interstitial

fluid flow. Thereby the tumor is considered static and the IF flow is

in a stationary state. Normally a tumor would grow further during

this time frame. However since we do not model pharmacody-

namics (i.e. cell killing) it seems reasonable to make this

simplification. Parameters for our base case are derived from data

for Doxorubicin, a commonly used chemotherapeutic drug.

assume that initially the tissue is ‘‘clean’’ i.e. without drug. A

bolus injection into the hosts body is modeled by the time varying

blood plasma concentration sv(t). For an injection we take the

exponential function sv(t)~exp({t=tsv) with the time scale tsv~

1 h. Our results are presented with unit-less normalized concen-

trations for which sv(0)~1.

The distribution of Doxorubicin is usually observed in vivo with

the aid of fluorescence imaging, e.g. in [43,44,48]. Typically one

observes exponentially decaying concentration profiles around

tumor vessels, at least during the first few hours. Eventually

eventually drug is distributed relatively evenly. When the blood is

cleared of drug, molecules diffuse back into the blood stream and

so the concentration near vessels decreases again. The overall drug

level decreases over the course of a few days until all drug is

cleared from the tissue.

Our simulations results agree well with this observation. To

illustrate this, Figure 7 shows the spatiotemporal evolution of the

concentration s in a sequence of snapshots. The data are taken

from one of the 15 systems we considered as the base case. See

Supplement S16 for a video.

Upon closer inspection of these figures and comparison with

Figure 4 A it becomes apparent that some vessels are not releasing

drug. The explanation is that close to the tumor rim we have two

classes of vessels with comparable radii but different permeabil-

ities: (i) Mature vessels stemming from arterioles or venules which

release little drug and (ii) dilated capillaries. Toward the tumor

center these differences vanish due to wall degeneration.

In Figure 8A drug concentrations are plotted as average SsTh

against h in the same way as Figure 3, i.e. as average over shells of

constant h. Initially these drug profiles show a strong similarity

with the profiles of the vessel volume fraction which is also plotted.

Both have a peak at the tumor rim and decay into the tumor to

significantly lower levels than in normal tissue. Of course, we

expected such a correlation, because the ‘‘bulk’’ transvascular flux

is proportional to the vessel surface area. This proportionality also

implies a faster drug uptake by diffusion once blood is cleared from

drug. Therefore one might naively expect that the tumor rim is

cleared fastest of drug, afterwards normal tissue, and finally the

tumor center. The actual result at t = 96 h is different, namely that

the profile is relatively flat and monotonously increasing into

normal tissue. Following the discussion below, it is clear that

convection fulfills a significant contribution to transport, moving

drug outwards and flattening the profile. This is studied in more

detail considering a diffusion dominated system in the the case (iii)

(see below).

The ratio of convection to diffusion is quantifiable by the Peclet

number which is defined as PeL~LV=D, where L is a

characteristic length, V the velocity and D the diffusion constant.

PeLw1 means that transport is convection dominated and

PeLv1 means diffusion domination. It depends on L, so we

analyze our system by determining L while requiring that PeL~1
whereby we denote respective L as Ldc~D=V . The mean over the

tumor SLdcTT is 150+4mm. This practically the same length as

the diffusion range of oxygen, i.e. the distance from drug sources

(vessels) up to which viable tumor cells are present. Hence

diffusion and convection are predicted to be equally relevant. In

contrast Ldc is two orders of magnitude larger within normal tissue

which means that transport to spaces in-between capillaries is

strongly diffusion dominated (see Supplement S13 Figure 1A for a

spatial Ldc map).

In Figure 8B the mean drug concentration SsTr is shown

against the distance from tumor vessels r. The profiles were

generated exactly like the plots against h by defining r as the

(signed) distance from the region where the vessel volume fraction

wvw0:01 which captures all vessels. Another interpretation of r is

a penetration depth into the cuffs surrounding vessels and further

into necrotic regions. It shows that over the first few hours Ss(r)T
is very well fitted by an exponential decay function

! exp (r=r0(t)). Where the length scale r0 is approximately

30mm, which is in good agreement with [43,44,48]. During the 3

to 24 hours period the exponential behavior vanishes. Thereby the

level at the ‘‘tail’’ increases while the level in vascularized regions

Figure 7. Series of snapshots of the rug distribution s of a typical base case system. Times and length scale are as indicated. The contour
delineates the viable tumor mass.
doi:10.1371/journal.pone.0070395.g007
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decrease. After 48 hours the profile is almost flat within the local

fluctuations at about 30% of the peak value at 30 min.

