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Abstract

Identifying and visualizing transcriptionally similar cells is instrumental for accurate exploration 

of cellular diversity revealed by single-cell transcriptomics. However, widely used clustering and 

visualization algorithms produce a fixed number of cell clusters. A fixed clustering “resolution” 

hampers our ability to identify and visualize echelons of cell states. We developed TooManyCells, 

a suite of graph-based algorithms for efficient and unbiased identification and visualization of cell 

clades. TooManyCells introduces a novel visualization model built on a concept intentionally 

orthogonal to dimensionality reduction methods. TooManyCells is also equipped with an efficient 

matrix-free divisive hierarchical spectral clustering wholly different from prevalent single-

resolution clustering methods. Together, TooManyCells enables multi-resolution and multifaceted 

exploration of single-cell clades. An advantage of this paradigm is the immediate detection of rare 

and common populations that outperforms popular clustering and visualization algorithms as 

demonstrated using existing single-cell transcriptomic data sets and new data modeling drug 

resistance acquisition in leukemic T cells.
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Introduction

Transcription is an important contributor to phenotypic and functional cell states. Emergent 

technologies such as single-cell RNA sequencing (scRNA-seq) have markedly improved 

identification and characterization of cell state heterogeneity. To this end, algorithms for 

unsupervised delineation and visualization of cells with similar expression patterns have 

improved the understanding of cell lineage complexity, tumor heterogeneity, and diversity of 

response to oncology drugs1–5. Nevertheless, it remains challenging to simultaneously 

stratify rare and common cell populations and explore their relationships.

Clustering algorithms have been proposed to partition scRNA-seq data to identify groups of 

cells with related transcriptional programs1,6–10. In most scRNA-seq analyses, the identified 

cell clusters are visualized using dimensionality reduction algorithms such as t-SNE or 

UMAP11–13. These workflows produce and visualize single-resolution cell clustering using 

methods that mostly lack quantitative presentation of relationships among the clusters.

Resolution of cell state stratification unduly influences findings in scRNA-seq experiments. 

For instance, a resolution separating lymphocytes from monocytes may not readily 

subdivide various lymphocyte lineages. Given that varying cell states are inherently nested, 

we postulated that algorithms delineating hierarchies of groups and visualizing their 

relationships can be used to effectively interrogate echelons of cell states. To this end, we 

developed TooManyCells for scRNA-seq data visualization and exploration. TooManyCells 

implements a suite of novel graph-based algorithms and tools for efficient, global, and 

unbiased identification and visualization of cell clades. TooManyCells maintains and 

presents cluster relationships within and across varying clustering resolutions, and enables 

delineation of context-dependent rare and abundant cell populations.

We demonstrated the effectiveness of TooManyCells in reliably identifying and clearly 

visualizing abundant and rare subpopulations using several analyses. Three publicly 

available scRNA-seq data sets, synthetic data, and controlled subsetting and mixing 

experiments of single-cell populations were used for comparative benchmarking. 

TooManyCells outperforms other popular methods to detect and visualize rare populations 

down to the smallest tested benchmark of 0.5% prevalence in several controlled cell 

admixtures and simulated data. Additionally, TooManyCells assisted in a fine-grain B cell 

lineage stratification within mouse splenocytes and was able to identify rare plasmablasts14 

that were overlooked by popular Louvain-based clustering and projection-based 

visualization algorithms.

We further used TooManyCells to explore the effect of dosage on acquiring resistance to a 

gamma-secretase inhibitor (GSI), a targeted Notch signaling antagonist. While other popular 

methods failed, TooManyCells revealed a rare resistant-like subpopulation of parental cells. 

TooManyCells and its individual components are available through https://github.com/

faryabib/too-many-cells.

Schwartz et al. Page 2

Nat Methods. Author manuscript; available in PMC 2020 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/faryabib/too-many-cells
https://github.com/faryabib/too-many-cells


Results

TooManyCells for visualization of cell clade relationships.

Clear visualization is critical for scRNA-seq data exploration and is dominated by 

projection-based algorithms such as t-SNE and UMAP. For large and complex cell 

admixtures, projection methods suffer from rendering many overlapping cells that 

overwhelms the single-cell resolution visualization. More importantly, these algorithms 

generally do not report quantitative inter-cluster relationships and lack interpretable 

visualizations across clustering resolutions. To address these limitations, we developed 

TooManyCells for fully customizable visualization of inter-cluster relationships in a tree 

data abstraction (Figure 1).

Multiple algorithms use traditional dendrogram plots to infer cell clades from scRNA-seq 

profiles15–18. Yet, robust cell clade inference remains challenging. Alternatively, outputs of 

flat clustering algorithms at different resolutions can be related in a tree structure18; 

however, this method relies on arbitrary numbers of resolutions and tuning parameters. We 

reasoned that divisive hierarchical spectral clustering can overcome these limitations by 

using all information embedded in the cell-cell similarity graph. To enable efficient 

generation of the hierarchy, TooManyCells implements a transformation of the gene 

expression matrix that eliminates the explicit calculation of cell-cell similarity and Laplacian 

matrices followed by full matrix factorization, which were otherwise required for finding the 

most informative bipartition of cells at each branching point (Figure 1b). This novel “matrix-

free” approach substantially improves the memory and time requirements of divisive 

clustering and recursively identifies candidate bipartitions to create a hierarchy of cell 

clades. By using Newman-Girvan modularity19 as a stopping criteria instead of an 

optimization parameter, TooManyCells bypasses limitations associated with heuristic global 

optimization-based clustering such as Louvain-based algorithms20,21, avoids creating 

arbitrarily small clusters, and allows simultaneous detection of large and small clusters (see 

Online Methods and Supplementary Note 1).

For clear and interpretable displays of cell clades, TooManyCells is designed with many 

features that facilitate data exploration and assist with finding relevant populations, 

including branch scaling, weighted average color blending, and statistically-driven tree 

pruning (Figure 2 and Supplementary Note 1). To enhance data visualization versatility and 

complement existing single-resolution methods, TooManyCells can display any tree data 

structure and outputs of other clustering algorithms (Figures S1 – S4). To this end, 

TooManyCells produces visually informative hierarchies of nested cell clusters. Inner nodes 

are clusters at a given resolution and leaf nodes are finer-grain clusters, where additional 

bipartitioning would be as informative as random bipartitioning. To enable an end-to-end 

built-in scRNA-seq analysis solution, we also equipped TooManyCells with a suite of tools 

and functionalities including, but not limited to, data normalizations, data filtrations, 

similarity measure calculation, subtree generation, differential expression, data import/

export, and novel algorithms for scRNA-seq diversity quantification and rarefaction analysis 

(Figure S5, Online Methods, and Supplementary Note 2).
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TooManyCells efficiently identifies pure cell clusters.

To assess TooManyCells’ performance, we first used the Tabula Muris data sets22 to 

examine the extent of cell homogeneity in cluster identification. As part of the Tabula Muris, 

11 organs of three month old mice were profiled by scRNA-seq, and their cell type 

composition was determined using organ-specific optimized analyses22. TooManyCells 

clusters were compared with the clusters generated by widely used Cell Ranger23, 

Monocle8, Phenograph6, Seurat7, RaceID24, CIDR16, and BackSPIN15 algorithms, the latter 

two being agglomerative and divisive hierarchical algorithms, respectively (Figures 3a–d and 

Supplementary Note 3).