For the further analysis and quantification of drug delivery we

have to introduce an appropriate metric that represents the time-

independent spatial distribution of drug doses. Quantities which

commonly enter pharmocodynamical models are the maximal

concentration over time and the area under curve (AUC) which is

the time integral of the concentration. Even in the case of

Doxorubicin, which has been known for a long time, models using

either one have emerged, see e.g. the discussion in [49].

Mathematically those quantities correspond to the jj:jj? and

jj:jj1 norms (over time), respectively. jjf jj1 can be bounded by

jjf jj?ƒjjf jj1ƒtjjf jj? where f is a proper function and t is the

observation duration. This bound is of course not very strict so it

seems justified to consider both. We use intracellular concentra-

tions since we assume that drug has to enter the cell to e.g. bind to

DNA in order to efficacious. Our denotations are ICMAX for

jjs2jj? and ICAUC for jjs2jj1.

As expected we find the highest values near tumor vessels from

where the it decreases into the unvascularized (necrotic) regions

further away, see Figure 9A and B. ICMAX and ICAUC are

qualitatively similar and also display strong similarities with early

concentration distributions at ca. t = 3 h. ICMAX is comparably

sharp and in fact approximately s=w at t = 3 h. The extracellularly

dissolved drug is negligible since its concentration is two orders of

magnitude lower. Hence, s&ws2. Obviously ICMAX is very

sensitive to the high initial drug levels, whereas ICAUC gives

more weight to later smoother distributions and thus appears more

blurry. Their penetration depth is about 200mm so the whole

viable tumor mass obtains significant (meaning non-zero) contri-

butions. The ratio of local maximum to minimum for the AUC is

23+ whereas it is 122+2 for ICMAX. In Figure 9C and D,

ensemble averages of ICMAX and ICAUC are plotted as radial

distributions together with the vessel volume fraction. The

correlations are obvious and can be explained by the same

reasoning as for the time-dependent concentration distributions.

The displayed compartmentalization in decreasing exposure

towards the center and peripheral peak is qualitatively retained

for most of the parameter variations except for extreme cases with

drastically increased interstitial transport rates such as case (v) (see

below).

Variations
In this section we discuss a number of physiologically relevant

variations of the base case scenario. We consider the following

cases separately:

(i) Heavier drug particles.

(ii) Prolonged infusions.

(iii) Neglected Convection.

(iv) Vascular permeability.

(v) Hydraulic conductivity of interstitium.

(vi) Amount of normal lymphatics.

(vii) Tumor lymphatics.

For all cases we produced the corresponding data shown in

Figures 3, 4, 5, 6, 7, 8, and 9. They are compiled in Supplements

S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, and S12. Videos

visualizing the spatiotemporal evolution of the concentration

distributions in cases (i), (ii) and (iii) are provided as Supplements

S17, S18 and S19.

Below we discuss the physiological implications of these results.

In Figure 10 we present a comparison of the mean S:Tj and

standard deviation (STD) stdj(:) of the ICAUC and ICMAX
distributions. j stands for a region over which mean and STD are

taken. V denotes the viable tumor where wtw0:5, TB the

boundary where {250mmƒhƒ0 and TI the interior where

hv{250mm. This serves as an assessment of drug delivery

efficiency. Higher mean, and smaller STD (i.e. less spatial

fluctuations) means better delivery. Histograms representing actual

probability density functions for ICAUC and ICMAX are shown

in comparison in Supplement S13.

(i) Heavier drug particles. In this case we consider a drug

with a molecular weight of 105g=mol. This corresponds to the

application of viruses or nano particles as delivery system, which

we realize by the adjustment of diffusion related parameters,

namely ls,N ,ls,T ,Ds and kij . For a particle performing Brownian

motion, the diffusion constant scales with 1=
ffiffiffiffi
m
p

of the particle

mass m. Hence we scale those parameters by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
540=105

p
, where

540g=mol is the molecular weight of Doxorubicin from the base

case. This leads to a strongly convection dominated transport

where Ldc is of the order of 1mm.