For each algorithm, default or suggested filters and parameters were considered (see Online 

Methods). The first comparative analysis was performed based on an increased level of cell 

mixture complexity, where the first 3, 6, 9, and finally all 11 data sets from thymus, spleen, 

bone marrow, limb muscle, tongue, heart, lung, mammary gland, bladder, kidney, and liver 

were considered (Figures 3a and S6). Further comparisons were carried out using three 

additional data sets of cell lines or fluorescence activated cell sorting (FACS)-purified cells: 

CD14+ monocytes, CD19+ B, and CD4+ T cells23 (Figure 3b), seven cancer lines17 (Figure 

3c), and B lymphocytes/natural killer, megakaryocyte-erythroid, and granulocyte–monocyte 

progenitors25 (Figure 3d).

Rare-cell-clustering RaceID and hierarchical CIDR and BackSPIN methods failed to finish 

analyses of the high complexity data sets of ~30,000 to 40,000 cells within four days 

(Figures 3a and 3b). Across all complexities and evaluation metrics in the Tabula Muris data 

sets, TooManyCells was the most successful in separating cell type labels (Figure 3a). All 

the scalable algorithms that clustered the immune cells generally performed well. However, 

TooManyCells again marginally outperformed all others (Figure 3b). Similarly, 

TooManyCells performed the best in separating seven distinct cancer cell lines (Figure 3c). 

However, TooManyCells was close with Seurat and Cell Ranger in separating lineage 

negative hematopoietic progenitor cells (Figure 3d). We note that these cells are highly 

heterogeneous and their population structures, defined by a few cell surface markers, remain 

enigmatic25,26. Comparison of different normalization procedures showed that 

TooManyCells’ performance was only marginally influenced by normalization choice 

(Figures 3e–h and Supplementary Note 4).

While not scalable to large data sets (Figure 3a), BackSPIN, another divisive clustering 

algorithm, exhibited the best performance in separating highly diverse hematopoietic 

progenitor cells (Figure 3d). Importantly, all the scalable algorithms only report single-

resolution cluster outputs at a time, while TooManyCells’ multilayer output identifies 

context-dependent clades from the entire presented cluster hierarchy. The TooManyCells-

rendered cluster tree further guides the choice of clustering granularity by contextualizing 

cluster features such as relative size, modularity (Figure 2d), and distance from the root. 

This unique TooManyCells feature sets it apart from existing visualization algorithms that 

lack interpretable rendering of relationships across varying clustering resolutions. 

Furthermore, the run time of TooManyCells’ multi-resolution clustering was comparable to 

run times of single-resolution clustering algorithms for small data sets (Figure S7 and 

Supplementary Note 5), and markedly outperformed them for large data sets (Figures 3a and 
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3b). Together, these data show that in contrast to rare-cell-detection (RaceID) and 

hierarchical clustering (BackSPIN, CIDR), TooManyCells provides accurate and scalable 

clustering.

TooManyCells accurately delineates both rare and common subpopulations of controlled 
admixtures.

Simultaneous detection of rare and common cell populations is a major challenge in scRNA-

seq analysis. While many clustering algorithms claim to identify rare populations, few have 

explicitly benchmarked this ability. To rigorously assess each algorithm’s affinity to 

delineate rare populations, we simulated different levels of rare and common populations 

based on cells from different mouse organs. An accurate clustering is expected to not only 

detect the rare populations from the common but also distinguish the rare populations from 

each other. To this end, two equal-size “rare” populations were mixed with a “common” cell 

population. TooManyCells recapitulated known relationships between cell types within 

mouse organs (Figures S8 – S18) and showed that T cells were dissimilar from both 

macrophages and dendritic cells, as expected (Figure S19). Based on these data, ten different 

cell admixtures with different ratios of “common” T and “rare” macrophage and dendritic 

cell populations were generated (see Online Methods).

Visual inspection of t-SNE projections showed discrepancies between the actual cell types 

and their cluster labels (Figures 4a, 4b, and S20). Regardless of the clustering algorithm, t-

SNE plots were limited in clearly distinguishing the two rare populations in an admixture. t-

SNE plots’ visual inspections identified numerous small islands (Figures 4a, 4b left 

columns, and S20). However, it was impossible to visually localize the true rare populations 

in the absence of cell type labels. This issue is inherent to t-SNE, where distance and density 

are converted to local density. UMAP projections had similarly poor performance (Figure 

S21). By contrast, TooManyCells is specifically designed to plot cluster relationships and 

thus readily presented the rare populations (Figures 4c, S22, and S23). In the 10% rare 

populations admixture, TooManyCells separated the rare and common populations followed 

by splitting the two rare groups, keeping the common cells in large clusters (Figure 4c left 

panel). Interestingly, rare populations would have been easily identifiable even in the 

absence of cell type labels as the branch thickness and modularity values (shown by black 

circles) pointed out the rare subpopulations (Figure 4c left panel). In 1% rare population 

mixing experiment, TooManyCells again delineated the rare populations and readily 

presented them with the help of a drastically smaller subtree (Figure 4c right panel). Similar 

observations were made for eight other mixing experiments with different admixture ratios 

(Figures S22 and S23).

We next quantitatively compared the performance of TooManyCells in the detection of rare 

populations (Figures S20 – S23) with other commonly used clustering algorithms (see 

Online methods). These analyses showed that regardless of the purity benchmark (Figure 

3a), TooManyCells frequently outperformed other algorithms (Figure 4d).

Given that the organ-of-origin would provide an unbiased cell labeling, we further quantified 

how TooManyCells and other algorithms simultaneously segregated common and rare 

subpopulations in controlled admixtures consisting of cells from distinct mouse organs. In 
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both the “common” bladder cells with “rare” cells from heart and tongue (Figure 4e) and 

“common” tongue cells with more dissimilar (Figure S19) “rare” bone marrow and 

mammary gland cells (Figure S24), TooManyCells more accurately separated common and 

rare cells from different mouse organs.

Furthermore, controlled admixtures of FACS-purified CD14+ monocytes, CD19+ B, and 

CD4+ T cells from healthy human peripheral blood mononuclear cells (PBMCs)23 

confirmed that TooManyCells produces the best segregation of “common” B cells, and 

“rare” monocytes and T cells (Figure 4f). More importantly, while t-SNE and UMAP 

embeddings lacked clear guidance toward the location of rare cells (Figures S25 and S26), 

structural features of the TooManyCells tree highlighted the rare subpopulations (Figures 

S27 and S28).

Lastly, we sought to characterize performance using synthetic data. Not only did 

TooManyCells accurately identify the number of populations in a controlled synthetic 

admixture (Figure S29), the algorithm also outperformed all other tested methods (Figures 

4f, S30 and Supplementary Note 6). Together, these data suggest that TooManyCells 

robustly outperformed the other algorithms in stratifying both common and rare 

subpopulations, and further revealed that the performance of BackSPIN, RaceID, and Seurat 

markedly varied across benchmarking experiments.

TooManyCells identifies rare plasmablasts in mouse spleen.

To further demonstrate TooManyCells’ ability to simultaneously stratify rare and common 

cell populations de novo, we analyzed the immune cell composition of the C57BL/6 mouse 

spleen. TooManyCells with a restricted modularity pruning threshold (Figure S31) readily 

separated B cells, T cells, macrophages, and dendritic cells (Figure 5a). As expected, B and 

T cells comprised the majority of profiled splenocytes, and were mostly separated at the first 

bifurcation. The macrophages were less abundant and were separated from the T cells and 

further subgrouped. High modularity throughout the macrophage subtree suggested 

heterogeneity of splenic resident macrophages, confirming flow cytometry analysis27,28. 

Similarly, heterogenous and relatively rare dendritic cells were also partitioned in high 

modularity locations (Figure 5a), as expected29.