Figure 8. Profiles of drug concentrations at different times. (A) radial distributions of the drug concentration vs. h similar to Figure 5. (B) the
same concentration distributions are plotted vs. the distance r from nearby vessels. wv and wT show the profiles of the volume fractions of vessels
and tumor cells, respectively. Early on, the concentration plots in (B) can be fitted with an exponential in agreement with experimental data as given
in the legend. Each data point corresponds to the average over a small h or r-interval, where r is the distance from vascularized regions similar to h
(see text). The error bars indicate the standard deviation of the ensemble.
doi:10.1371/journal.pone.0070395.g008
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We see that for heavy particles the IF flow clearly dominates the

drug distribution as seen in Figure 11 (see also Supplement S2, and

the video provided in Supplement S17). As a result the tumor

contains many small, isolated regions where a small amount of

drug is delivered. This is reflected by the PDFs (~pp(ICMAX),
~pp(ICAUC)) which are broader and lower values are more

common. Interestingly, the pauc distribution completely changes

from bell shaped to almost box shaped, see Supplement S13

Figure 2. The mean values SICMAXTV and SICAUCTV

decrease by ca. 50% which can be expected due to the decreased

transvascular diffusivity.
(ii) Prolonged infusions. Chemotherapy often follows a

complicated schedule with several prolonged infusions, which is

important to avoid toxicity to normal tissue. The basic idea is that

drug given in low concentrations accumulates in the tumor,

whereas the concentration in normal tissue remains tolerable. As a

simple case we consider the administration of a prolonged

infusion. In (ii)a during a 24 h period and in (ii)b continuously

during 96 h. The ICMAX and ICAUC distributions, are

surprisingly similar to the base case (see Supplements S3, S4 and

the video Supplement S18). The difference lies in the scale. The

average concentration SsTT increases approximately linearly in

time for as long as the infusion is active.

That means even by the end of our simulation at t = 96 h the

tumor is far from saturated. We expect this to occur when influx

equals removal of drug. Assuming that s2=s1~k12=k21 in a quasi

steady state the time scale for a purely diffusing particle to move

1 mm can be estimated via the diffusion law SxT2~Dt as 1700 h,

which is a reasonable estimate for the saturation time scale. Note

that our results likely overestimate concentrations and underesti-

mate the speed of the transport due to the lack of saturable cellular

components.
(iii) Neglected Convection. This case serves to gain insight

in the role of convective transport of drug through the interstitium.

For this purpose the convective term in (20) was neglect. Figure 12

shows that initially (t~1=2 and 3h) this case is indistinguishable

from the base case. But later, SsTh profiles remain peaked within

the tumor, leading to significantly increased peripheral drug

concentrations. In fact the average concentration in the center

remains nearly constant up to a ca. 250mm wide peripheral shell

(see also Supplement S5, and the video Supplement S19). Thus,

convection has the effect of ‘‘flattening’’ the profile apparently by

driving additional drug drug into the neovascularized rim where it

is reabsorbed once the blood stream is cleared of drug.

In the following cases (vi), (v), (iv) and (vii) we analyze the effect

of varying permeabilities. In [3] it was shown that the IFP profile

depends only on the ratio of vascular to interstitial hydraulic

conductivity. Here we have spatially varying coefficients but the

same scaling law is expected. Nonetheless we vary both parameters

since their effect on the velocity and thus drug transport is

different. Beside the IFP it seems appropriate to consider the

actual flow through the tumor. We quantify this by the mean

values S:TT of the following components of the source term in (12)

: SQlTT measures the amount of fluid that must leave the tumor

through its boundary in interstitial space. SQz
l TT is the amount of

extravasated fluid since vessels are the only sources. SQ{
l TT is the

amount of fluid taken up by vessels or lymphatics. Note that

SQ{
l TT is typically an order of magnitude less than SQz

l TT ,

which is clear since there should be very little back flow into

vessels. Their response to parameter variations is shown in

Figure 13.

(iv) Vascular permeability. We vary ll,T between 1/1000

and 10 times the b.c. value for leaky tumor vessels. Note that this

does not simply scale all permeabilities (i.e. Lv
l ) equally, rather ll,T

is the cutoff for Lv
l which increases up to this value for w?0 (see

(15)). Also note the conductivity of normal capillaries is

ll,N~1=100ll,T (b:c:).