Given the diversity of lymphocytes, we repeated the TooManyCells analysis with less 

restricted modularity pruning threshold (Figures 5b and S31). Traversing further along the 

TooManyCells clustering hierarchy, T and B cells separated into more refined clusters 

(Figure 5b). Interestingly, TooManyCells successfully separated CD4+ and CD8+ T cells 

(Figures 5b and S32), and stratified more common marginal zone, germinal center and 

follicular B lymphocytes (Figure 5c). Importantly, labeling of the splenic TooManyCells tree 

by B cell subtype signatures30 identified two branches enriched for rare splenic14 Igj-

expressing plasma and plasmablasts B cells (Figures 5b–d and Online Methods). Together, 

these analyses showed TooManyCells’ ability to stratify both rare and common cell types in 

mouse spleen and showcased TooManyCells-enabled multilayer exploration of single-cell 

clades de novo.
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To further assess the ability of popular methods to identify rare plasmablasts in mouse 

spleen, we used Seurat to generate t-SNE plots and cluster splenocytes. Overlaying cells in 

the t-SNE projection with their respective leaves from the TooManyCells tree (Figure S16) 

showed that for the most part cells nearby in the tree were nearby in the t-SNE projection 

(Figure 5e). However, there were some discrepancies where cells farther apart in the tree 

were proximal on the t-SNE plot (e.g. mixing of green and pink labeled cells on the top-right 

of the t-SNE plot). Overlaying the B cell subtypes as defined by TooManyCells and 

validated by B cell subtype signatures (Figures 5c and 5d) onto the t-SNE coordinates failed 

to visually separate plasmablasts from other B cell subtypes (Figure 5f). Furthermore, 

default Seurat clustering was unable to identify the distinct cluster of rare splenic 

plasmablasts (Figure 5g). Together, these results further support the advantage of 

TooManyCells’ visualization and clustering over widely used algorithms in guiding 

simultaneous detection of rare and common splenocyte subpopulations.

Different GSI treatment regimens lead to distinct drug-resistant T-ALL populations.

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy in children and 

adults31,32. Identification of Notch as the most frequently mutated gene in T-ALL led to 

clinical testing of gamma-secretase inhibitor (GSI), a targeted Notch signaling antagonist33. 

However, GSI-resistance development may limit its clinical efficacy34. We generated new 

scRNA-seq data and used TooManyCells to investigate the effect of GSI on individual 

resistant DND-41 T-ALL cells that were selected under two distinct treatment regimens. 

Ascending-dose GSI-resistant cells (referred to as ascending resistant) were selected by 

gradually doubling the GSI dose from ∼200% to 1,600% of the DND-41 IC50, while 

sustained high-dose GSI-resistant cells (referred to as sustained resistant) were selected by a 

prolonged treatment with ~1,600% of the IC50 (Figures 6a and 33a). Transcriptomes of 

~10,000 DND-41 cells from ascending resistant, sustained resistant, untreated parental, and 

short-term (24 hours) GSI-treated parental populations were profiled.

The TooManyCells tree of these four populations showed mixing of untreated and short-

term treated parental cells and the heterogeneity of response to GSI in genetically 

homogeneous DND-41 parental cells (Figure 6b), which was not due to technical biases 

(Figure S33b and independent bulk RNA-seq (data not shown)). While the sustained 

resistant population occupied a distinct part of the tree (Figure 6b), the ascending resistant 

cells showed markedly diverse gene expression profiles (Figure 6b) and were significantly 

more heterogeneous (Figure S33c, p = 0.0140). Visualizing and quantifying relationships 

among the populations further showed that ascending resistant cells partially resembled both 

sustained resistant and parental cells (Figures 6b and 33d). TooManyCells revealed that 

~40% of the ascending resistant cells were transcriptionally similar to the parental cells 

(Figure 6b) and the remaining ascending resistant cells were more closely related to the 

sustained resistant population. Nevertheless, the expressions of several genes in this group of 

ascending resistant cells, including proto-oncogene MYC and anti-apoptotic gene 

ATF535–39, were significantly different from the sustained resistant population (Figures 6c, 

6d, S33e, S33f, and Table S1). Together, these single-cell resolution analyses identified a 

subpopulation of ascending resistant cells that, despite similarities with their sustained 

resistant counterparts, evolved differently to acquire GSI resistance and exhibited 
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significantly lower expression of pro-survival genes — potentially enabling gradual 

adaptation to elevated GSI.

TooManyCells identifies a rare GSI-resistant-like subpopulation.

To investigate the underpinning GSI-resistance mechanisms, we next focused on the 

sustained resistant cells (Figure 6e), which were more distinct from the parental cells 

(Figures 6b and S33d). GSI treatment equally blunted expression of Notch and its known 

targets in drug-responsive and sustained resistant cells (Figures S33f–j and Tables S2 and 

S3). By contrast, while short-term GSI treatment significantly reduced expression of MYC 
and its known targets in most of the parental cells (Figures S33f and S33i), it had no 

significant effect on their expression in the sustained resistant cells (Figures S33f and S33j). 

Together, these data imply that Notch-independent elevated MYC expression contributes to 

high GSI dosage tolerance.

To further test this hypothesis, we compared individual resistant and parental cells. 

Interestingly, this single-cell resolution analysis revealed a rare (< 1%) parental 

subpopulation that was transcriptionally similar to sustained resistant cells and localized at 

their encompassing subtree (Figure 6e).This rare resistant-like subpopulation showed 

markedly elevated MYC levels compared to the other parental cells (Figures 6f and 6g, 2.85 

fold change, p = 4.01 × 10−8). Furthermore, Gene Set Enrichment Analysis (GSEA)40 

showed that known MYC targets41 were the most differentially expressed pathways in the 

rare resistant-like cells compared to both other parental (Figure S33k, Table S4) and 

sustained resistant cells (Figure S33l, Table S5). Single-molecule RNA fluorescence in situ 

hybridization (FISH) analysis independently showed the prevalence and rarity of high MYC 
levels in sustained resistant and parental DND-41 cells, respectively (Figure 6h, Table S6).

Having verified the existence of high MYC-expressing resistant-like cells, we sought to find 

this rare parental subpopulation using other algorithms to compare against TooManyCells. 

These analyses showed that both t-SNE projection (Figure 6i) and Seurat clustering (Figure 

6j) were unable to visually and algorithmically stratify this rare resistant-like subpopulation 

from the rest of the parental cells (Figure S33m). Together, these analyses demonstrate the 

unique ability of TooManyCells to guide discovery of a rare DND-41 subpopulation that 

could potentially tolerate high GSI doses, and hint at underpinning resistance mechanisms.

Discussion

Popular single-cell clustering and visualization methods have been firmly set in variations of 

single-resolution clustering and projection-based visualization algorithms. While these 

methods are inherently useful for single-cell analysis, they may be unsuitable for certain 

applications as demonstrated in this study. Here, we developed TooManyCells which 

provides complementary algorithms for clustering and visualization. TooManyCells uses a 

recursive technique to repeatedly identify subpopulations whose relationships are 

maintained in a tree. Compared to projection-based algorithms, the TooManyCells 

visualization model is fundamentally different and, in conjunction with an array of 

visualization features, enables a flexible platform for cell state stratification, exploration, and 

rare population detection. In addition to clustering and visualization, TooManyCells also 
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provides other capabilities including, but not limited, to heterogeneity assessment, 

clumpiness measurement, and diversity and rarefaction statistics. In addition to synthetic 

data, the superior performance of TooManyCells to simultaneously identify rare and 

common cell populations was demonstrated in three independent contexts. In controlled 

settings, TooManyCells not only separated the two rare cell populations from an admixture 

of common and rare cells, but successfully sequestered the two rare populations from each 

other. Applying TooManyCells to cell lineage identification showed its ability to isolate rare 

plasmablasts from total mouse splenocytes, while a popular single-cell tool and visualization 

failed to do so. Lastly, TooManyCells was able to detect a resistant-like subclone in DND-41 

cells with exceptionally high MYC levels that was separately verified by single-molecule 

RNA FISH and could potentially tolerate high doses of Notch inhibitor GSI, leading to the 

development of drug resistance in Notch-mutated T-ALL.