Figure 9. Spatial distributions of drug exposure metrics. (A) Snapshot of the intracellular maximal concentration ICMAX, and (B) snapshot of
the time integrated concentration ICAUC from a typical simulation result from the base case. The contours delineate the viable tumor mass. (C) and
(D) Plots of ICMAX and ICAUC from the base case as ensemble averaged (15 systems) radial distributions (black) similar to Figure 5. In addition,
the vessel volume fraction is plotted as well (grey).
doi:10.1371/journal.pone.0070395.g009
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Figure 10. Comparison of the means and STDs of the probability distribution functions (PDFs) of ICMAX and ICAUC. These
quantities are presented for different regions, where each region is associated with its own PDF using j as index, where V stands for the viable tumor
mass, TB for tumor boundary and TI for tumor interior (see text). Spatial mean, indicated by brackets (or STD, indicated by std) are first computed for
all systems in the ensemble and then averaging over the ensemble. The error bars show respective deviations from the average within the ensemble.
The meaning of the case labels is as follows: (b.c.) base case, (i) heavier drug particles, i.e. molecular mass increased by a factor of 2:103 . (iii) neglected
interstitial convection, (iv) tumor vascular permeability scaled by a factor of 10 (a), 1=10 (b), and 1=100 (c), (v) hydraulic conductivity of interstitium
scaled by a factor of 10, (vi) amount of normal lymphatics scaled by a factor of 10, (vii) presence of 10% (a) and 100% of the normal lymphatics
amount in the tumor. Note that (ii) (prolonged infusions) are not shown due to the scale.
doi:10.1371/journal.pone.0070395.g010

Figure 11. Spatial distributions of (A) ICMAX and (B) ICAUC for the case (i). Here 104 times heavier drug particles are considered which renders
diffusive transport insignificant (see text). The presentation is analogous to Figure 9 of the base case.
doi:10.1371/journal.pone.0070395.g011
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Increasing ll,T has little effect on the IFP and IFV profile since

the IFP already approaches rapidly the blood pressure, see

Figure 14 A. The plots of the source terms (Figure 13 A show that

for increasing permeabilities most of the little additional flow is

reabsorbed into vessels (SQ{
l TT ). The flow that crosses the

boundary is insignificantly altered. For lower permeabilities the

uptake SQ{
l TT decreases much more rapidly than the influx

SQz
lv TT . The latter varies weakly within one order of magnitude

over the whole ll,T range, implying that the hydraulic resistance of

other components, i.e. interstitium and lymphatics limits the flow.

Interestingly, setting ll,T to the level of normal vessels is not

enough to lower the IFP to a normal level. It is only reduced by

about 50%. Further reduction to 1=1000ll,T (b:c:) yields near zero

IFP (& 0.1 kPa) but an outward gradient persists.

Predictions for drug delivery were made for

ll,T~10,1=10 and 1=100ll,T of the base case. See Figure 10

(iv)-A to C (see also Supplements S6, S7 and S8, respectively). In

conjunction with ll,T we also varied the diffusive permeability ls,T

by the same factor. The mean ICMAX and ICAUC level in VTB

are invariant since this regions exhibits rather normal vessels since

leakiness increases gradually toward the center. In the interior,

SICMAXTTI and SICAUCTTI increase with the permeability as

expected. Here too, for (iv)-A we find ICMAX levels in the tumor

which are comparable to normal tissue.

(v) Hydraulic conductivity of interstitium. The base case

considers a dense tissue which implies a low conductivity due to

the dependence on the available interstitial volume. Sparser tissues

were estimated to be orders of magnitude more permeable [50].

To analyze such a situation we scale the tissue permeability

coefficient Kl,a up to 100 times simultaneously for a~N and T .

For brevity, a is omitted in the following. Increasing Kl alone

produces unrealistic results where the IFP within normal tissue

rises well above 0. Hence the lymphatic permeability L
(L)
l , was also

increased by the same factor.

With increasing Kl we observe a decreasing IFP which drops to

ca. 1=7 of the base case value for a 100 times increase of Kl , as

shown in Figure 14B. The IFV decreases sub-proportionally, up to

a factor of 20. Interestingly, the region where most fluid is

extravasated shifts from close to the boundary to the tumor center.

Concomitantly one finds a shift of the peak in the v(h) toward the

tumor center and less back flow through vessels as compared to the

base case as indicated by lowered SQ{
l TT . For the total flow

SQlTT we can identify two regimes: Up to a 10 times increase we

see an approximately linear variation, and for larger Kl a

logarithmic behavior.

Drug delivery is analyzed for an increase of Kl by a factor of 10,

where we additionally upscale the diffusion constant Ds by the

same amount (see Supplement S9 for additional figures). This is

rather ad-hoc but based on the assumption that the free volume

fraction and the amount of ECM components varies, on which the

effective diffusion constant and IF permeability linearly depend on

as a first order approximation. As a result we obtain a significantly

more homogeneous ICMAX and ICAUC distributions. See the

comparison Figure 10B,C-(v) vs. (b.c.). The effect is most drastic

for ICAUC but also the ICMAX fluctuations over VTB are

significantly reduced. Remarkably, the tumor interior now shows

higher drug concentrations (Figure 10A-(v)) than the exterior. The

fact that the drug delivery to the interior is comparable to normal

tissue is surprising since permeabilities were adjusted also for

normal tissue not just the tumor.

(vi) Amount of normal lymphatics. The lymphatic system

is not well documented due to the lack of specific markers for its

Figure 12. Drug concentrations in the case (vii) where
convective transport was neglected. Results are presented as
averaged profiles plotted vs. h as in Figure 8.
doi:10.1371/journal.pone.0070395.g012

Figure 13. Mean fluid source rates over the whole tumor in dependence on varying parameters. Q with its sub and super scripts refer to
contributions to the source term as defined in (12), (23). The plotted mean values are defined simply as ensemble averages of the spatial means over
the tumor. The error bars show the standard deviations within the ensemble. The subplots depict the following cases: (A) Variation of the upper
vessel wall permeability bound ll,t (case (iv)). (B) Variation of the interstitial permeability coefficient Kl (case (v)). (C) Variation of the lymphatic wall
permeability in normal tissue (case (vi)). (D) Variation of the lymphatic density in the tumor given as fraction of the normal tissue lymphatic density

S
(L)
T =S

(L)
N (case (vii)). Except for in (D) the ordinate scale is relative to the base case.

doi:10.1371/journal.pone.0070395.g013
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channel walls. In our parameter determination we assumed that it

has a similar capacity as the capillary bed. Moreover tumors can

induce lymph angiogenesis similar to normal angiogenesis [9]

thereby increasing the amount of lymphatics nearby. Hence we

consider variations of the source term coefficient L
(L)
l S(L)=V from

100 to 1/100 times the base case (b.c.) value.

As discussed above, the IFP has a ‘‘penetration depth’’ across

the tumor boundary which is proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kl,Nl2=L

(L)
l S(L)

q
and indeed we see a variation of this magnitude in the radial

profile. Moreover with increasing L
(L)
l S(L)=V the IFP drops

asymptotically to the lymphatic pressure pL, which can be

explained by the analogy of an electrical resistor. A L
(L)
l S(L)=V

decrease on the other hand drives the IFP in unrealistically high.

The central tumor IFP is thereby relatively invariant to these

parameter changes, see Figure 14C. The IF velocity varies

according to the gradient across the boundary and can be

increased by up to 50% in the extreme case. The global flow

SQlTT increases by about the same magnitude. The average back

flow SQlv{TT decreases insignificantly within the error bars. On

the other hand for low L
(L)
l S(L)=V more back flow is observed,

which is reasonable since the uptake capacity of lymphatics is

decreased.

For drug transport we only consider the case with a factor of 10.

Qualitatively the ICMAX and ICAUC distributions appear

similar to the base case (figures are provided in Supplement S10).

The increased flow apparently leads to higher drug levels all over

the tumor, but the effect is strongest in the TB region. Spatial

fluctuations are also insignificantly changed. Thus we can

conclude that the delivery slightly improved. Given that the fluid

transport rate SQlT increased by 50% this is surprising since case

(i) demonstrated that a larger convection-diffusion ratio can have a

negative effect.

(vii) Tumor lymphatics. In this hypothetical case we assume

that functional lymphatics exist within the tumor. We model this

by a non-zero lymphatic sink coefficient L
(L)
l S(L)=V as a fraction

of the coefficient in normal tissue. This differs from taking a higher

tissue conductivity by the assumption of the underlying channel

Figure 14. Radial distributions as result of parameter variations. Left: IFP, right: IFF, averaged over 15 system analogous to Figure 5. The
relative deviation from the original base case parameter values is given in the figure legends, except in (D). The considered cases are as indicated in
the sub-figure heading: (A) Variation of the upper vessel wall permeability bound ll,T (case (iv)). (B) Variation of the interstitial permeability coefficient

Kl (case (v)). (C) Variation of the lymphatic wall permeability L
(L)
l in normal tissue (case (vi)). (D) Variation of the amount of tumor lymphatics

S
(L)
T =S

(L)
N , where the legend shows S

(L)
T =S

(L)
N directly (case (vii).

doi:10.1371/journal.pone.0070395.g014
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organization. The latter case implies a grid like structure whereas

the former implies a hierarchical structure where exchange takes

place over the thinnest channels analogously to blood vessel

network. Those lymphatic capillaries can be expected to exhibit

approximately equal blood pressure over the whole tissue. Hence

the use of homogeneously distributed sinks with lymphatic

pressure pL.