In addition to performance, scalability, and usability, we considered flexibility and versatility 

in the TooManyCells design. TooManyCells is a generic framework consist of several 

algorithms that may be interchanged with other existing algorithms. The TooManyCells 

clustering and visualization modules, ClusterTree and BirchBeer respectively, can be 

potentially used for analysis of other single-cell genomic or observation-feature data. 

Together, our studies suggest that further improvement of clustering and visualization 

techniques are warranted to fully explore outputs of various single-cell measurement 

technologies. TooManyCells is a step in that direction.

Online Methods

Clustering

TooManyCells implements a generalized adaptation of a matrix-free hierarchical spectral 

clustering process originally proposed for text mining42. Spectral clustering using 

normalized cuts is a technique to partition data into groups, or clusters, where the items 

within a cluster are more similar to each other than they are to items in other clusters43. This 

analysis is based on the pairwise similarity between items, leading to a computational 

complexity of O(m2) with m items42. Let A be a similarity matrix where A(i, j) represents 

the similarity between items i and j and D = diag(A1) be the diagonal matrix where 1 is a 

column vector of 1’s. Then

ℒ(A) = I − D−1/2AD−1/2

defines the normalized Laplacian of A. A partition into two clusters denoted by 0 and 1 

labels can be defined as

C(i) = 1, V(i) ≥ 0
0, V(i) < 0,
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where V is the eigenvector corresponding to the second smallest eigenvalue of ℒ(A)43. 

Alternatively, the eigenvector corresponding to the second largest eigenvalue of the shifted 

Laplacian,

ℒ(A) = I + D−1/2AD−1/2

can be used instead of the second smallest eigenvalue of the Laplacian matrix. While this 

process bipartitions the data into two clusters, its inefficiency in both time and space makes 

the algorithm impractical for recurrent clustering of a large number of single cells. To 

improve the speed of spectral clustering while retaining the original accuracy, TooManyCells 

implements a generalized version of an algorithm that was originally proposed for text 

mining42 and can be used with sparse scRNA-seq matrices or any other observation / feature 

matrix. This implementation explicitly circumvents calculating A and the complete singular 

vector decomposition (SVD) of ℒ(A).

To this end, let B1 be an m × n matrix with m rows of cells and n columns of read counts. 

TooManyCells takes as input a transpose of this matrix to conform to the current single-cell 

matrix file format standards where the cells are columns. By default, TooManyCells offers 

the option to remove columns (genes) with no reads and rows (cells) with < 250 read counts. 

Then, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n,

B2 = log m/dj B1(i, j),

where dj = ∑k = 1
m δ B1(k, j)  and δ(x) is 1 if x ≥ 1 and 0 if x = 0, for all x ∈ ℤ+ . This 

normalization transforms B1 into a term frequency-inverse document frequency (tf-idf) 

matrix B2
44,45, where the importance of common genes is de-emphasized for clustering. 

Intuitively, a ubiquitously expressed gene is unlikely to be as important for cell clustering 

compared to a gene only expressed in a given subpopulation. Other data normalizations can 

be performed prior to this transformation or replace the tf-idf process entirely. For instance, 

one may normalize each cell based on its total read count followed by the normalization of 

each gene by that gene’s median positive read count. In order to relate cells in a matrix-free 

manner, cosine similarity was used46. It has been shown42 that the similarity matrix A can 

be derived from B2 with

A(i, j) =
∑k = 1

n B2(i, k)B2(j, k)

∑k = 1
n B2

2(i, k) ∑k = 1
n B2

2(j, k)
.

However, in order to lower the computational complexity, TooManyCells does not calculate 

this matrix. Instead, a new matrix B is defined as
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B(i, j) = ei−1B2(i, j),

where ei = ∑k = 1
n B2

2(i, k) is the Euclidean norm of B2 row i.

To prepare the matrix as a form of a normalized Laplacian, let

D = diag B BT1

and

C = D−1/2B .

Then the eigenvector of ℒ(A) corresponding to the second smallest eigenvalue is the second 

left singular vector corresponding to the second largest singular value of C, which can be 

found using truncated SVD42. It has been shown that the computation complexity of this 

process is O(Jm), the number of non-zero entries of C, where J is the average number of 

expressed genes within a cell. This bipartition can be recursively applied to each delineated 

cluster until a stopping criteria is reached, which results in a divisive hierarchical cluster 

structure.

In accordance with the original implementation42, TooManyCells uses Newman-Girvan 

modularity (Q)19 as a stopping criteria. Modularity is a measure from community detection 

which has also been used in single-cell clustering through optimization using the Louvain 

method6,7,21. Let G = (V, E) be a weighted graph of m nodes (cells) with e edges. Then, as 

A represents the connectivity strength among nodes, Newman-Girvan modularity measures 

the strength of the partition of nodes. For a bipartition,

Q C1, C2 = ∑
k = 1

2 Okk
L −

Lk
L

2
,

where Okk = ∑i ∈ Ck, j ∈ CkA(i, j) is the total degree of nodes in cluster Ck, if 

di = ∑j = 1
m A(i, j) is the degree of node i then Lk = ∑i ∈ Ckdi is the total degree of nodes in 

Ck, and L = ∑i = 1
m di is the degree of all nodes in the network. Q measures the distance of 

edges within clusters to the random distribution of clusters, such that Q > 0 denotes non-

random communities and Q ≤ 0 demonstrates communities randomly found19,42.

TooManyCells uses Q to assess a candidate bipartition of cells to determine whether to 

continue the recursion or stop as a leaf in the divisive hierarchical clustering. That is, at each 

bipartion, if Q > 0 then continue the recursion, otherwise stop. Thus, the end result of this 
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top-down clustering is a tree structure of clusters, where each inner node is a cluster and the 

leaves are the most fine-grain clusters where any additional splitting would lead to random 

partitioning of cells. This process has O(Jm log m) computational complexity42. The code 

for the TooManyCells implementation of this algorithm is available at https://github.com/

faryabib/too-many-cells.

Visualization

The TooManyCells clustering algorithm results in a tree structure, where each inner node is 

a coarse cluster and each leaf is the most refined cluster per modularity measure. The 

BirchBeer rendering method was developed for displaying single-cell cluster hierarchies. To 

this end, BirchBeer utilizes graphviz for node coordinate placement and the Haskell 

diagrams library as rendering engine.

BirchBeer provides a multitude of graphical features to assist in the detection and 

interpretation of cell clusters. The tree leaves can be displayed in various ways. Single-cell 

resolution exploration is facilitated by drawing color-coded individual cells at the tree 

leaves. Alternatively, a pie chart can be shown to visualize a summary of the cell 

composition of the clusters at the tree leaves. Both single-cell resolution and statistical 

summarization can be shown using a “pie ring”. Each tree branch can be scaled to the 

relative number of cells within each subtree, allowing for quick inspection of cell population 

sizes of various clustering levels and visualizing clusters of rare and common populations. 

Furthermore, colors can be applied to each branch such that the weighted average blend of 

the colors of each label in the subtree is used, allowing for immediate detection of subtrees 

with large differences or similarities. Cluster numbers can be displayed on each node, 

tracing the data back into a human readable interpretation of differences between the clusters 

at various hierarchy levels. Furthermore, the modularity of each candidate split can be 

displayed at each node as a black circle with varying darkness to demonstrate the 

dissimilarity of cell populations encompassing that assay. Large trees may result in busy 

figures, much like large t-SNE plots, so options to prune the tree are available. Cutting the 

tree at certain levels, node sizes, or modularity are some options, but additionally there is a 

statistically driven option called --smart-cutoff which cuts the tree depending on the median 

absolute deviation (MAD). For instance, a stopping criteria of four MADs from the median 

node size to keep the structure of the tree but prune smaller branches. BirchBeer accepts 

JSON trees as a standard input. The code for BirchBeer is available at https://github.com/

faryabib/birch-beer.