Resulting IFPs and IFV plots are shown in Figure 14D. As can

be seen an increasing presence of lymphatics ‘‘pulls’’ down the IFP

to pL. The outward velocity component vjj decreases proportion-

ally as can be expected based on the IFP gradient. But the actual

velocity magnitude jvj increases with the amount of lymphatics.

This can be expected as well since the velocity field is increasingly

superimposed by flow away from vessels to nearby locations where

fluid is absorbed. This is also reflected by increasing transvascular

flow SQlzTT , decreased flow across the boundary, SQlTT and

the back flow SQ{
lv TT as shown in Figure 13C.

We computed the drug transport for systems with (a) 0.1 and (b)

1 times the normal lymphatics (see Supplements S11 and S12,

respectively). What we would expect is that the changed flow

patterns (directed away from vessels) facilitate the delivery to more

distant regions. As Figure 10A and B-(vii) show this is indeed the

case. Even in (a) a significant improvement is achieved. The

ICMAX and ICAUC levels in the rather unrealistic case (b) are

increased dramatically. This must also be attributed to leaky

tumor vessels. Thereby spatial fluctuations are either unchanged

(std:(ICMAX)) or significantly reduced std:(ICAUC).

Discussion

Based upon an extension of our model for remodeling of tumor

vasculature introduced in [15,16,18,19] we studied interstitial fluid

flow (IFF) and drug transport.

Since the spatial details of IFF depends crucially the spatial

arrangement of blood vessels and their blood pressure we

considered, for the first time, a model for IFF and drug transport

that involves a realistic arteriovenous initial vascular network

evolving dynamically with the tumor. As a result tumor vessels are

connected to a wide variety of original host vessels - from

capillaries to ca. 50 mm arterioles and veins. Blood flow is

determined for the whole system including the whole remaining

host vasculature which comprises not only a single parent vessels

but many vessels covering the entire simulation domain. It should

be emphasized that an arteriovenous initial vasculature produces

blood flow patterns and blood pressure fields that differs

substantially from grid-like arrangements [15,18]: the latter usually

have a fixed blood pressure gradient direction imposed upon them

which can also (unrealistically) impose a preferred direction on

tumor vessel growth and skew the IFP distribution. For a tumor

blood vessel network emerging from an arteriovenous initial

vaculature we obtain much higher blood ow rates through

individual vessels due to arteriovenous shunts and circumferential

growth, and more irregular (spatial) blood pressure distributions.

Due to transvascular coupling these circumstances are also

relevant for the IFP, IFF and drug transport.

A first remarkable result is that in spite of an expected IFP

plateau within the tumor IFF does not cease and still allows for

substantial convective transport, which is opposite to the currently

prevailing view [3–9] that states that increased IFP poses a barrier

to successful drug delivery within tumors. The physical explana-

tion is simply that it is misleading to consider the pressure drop

along the vessel wall alone as the driving force for IFF - in

principle the complete network of hydraulic resistors has to be

taken into account to obtain reliable predictions. Qualitatively it is

sufficient to bear in mind that for IFF the tumor is series of

resistors with a fixed potential outside the tumor (the lymphatics of

healthy tissue) - decreasing one resistor, for instance by increasing

the permeability of the vessel walls, generally increases the flow, in

spite of the lower potential drop along the decreased resistor.

Another interesting result is that heavy macro-molecules are still

distributed more or less evenly into viable areas in the tumor

perimeter in spite of a pronounced outward IFP gradient there,

which one could naively expect to remove drug before an

efficacious dose is achieved. The reason is IFF between tumor

internal vessels, that transports macro-molecules convectively from

leaky high pressure vessels through the tumor tissue into

neighboring low pressure vessels. In the following we discuss our

results quantitatively in detail.

It is already established that leaky tumor vessels and lack of

tumor lymphatics lead to a drastically increased hydraulic pressure

of the interstitial fluid (IFP) in the tumor and that the resulting

gradient drives fluid out of the tumor with a velocity of 0.1 to

1mm=s [4,51] and our results agree with these experimental

observations very well. Our model predictions of the central IFP is

ca. 6 kPa, which is at the upper limit of experimentally observed

values. This value is also higher than in normal capillaries due to

the coupling with higher level arterioles in which the blood

pressure is naturally higher. The vessel walls of arteries and veins

within the tumor become leaky [21] and thus increase their

conductivity, which means tighter coupling between IFP and

blood pressure which as a result causes the IFP to approach the

level of nearby arteries or veins. Indeed, the predicted mean

pressure difference between blood and interstitium vanishes

towards the tumor center. Local fluctuations produce flow into,

out of and in-between vessels which is not necessarily directed

outwards. The outward component of the velocity vector

dominates in the tumor periphery. Around the tumor perimeter

we find a thin layer where where the fluid is absorbed into

lymphatics. Absorption into blood vessels frequently occurs deep

inside the tumor. It should be noted that the fluctuations among

samples are very large, about 100%. Consequently, depending on

their location in the microenvironment, seemingly by chance some

tumors could be more likely to metastasize through the blood

stream than others of the same kind. Although the transvascular

flow of tumor vessels is elevated by an order of magnitude

compared to normal capillaries, we estimated that only a small

fraction of the order of 0.01 percent of the blood flow which enters

the tumor is lost into the interstitium. The biophysical factors upon

this ratio depends are the vascular morphology and the

permeability of vessel walls, interstitium, and lymphatics. Here,

dilated vessels and arteriovenous shunts lead generally to elevated

flow rates (q) in tumor vessels. Note that q depends strongly on the

vessel radius r, i.e. q!r4.

In addition to the base case we considered scenarios in which

the conductivities of vessel walls, lymphatics and the interstitium

are varied individually. We observe universally that the influx

through vessels, and therewith the IFF through the tumor,

increases with the conductivity. The sensitivity to these changes

is rather low, even for variations of several orders of magnitude.

Lower IFP does thereby not correlate with increased flow. For

example the reduction of IFP can be achieved by increasing the

tissue conductivity or decreasing the vessel wall conductivity. In

the first case the IFF is increased while in the second it is

decreased. This relationship between IFF and conductivity can be

easily understood on the basis of analogy of our flow equations

with an electrical network of ohmic resistors: As an extreme

idealization let us consider a linear chain of three resistors,

representing the walls of the tumor vasculature, the interstitium
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and lymphatic walls, whereby the potentials are fixed at the ends.

Then of course the current is determined by the total resistance

and the voltage drop over one resistor grows with its resistance. An

increase of the first resistor (decrease of vessel wall conductance) as

well as decrease of the second resistor (increase of tissue

conductivity) both imply a lower voltage drop at the second

resistor (lower IFP). But the current (the IFF) decreases in the 1st

case and increases in the 2nd.

We quantify the local exposure to drug with the help of both the

time integrated intracellular concentration (denoted as ICAUC
for intracellular area under curve) as well as the maximal

concentration (denoted as ICMAX for intracellular maximal

concentration), which we consider separately. Our model predicts

that on a large scale, drug delivery is compartmentalized similar to

the vasculature. Let us subdivide the system into concentric shells

with increasing distance from the invasive edge and consider

averaged quantities over such shells. Close to the invasive edge we

typically find an exposure peak, the location of which is not exactly

aligned with the MVD peak due to outward convection. Towards

the tumor center the decreasing vessel density leads to a sharp

drop down to a plateau at a certain lower bound which is for our

base case ca. 50% of the level at the tumor periphery. The height

of this plateau depends on various factors including extravasation

rate, transport rate through the interstitium, but predominantly

vessel density.

The tumor center is threaded by many isolated vessels, and our

model predicts exponentially decaying concentration gradients

around them in agreement with experimental results e.g. [43,48].

Over longer time scales of many hours to days, the initial

distributions smear out akin to the behavior of freely diffusing

particles, and also decrease globally due to reabsorption. The

magnitude of these time scales depend on the transport rates,

cellular uptake and binding dynamics.

Although we did not study it in detail, we want to stress that

cellular uptake and retention dynamics also govern the total

amount of extravasated drug to a certain extend because the faster

the uptake rate, the lower the interstitial concentration, the larger

transvascular gradients which drive diffusive fluxes and counteract

re-absorption by convection.

It has been suspected for over a decade that IFF could wash out

drug from the tumor. Our model predicts this effect but as drastic

in magnitude as expected. Simulation runs in which convective

transport was neglected show that a ca. 2.5 times higher drug

concentration is retained in the periphery whereas the radial

profile of the time-independent exposure measures (ICAUC,

ICMAX) merely exhibit a smoother decay from periphery to

center. In the opposite extreme case of non-diffusing particles

under normal convection the the interstitial flow causes sufficient

flux to achieve significant drug delivery which is on a coarse scale

comparable to the base case. Here we do however observe islands

in the viable tumor region where no drug is delivered, implying

that such tumor fragments could remain viable after treatment. In

cases with diffusion, at least small amounts of drug are delivered.