Differential expression

Given multiple cluster identification numbers, TooManyCells can perform differential 

expression analysis to identify the difference between the gene expression of cells in these 

clusters. TooManyCells interfaces with edgeR for differential expression analysis47. Cells 

were processed using the recommended edgeR settings for single-cell analysis: genes with at 

least 1 count per million (cpm) in at least two cells were kept, normalized with 

calcNormFactors, and analyzed with estimateDisp, glmFit, and glmLRT respectively. To 

visually facilitate this analysis, BirchBeer can label clusters with their identification 
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numbers. All the presented differential expression analyses and statistics use this feature of 

TooManyCells.

Diversity analysis

While Shannon entropy is frequently used as a measure of “diversity”, the effective number 

of species is a more meaningful measure of diversity in biological settings. For example, a 

population with 16 equally abundant species should be twice as diverse as a population with 

8 equally abundant species. Assuming each cell is an “organism” belonging to a “species” 

group defined by the clustering algorithm, then a diversity index can be applied to find the 

effective number of cell states in a population.

The diversity satisfying such a property can be defined as48

qD = ∑
i = 1

R
pi

q
(1/(1 − q))

, (1)

where pi is the frequency of species i, R is the total number of species in the population, and 

q is the “order” of diversity. q > 1 gives additional weight towards common species, while 

more weight is given to rare species when q < 1. q = 1 gives equal weight to all the species 

regardless of their commonality and is defined as

1D = exp − ∑
i = 1

R
pilnpi .

Several diversity measures can be derived from equation (1) For instance, 0D defines 

richness, or the number of species, in the population. 1D relates to exp (Shannon entropy) 

and 2D is the inverse of the Simpson index. Various diversity measures have been used 

previously in domains such as lymphocyte receptor repertoires and cell clones49–51. Here, 

we use the diversity in TooManyCells to quantitate the effective number of cell states within 

a population.

TooManyCells implements the concept of rarefaction curve from ecology52 to estimate the 

number of detectable species in a given number of profiled single cells. Briefly, the 

estimated number of species in a population can be calculated from a given number of 

samples taken from a population through random subsampling. The estimated number of 

species in a subsample of size n representing Xn species can be calculated as

E Xn = R − N
n

−1
∑
i = 1

R N − Ni
n

, (2)

where N is the total number of cells, R is the total number of cell states in all samples, and 

Ni is the number of cells belonging to state i. For the interval [0, R], equation (2) generates a 
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rarefaction curve that shows the estimated number of species for a given number of profiled 

cells. The steepness of the rarefaction curve may represent the heterogeneity of a population. 

For a given number of subsamples, the estimated number of species across multiple 

populations can be compared based on their respective rarefaction curves. This property is 

useful for comparing populations with different sample sizes. A plateau in the curves 

indicates no substantial increase in the number of new cell states, implying a sufficient 

sampling to observe all the cell states in a sample. TooManyCells implements this procedure 

to rarefy populations.

Cluster purity

To compare the accuracy of clustering algorithms, we used measures that quantify the extent 

of clustering output “purity”. We considered cluster output “purity” measures since they 

mitigate lack of information about markers accurately defining “true” cell identity. 

Moreover, these measures are robust to cluster size variability. For instance, FACS-purified 

CD4+ cells lack the resolution to accurately define “ground truth” cell types, as these cells 

comprised of several functionally well-characterized subtypes (e.g. various Th1, Th2, Th17, 

Treg, and many more CD4+ T cell types). To assess cluster “purity”, three measures were 

used: purity, entropy, and normalized mutual information (NMI). All three measures are 

commonly used in scRNA-seq comparative analysis53–55.

Purity is based on the frequency of the most abundant class (e.g. cell type) in a cluster. Let Ω 
= {ω1, ω2, . . . , ωK} be the set of clusters and ℂ = c1, c2, …, cJ  be the set of classes. Then 

purity is defined as

 purity (Ω, ℂ) = 1
N ∑

k
max

j
ωk ∩ cj ,

where N is the total number of cells, ωk is the set of cells in cluster k, and cj is the set of 

cells in class j45. This measure ranges from 0, poor clustering, to 1, perfect clustering.

Entropy as a measure of cluster accuracy uses Shannon entropy to measure the expected 

amount of information from the clusters. The entropy of each cluster k is defined by

H ωk = ∑
j

ωkj
ωk

log
ωkj
ωk

,

where ωkj is the set of cells from ωk ∩ cj. Then the entropy for the entire clustering is56

 entropy (Ω, ℂ) = ∑
k

ωk
N H ωk .

Here, lower entropy of a clustering indicates higher accuracy.
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Normalized mutual information (NMI) measures the normalized dependency of the class 

labels on the cluster labels, or the amount of information about the class labels gained when 

the cluster labels are given. Mutual information is defined by

I(Ω; ℂ) = ∑
k

∑
j

ωk ∩ cj
N log

N ωk ∩ cj
ωk cj

.

To compare mutual information across clusterings, I(Ω; ℂ ) is normalized to the interval [0, 

1]. As I(Ω; ℂ) is bounded by min[H(Ω), H(ℂ)], where

H(Ω) = − ∑
k

ωk
N log

ωk
N

is the entropy of Ω along with the analogous H(ℂ), total normalization NMI can be defined 

by

NMI(Ω, ℂ) = I(Ω; ℂ)
min[H(Ω), H(ℂ)] ,

where higher values indicate more accurate clustering based on ℂ57.

For Tabula Muris, four data sets were generated based on organ admixture complexity: 

either the first 3, first 6, first 9, or all 11 organs were considered from thymus, spleen, bone 

marrow, limb muscle, tongue, heart, lung, mammary gland, bladder, kidney, and liver. Other 

data sets were not subsampled as the complexity was lower or controlled.

Each algorithm was run on each data set with default or suggested settings. Suggested 

settings: for Monocle, densityPeak method was used. For Seurat, Louvain clustering after K-

nearest neighbor graph construction was used with 10 dimensions from PCA (as in the 

PBMC3k vignette, which was followed as the recommended Seurat processes). More lenient 

filtering thresholds from the Tabula Muris Organ Annotation Vignette were used for data 

sets with fewer cells. For BackSPIN, the number of levels was set to 4, as shown in the 

documentation.

Rare population benchmark

Rare population detection was determined by the ability of algorithms to separate two 

known rare populations from each other. Three cell types were considered for one common 

and two rare cell populations. As T cells cells were dissimilar from both macrophage and 

dendritic cells (Figure S19), T cells were chosen as the common population with 

macrophages and dendritic cells as the rare populations, all from mouse spleen. To 

benchmark clustering accuracy in separating rare cells, we also performed two additional 

experiments based on mixings cells from different mouse organs: 1) tongue (common), 
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mammary (rare), and bone marrow (rare); 2) bladder (common), heart (rare), and tongue 

(rare). Likewise for the immune population data set: CD4+ T (common), CD14+ monocytes 

(rare), CD19+ B (rare) cells were used23. 100 data sets of 1,000 cells were generated by 

randomly subsampling from each cell type or organ. These 1,000 cells per data set ranged 

from 900 to 990 common cells and 100 to 10 rare cells (e.g. half macrophages and half 

dendritic cells), with ten runs each. For instance, the smallest common data set was 

comprised of 900 common cells (90%) and 100 rare cells (10%, 5% for each rare 

population). The largest common data set was comprised of 990 common cells (99%) and 10 

rare cells (1%, 0.5% for each rare population). All algorithms were run on these data sets 

with default or suggested settings in the same fashion as in the cluster purity benchmark. 

These results were visualized using t-SNE for each package (Monocle: reduceDimension 

with t-SNE method, Phenograph: TSNE from scikit-learn which is not included in 

Phenograph, BackSPIN: TSNE from scikit-learn which is not included in BackSPIN, Seurat: 

RunTSNE with dim.use of 10 dimensions, CIDR: Rtsne from Rtsne which is not included in 

CIDR, RaceID: comptsne, and Cell Ranger: output t-SNE projections). UMAP visualization 

was calculated with the umap-learn python package. TooManyCells output was visualized 

using BirchBeer trees and given rare population priority with --smart-cutoff 5 --min-

distance-search 1.

To quantify these benchmarks, a contingency table of the fraction of pairwise labels was 

used. For all rare cell pairs, a true pair was called if the two cells were of the same cell type 

(e.g. a macrophage with another macrophage or a dendritic cell with another dendritic cell), 

while a false pair was called if the two cells were of different cell types (e.g. a macrophage 

with a dendritic cell). Then, the measure for accuracy in this benchmark was the fraction of 

true pairs in all pairs.

For the simulated rare population benchmark, Splatter58 with default settings was used to 

generate data sets of 1,000 cells in three groups, identical in composition to the previous 

subsampled rare population benchmark. Here, TooManyCells was run with --pca 50 (in 

concordance with Seurat) to account for the synthetic nature of the Splatter model, and --

min-modularity −0.05 to accommodate the PCA transformation. BackSPIN, RaceID, and 

Phenograph did not use dimensionality reduction by default, as with TooManyCells, so 

additional benchmarks were run with dimensionality reduction through the TooManyCells 

PCA matrix for BackSPIN and Phenograph (which do not have any function for reduction in 

their libraries), and CCcorrect for RaceID.

Timing benchmark

1,000 cells were used to benchmark clustering algorithm times in order to accommodate 

RaceID, CIDR, and BackSPIN, which did not finish on larger data sets from the purity 

benchmark after 4 days. Each algorithm was run 10 times to determine an average runtime.

Distribution-based pruning and stopping criteria

TooManyCells can prune the tree by including a stopping criteria in a variety of ways, 

including specific nodes, the minimum size of a node (i.e. number of cells) , and the 
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proportion of cells in each child node. To simultaneously identify both rare and common cell 

populations, TooManyCells uses modularity to guide the tree pruning. TooManyCells 

quantifies the distribution of modularity for all non-leaf nodes and chooses a value of 

modularity based on the specified number of median absolute deviations from the median 

(or a chosen value). The algorithm preserves all paths to all nodes of this value or greater, 

and cuts all levels below. This results in large nodes with low modularity in their 

descendents and small nodes with high modularity.

Clumpiness

The hierarchical structure generated from any hierarchical clustering, both divisive and 

agglomerative, holds cells in the leaf nodes. Each cell can be assigned a label, such as an 

organ of origin, cell type, or expression level of high or low. In order to quantify the level of 

aggregation within the tree, a measure of “clumpiness” is needed59. For instance, the degree 

of how “clumped”, or co-localized, are CD4 T cells and CD8 T cells within the tree. Here, 

one would expect those T cells to be grouped together more closely than CD4 T cells with B 

cells. A clumpiness measure enables the quantification of this similarity.

The clumpiness measure used here was specifically designed for hierarchical structures and 

was previously described in more detail59. Briefly, consider a rooted k-ary tree. The 

clumpiness of the set of leaves M when partitioned according to L = {L1, L2, . . . , Ln} is 

defined as

C(L) = 1
n ∏

i = 1

n x
yi

1/n
. (3)

This measure takes the geometric mean of x weighted by yi. x represents the weighted 

number (weighted by distance to the descendant leaves) of “viable” non-root inner nodes, 

and yi is the frequency of leaves in Li in all leaves not connected to the root node. Viable 

nodes are comprised of inner nodes that have at least one vertex of each label in their 

descendant leaves. The clumpiness of a label Li with itself is simply considering an Lʹ 
containing two sets — leaves in Li and all other leaves. Then the clumpiness of Li with itself 

is 1 − C(Lʹ)59.

Splenic cell markers

Branches of the TooManyCells tree were defined in two ways. First, differential expression 

analysis was carried out for each node, and the following lineage markers were used to 

designate enriched cell type in each leaf node. Second, listed populations were classified 

using ImmGen: the top 100 differential genes in those nodes were used as input to ImmGen 

MyGeneSet in order to find enrichment for markers from the designated cell type30.
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Cell type Genes

Plasma cell Igj

Germinal center cell Classified using ImmGen

Follicular cell Fcer2a, Klf2

Marginal zone cell Tcf4, Crebl2

Transitional cell Gfi1, Myb, Uhrf1

Plasmablast Classified using ImmGen

Lineage-specific transcription factors in addition to cell surface markers were used, since 

scRNA-seq can not differentiate between cytoplasmic and surface expression of markers.

GSI-resistant T-ALL cell culture

DND-41 cells (DSMZ, cat# ACC525) were purchased from the Leibniz-Institute DSMZ-

German Collection of Microorganisms and Cell Lines. Cells were cultured in RPMI 1,640 

(Corning, cat# 10–040-CM) supplemented with 10% fetal bovine serum (Thermo Fisher 

Scientific, cat# SH30070.03), 2 mM L-glutamine (Corning, cat# 25–005-CI), 100 U/mL and 

100 μg mL−1 penicillin/streptomycin (Corning, cat# 30–002-CI), 100 mM nonessential 

amino acids (Gibco, cat# 11140–050), 1 mM sodium pyruvate (Gibco, cat# 11360–070) and 

0.1 mM of 2-mercaptoethanol (Sigma, cat# M6250). All cells were grown at 37 °C and 5% 

CO2 with media refreshed every 3–4 days. Cells were regularly tested for mycoplasma 

contamination.

IC50 values for gamma-secretase inhibitor (GSI) compound E (Calbiochem, cat# 565790) 

were calculated from dose-response curves using CellTiter Glo Luminescent Cell Viability 

Assay (Promega, cat# G7571). Briefly, 1,000 treatment-naïve DND-41 cells in 5 replicates/

condition were plated in 96-well plates with vehicle or increasing concentrations of GSI 

(0.016, 0.031, 0.062, 0.125, 0.25, 0.5, 1, 2 μM). Luminescence was measured on day 7 with 

CellTiter Glo Luminescent Cell Viability Assay according to the manufacturer’s 

instructions. DND-41 IC50 of GSI was determined to be 5 nM.

To generate ascending GSI-resistant cells, DND-41 treatment-naïve cells were cultured in 

the presence of 10, 20, 40, 80, 125 nM GSI with concentration increasing every week for six 

weeks and maintained in 125 nM GSI. To generate sustained high-dose GSI-resistant cells, 

DND-41 treatment-naïve cells were cultured in the presence of 125 nM GSI for at least six 

weeks. The establishment of GSI-resistance was determined with IC50 assay as described 

above. Both ascending and sustained high-dose GSI-resistant DND-41 cells can tolerate 10 

μM GSI with less than 20% cell death. Short-term DMSO/GSI treatment was performed on 

treatment-naïve DND-41 cells with 125 nM DMSO/GSI for 24 hours.

GSI-resistant T-ALL single-cell RNA sequencing

Prior to single–cell transcriptomic profiling, cells were washed with 1 x PBS (Corning, cat# 

21031CV) and stained with DAPI (Sigma-Aldrich, cat# D9542) and live cells were sorted on 
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BD FACS Aria II using 100 μm nozzle. Cells were washed twice with RPMI, counted and 

single-cell RNA-seq was performed using 10X Genomics Single Cell 3’ Library and Gel 

Bead Kit v2 (10 x Genomics, cat# 1000092) following the manufacturer’s instruction. 