Different tissue types as well as the effect of therapies that

improve drug delivery can be described within the model by

changing various permeability constants. We varied diffusion

constants simultaneously with conductive constants by the same

factors as first approximation to hypothetical changes e.g. of the

intercellular channel geometry. As a result, global exposure levels

and the amount of extravasated fluid correlate well with these

permeabilities as well as with each other. Unfortunately relative

local fluctuations, i.e. the STD over space of ICAUC and

ICMAX are not correlated with these variations, making them

unsuited as basis for achieving are uniform efficacy or dose.

Within the biologically relevant parameter space of which we

only considered a small part, analysis of other cases will certainly

lead to additional insight. For example in [14] tumor interstitium

and capillary permeabilities (Kl,T and ll,T in terms of our model)

were varied simultaneously, leading to a flattened tumor IFP

profile for increasing permeability. From such observations in an

experimental setting one could draw conclusions about the nature

of the tumor tissue.

With this in mind a tumor therapy that comprises a treatment

that solely reduces the vessel leakiness appears not to be effective.

A currently frequently discussed alternative is to improve the

efficacy of drugs by turning the ill-formed tumor vasculature

normal again [52] by pharmacological means during or before a

conventional therapy. A step in this direction is obviously to

reduce the leakiness of tumor vessels. However, our simulations

predict an actual reduction of the global ICAUC and ICMAX
levels while their relative fluctuations may even increase. On the

other hand increased permeability leads to significantly improved

delivery in the tumor center. Unfortunately this case is unlikely to

be a therapeutic goal since it could increase the direct exposure of

the blood stream to tumor cells increasing the chance of tumor

cells entering it. A good treatment strategy would be to prioritize

the maintenance, or fabrication of a dense tumor vasculature,

rather than exclusively tightening the leaks in the already sparse

vasculature. If a tumor is detected early enough the vasculature

could thus be kept intact and deliver drugs effectively, simply due

to the amount of functional capillaries, even though their walls are

expected to conduct drug worse than leaky walls.

Vascular targeting therapies that take the opposite direction

namely that aim to destroy the remaining tumor vasculature

completely exists hand have proven to be promising, see e.g. [53].

A common problem in therapy is that tumor cell in vivo are more

resistant to treatment than cell cultures. Many factors are involved

but not all are purely of genetic nature. For example the lack of

oxygen plays an important role for the development of radiation

resistance. Or the drug delivery through the sparse tumor

vasculature is insufficient, which is supported by our model

prediction that the drug concentrations in the tumor are much

lower than in normal tissue. If cells in the interior were killed

indirectly by vascular targeting, a viable shell around the boundary

would remain which could be effectively treated conventionally

due to the better vascularization. It is plausible that the removal of

the inner tumor vessels would lead to a reduction of the IFP and

thereby lower IFF across the boundary. As our results show, the

absence of this peripheral flow can improve the drug exposure of

the boundary significantly potentially leading to better treatment

in combination with vascular targeting.

Interestingly, the ICMAX and ICAUC levels increase with the

interstitial permeability, lymphatic permeability, or when provid-

ing the tumor with a fraction of surviving lymphatics. In addition

to that and perhaps more importantly, drug concentrations

become more homogeneous as well. This effect is much more

prominent for ICAUC than for ICMAX, where for the former the

spatial STD decreases from over 0.4 to ca. 0.2. With a 10 times

increased interstitial conductivity the ICAUC distribution even

becomes completely smooth over the whole tumor at levels higher

than in normal tissue. Unfortunately, in those cases the IFF is also

increased which would likely increase the shedding of TCs into

lymphatics, not to mention the danger of having TCs in direct contact

with tumor lymphatics. Hence, despite significantly improved delivery

the parameters above are certainly not a useful therapeutic target.

The final ICMAX and ICAUC distributions for continuous

infusions are hardly distinguishable from the bolus case except for

the scale. The reason is that the time scale to achieve a stationary
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state (estimated ca. 1700 h) is much longer than the infusion

periods (24 h and 96 h) which we tried. For Doxorubicin cellular

uptake is relatively fast (of the order of minutes) and release is slow

(of the order of hours), hence the local concentrations are in a

steady state where most of the drug is arrested in cells, lowering the

effective transport rates. It can be expected that drugs with low

uptake rates perform better in this respect.
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