Briefly, cells were loaded onto independent channels of a Chromium Controller (10 x 

Genomics) for targeted recovery of 3,000 cells/condition. Complementary DNA was 

synthesized and amplified with PCR for 13 cycles. Amplified cDNA was assessed for QC 

and quantified on Agilent TapeStation using High sensitivity D5000 chip and subsequently 

used for library construction. Libraries were quantified using KAPA Library Quantification 

Kits for Illumina® platform (KAPA Biosystems, Roche, cat# KK4824) and pair-end 

sequenced on NextSeq 550 using 150 cycles High Output kit.

FASTQ file generation and alignment to GRCh38 were performed using Cell Ranger v2.1.1 

with default arguments. In total, 10,109 cells passed the Cell Ranger QC and showed the 

typical “knee” plots indicating high quality from untreated (2,340), short-term (2,618), 

ascending (2,734), and sustained high-dose (2,417). These cell were aggregated using Cell 

Ranger. The fraction of reads in cells was 94.1%. The total number of post-normalization 

reads was 786,185,264, with mean reads per cell at 66,768 and median genes per cell of 

3,333. Multiplets were identified with Scrublet60 and removed from the Cell Ranger filtered 

matrix, which was then used as input to TooManyCells or Seurat with default settings.

RNA FISH

Parental DND-41 cells treated with 125 nM DMSO or GSI and sustained GSI-resistant cells 

were harvested and resuspended in PBS at a concentration of 4.5 × 106 cells mL−1. 80 μL of 

the cells in each condition were added to the same polysine microscope slide (Thermo 

Scientific, cat# P4981) using silicone isolators (Electron Microscopy Sciences, cat# 

7033905) and adhered to the slide for 30 min at room temperature in a humidified chamber. 

Cells were then fixed in 4% formaldehyde (Fisher Scientific, cat# PI28908) in 1xPBS for 10 

min, and then dipped in 1xPBS. Cells were permeabilized in 0.5% Triton (Sigma-Aldrich 

Roche, cat# 10789704001) in 1xPBS for 15 min and dehydrated with an ethanol row of 

70%, 80%, and 100% ethanol for 2 min each. Cells were washed in wash buffer containing 

2X SSC, 10% formamide (Thermo Fisher, cat# 3442061L), in Nuclease-free water (Ambion, 

cat# AM9937) to remove remaining ethanol. 50 μL of hybridization mix (10% dextran 

sulfate, 10% formamide, 2X SSC) and 1 μL of RNA FISH probes against MYC (Alexa594) 

and GAPDH (Alexa 647) (gift from Dr. Arjun Raj) were added to a 24×50 coverslip, 

attached to the slide and sealed with no-wrinkle rubber cement (Elmer/s). Hybridization was 

performed overnight in a 37 °C humidified chamber. Rubber cement was removed and cells 

were washed for 30 min in wash buffer. Cells were then stained with 0.1 μg mL−1 DAPI in 

2XSSC for 15 min in a coplin jar with shaking. Slide was allowed to completely dry before 

mounting on coverslip with Slowfade Gold Antifade Reagent (Invitrogen, cat# S36936) and 

sealing with transparent nail polish.

Imaging was carried out on a Nikon widefield fluorescent microscope (Nikon Ti-E with a 

60xPlan-Apo objective) and z stack size of 10 μM with a z step size of 330 nM (Nikon 

Elements software). DAPI signal was used for manual nuclei segmentation and the number 

of MYC or GAPDH mRNA in each cell were determined as described in61 (https://
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bitbucket.org/arjunrajlaboratory/rajlabimagetools/wiki/Home). 250, 261, and 222 DMSO-, 

GSI-treated parental and sustained resistant cells were analyzed, respectively. The number of 

MYC or GAPDH RNA FISH count were compared by t.test in R. Example images of 

DMSO-treated parental and sustained GSI-resistant cells were selected on the brightest z 
plane and adjusted in ImageJ such that the brightness of each channel is comparable across 

the two conditions.

Reporting Summary

Further information on research design is available in the Nature Life Sciences Reporting 

Summary linked to this article.

Data availability

The accession number for the new datasets reported in this paper is GEO: GSE138892. 

Microfluidics single-cell RNA-seq count data from 11 organs in 3 female and 4 male, 

C57BL/6 NIA, three-month-old mice were obtained from https://figshare.com/articles/_/

5715025, removing P8 libraries due to outlier cell counts22. FACS-purified CD14+ 

monocytes, CD19+ B, and CD4+ T cells were obtained from https://

support.10xgenomics.com/single-cell-gene-expression/datasets23. Data for seven cancer cell 

lines were obtained from GSE8186117. FACS-purified B lymphocytes/natural killer, 

megakaryocyte-erythroid, and granulocyte–monocyte progenitors were obtained from 

GSE11749825.

Code availability

TooManyCells is available at https://github.com/faryabib/too-many-cells or as a Docker 

image https://cloud.docker.com/repository/docker/gregoryschwartz/too-many-cells/. An R 

wrapper for TooManyCells is available at https://cran.r-project.org/web/packages/

TooManyCellsR.BirchBeer is available at https://github.com/faryabib/birch-beer or as a 

Docker image https://cloud.docker.com/repository/docker/gregoryschwartz/birch-beer. 

Codes necessary to reproduce the presented analyses are available at https://github.com/

faryabib/NatMethods_TooManyCells_analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
The TooManyCells visualization and clustering algorithms. (a) TooManyCells visualizes 

inter-cluster relationships while providing many capabilities and options including, but not 

limited to, weighted average blending of colors, scaling branches, modularity overlays, 

smart tree pruning, and several leaf node visualizations. Cells from 11 mouse organs are 

color coded based on their organ-of-origin. (b) TooManyCells matrix-free divisive 

hierarchical spectral clustering. TooManyCells is conceptually similar to recursive 

separation of cells based on their color (state/type) similarities, first separating green and 

blue from red, purple, orange, and gray cells, followed by separation of green from blue, 

gray from red, purple, and orange, etc. The network of cells (nodes) connected by their 

cosine similarities (edges) is recursively bipartitioned (red dashed lines) using truncated 

singular value decomposition (SVD) of the transformed matrix C that is directly calculated 

from the gene expression matrix. Here, truncated SVD only calculates the first two left 

singular vectors corresponding to the two largest singular values instead of full matrix 

factorization. This “matrix-free” process eliminates the need for the explicit calculation of 

cell-cell similarity (A) and the normalized Laplacian (L(A)) matrices followed by full 

eigenvalue decomposition (calculation of all the matrices on the right hand side of the 

equation instead of only the red-marked column) at each bipartitioning. Recursive 

bipartitioning is terminated when a candidate split results in non-positive Newman-Girvan 

modularity (Q).
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Figure 2: 
Example of TooManyCells visualization capabilities using 11 mouse organs. (a) The 

complete tree with default settings. (b) Different leaf rendering options (clockwise from 

bottom: gene expression, “pie ring”, pie chart) and example of scaling and average weighted 

color blending for branches. (c) Tree from (a) pruned with median(node size)+3*MAD(node 

size), which is used in panels d to k. (d) Tree with modularity of bipartitioning at each 

internal node displayed as black circles, where higher modularity is represented by darker 

circumference intensity. (e) Tree with numbered nodes. (f) Color-coded tree with a 
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continuous variable (e.g. cell diversity of organs, increasing color intensity represents 

increasing diversity). For clarity, inner and leaf nodes use different intensity scales. (g) 

Color-coded tree with a discrete variable presenting UMI counts. (h) Color-coded tree with 

expression level of a specific gene (Cd4 expression level). (i) Color-coded tree with 

expression level of multiple genes (Cd4 and Cd8 expression levels). (j) Tree with non-

default scaling width. (k) Tree with disabled branch scaling.
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Figure 3: 
Comparative analysis of clustering performance and scalability. (a) From Tabula Muris22 (n 
= 41,689 cells), the population analyzed is represented by the number of organs on the x-

axis taken from the left of the ordering {Thymus, Spleen, Bone marrow, Limb muscle, 

Tongue, Heart, Lung, Mammary gland, Bladder, Kidney, Liver}. Purity (left), entropy 

(middle), or normalized mutual information (NMI, right) performance measures are 

calculated. Higher purity and NMI represent higher accuracy, while lower entropy indicates 

better performance. Default or suggested filterings and parameters were used for all 

algorithms (see Online methods). A dashed border indicates the algorithm did not complete 

within four days. (b-d) Same measures as (a) are used to compare clustering accuracy based 

on data from Zheng et al.23 (n = 23,910 cells) (b), Li et al.17 (n = 561 cells) (c), and Pellin et 
al.25 (n = 2,815 cells) (d). (e-h) Equivalent data sets as (a-d) for different TooManyCells 

normalization procedures: the TooManyCells default normalization (Default) term 

frequency-inverse document frequency (tf-idf), Log Counts-Per-Million (Log CPM), total 

and gene median count normalization (Cell and Gene), upper quartile normalization (Upper 

Quartile), total and gene median count normalization followed by tf-idf normalization (Cell 

and Gene / TF-IDF).
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Figure 4: 
Detection of cells from two “rare” populations mixed with a “common” population was 

benchmarked for widely used clustering algorithms. (a, b) Columns from left to right: cells 

labeled by actual cell types and assigned clusters of a clustering algorithm. Rows from top to 

bottom: Monocle, Phenograph, Seurat, and RaceID t-SNE projections. Each projection used 

the corresponding package’s implementation of t-SNE with the same seed (see Online 

Methods). Analysis for 900 common (T cells) and 100 rare cells (50 macrophages and 50 

dendritic cells) (a) and 990 common and 10 rare cells (5 macrophages and 5 dendritic cells) 

(b) are presented. (c) TooManyCells with priority given to rare cells (pruning 

median(modularity)+5*MAD(modularity)). Left: 900 common and 100 rare cells. Right: 

990 common and 10 rare cells. Magnified rare-population-containing subtree showed in 

insert. Black to white colored circles represent high to low modularity. (d-g) Box-Whisker 

plots (center line, median; box limits, upper (75th) and lower (25th) percentiles; whiskers, 

1.5x interquartile range; points, outliers) quantifying accuracy of rare population detection in 

admixtures from various data sets (m = 10 admixtures, n = 1,000 cells): (d) T cells 

(Common), macrophages (Rare1), and dendritic cells (Rare2); (e) mouse bladder 

(Common), heart (Rare1), and tongue cells (Rare2); (f) human PBMC FACS-purified 

CD19+ B (Common), CD14+ monocytes (Rare1) and CD4+ T (Rare2) cells; and (g) three 

subpopulations of synthetic data. Each point represents average performance of ten 

experiments from an admixture (ten admixtures overall, from 90% common to 99% 

common). Performance indicates true rare pairs (i.e. Rare1 with Rare1 in the same cluster) / 

total rare pairs (true rare pairs, and Rare1 with Rare2). TooManyCells was evaluated with 

default normalization. To accommodate the Splatter model in (g), TooManyCells was run 

with PCA and relaxed modularity cutoff to account for the transformation.
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Figure 5: 
TooManyCells stratifies rare plasmablasts in mouse spleen. (a, b) TooManyCells clustering 

tree of the mouse splenocytes labeled with major immune cell lineages based on predefined 

lineage markers22 with (a) more (0.1 modularity) and (b) less (0.025 modularity) restricted 

modularity pruning thresholds, respectively. (c) Tree from (b) colored with newly identified 

B cell subtypes (see Online Methods). (d) ImmGen MyGeneSet30 gene expressions for the 

top n = 100 differentially expressed genes of the plasmablast node from (c) compared to all 

other B cell subtypes (box-whisker plots: center line, median; box limits, upper (75th) and 
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lower (25th) percentiles; whiskers, 1.5x interquartile range; points, outliers). (e) Cells from 

Figure S16 projected using Seurat’s processing and t-SNE, colored by TooManyCells 

clustering tree leaves, where each leaf is assigned a different color (top-right insert). Similar 

colors represent nearby locations within the tree, for example pink and purple are closer in 

the tree than pink and green. (f) Coordinates from t-SNE projection in (e) colored by subset 

populations from (c). Orange color-coded plasmablasts are indistinguishable from other B 

lymphocytes. (g) Coordinates from the t-SNE projection in (e) colored by Seurat-generated 

cluster labels fails to separate plasmablasts. Circles colored from black to white base on high 

to low modularity. Definitions of x-axis ticks from (d), T1: Splenic T1 (transitional), T2: 

Splenic T2, T3: Splenic T3, B: Splenic B cells, Fem: Female Splenic B cells, Fo: Splenic 

Follicular, MZ: Splenic Marginal Zone, mem: Splenic Memory, GC_CB: Splenic Germinal 

Center Centroblasts, GC_CC: Splenic Germinal Center Centrocytes, PB: Splenic 

Plasmablasts, PC: Splenic Plasma Cells. n = 9,552 cells in all the panels.
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Figure 6: 
TooManyCells identifies GSI-resistant cell heterogeneity and detects resistant-like T-ALL 

cells. (a) Treatment strategies for untreated (n = 2,338 cells), short-term (n = 2,616 cells), 

ascending (n = 2,727 cells), and sustained (n = 2,417 cells) DND-41 populations. (b) 

TooManyCells tree showing distinct GSI-resistant populations (n = 10,098 cells). (c, d) 

Upper quartile normalized (UQ) MYC (c) and ATF5 (d) expressions overlaid onto (b). Gray 

to red: low to high expression. (e) TooManyCells tree of parental and sustained populations 

(n = 7,371 cells). Magnified resistant-like subtree in insert. (f) UQ MYC expression overlaid 

Schwartz et al. Page 31

Nat Methods. Author manuscript; available in PMC 2020 September 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



onto (e). Magnified resistant-like subtree in insert. Black to white circles represent high to 

low modularity. (g) Violin plots (center line, median; upper and lower lines, 75th and 25th 

percentiles; lower and upper bounds, minimum and maximum) normalized MYC expression 

of resistant-like (n = 28 cells) and other parental (n = 4,926 cells) cells (two-tailed Mann-

Whitney U test, p = 4.16 × 10−8). (h) Box-Whisker plots (center line, median; box limits, 

upper (75th) and lower (25th) percentiles; whiskers, 1.5x interquartile range; points, outliers) 

showing single-cell MYC (left) and GAPDH (center) RNA FISH signal distributions for 

untreated (n = 250 cells), short-term (n = 261 cells; two-tailed t test, MYC: p = 1.5 × 10−11), 

and sustained (n = 222 cells; two-tailed t test, MYC: p = 2 × 10−4) populations. Cell images 

(right) of RNA FISH signals for GAPDH (pseudo-color red) and MYC (pseudo-color 

yellow) in untreated (top) and sustained (bottom) cells. Top 3rd and 4th columns showing 

two untreated cells with high MYC and low MYC expression, respectively. Bottom 3rd and 

4th columns showing two sustained cells with high MYC expression. Cell nuclei in purple. 

NS: p > 0.005 (i) Cells from (e) projected using Seurat (n = 4,954 cells), colored by 

resistant-like population (red) from (e). (j) Coordinates from (i) colored by Seurat-generated 

clusters.
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