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Abstract: The physical workload evaluation of construction activities will help to prevent
excess physical fatigue or overexertion. The workload determination involves measuring
physiological responses such as oxygen uptake (VO2) while performing the work. The ob-
jective of this study is to develop a procedure for automatic oxygen uptake prediction using
the worker’s forearm muscle activity and motion data. The fused IMU and EMG data were
analyzed to build a bidirectional long-short-term memory (BiLSTM) model to predict VO2.
The results show a strong correlation between the IMU and EMG features and oxygen up-
take (R = 0.90, RMSE = 1.257 mL/kg/min). Moreover, measured (9.18 ± 1.97 mL/kg/min)
and predicted (9.22 ± 0.09 mL/kg/min) average oxygen consumption to build one scaffold
unit are significantly the same. This study concludes that the fusion of IMU and EMG
features resulted in high model performance compared to IMU and EMG alone. The results
can facilitate the continuous monitoring of the physiological status of construction workers
and early detection of any potential occupational risks.

Keywords: oxygen uptake; wearable sensors; electromyography; inertial measurement
unit; machine learning; construction worker safety; occupational risks

1. Introduction
The construction sector relies heavily on manual labor and repetitive activities, of-

ten causing significant physical exhaustion among workers. In the U.S., nearly 40% of
construction workers report severe fatigue, which can impair decision-making, raise in-
jury risks, reduce efficiency, and compromise work standards [1,2]. Additionally, extreme
fatigue—stemming from harsh work environmesnts, extended shifts, and demanding
tasks—can worsen these negative outcomes, contributing to musculoskeletal disorders
(WMSDs) and declines in productivity [3,4]. Fatigue also hinders both physical and mental
performance [5] and has been linked to slip-and-fall accidents, one of the top four deadly
hazards in construction, as noted by OSHA [6]. Ref. [7] safety report revealed that con-
struction firms spend approximately USD 189.81 million per week on serious, non-fatal
workplace injuries.

To prevent or reduce the physical fatigue or physiological demands associated with
construction activities, it is possible to monitor the physiological effort at which workers
perform the construction activity and evaluate whether the effort exceeds physiological
standards [1,8]. The physical demand or physiological workload of construction work
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can be determined by measuring the average oxygen uptake (or energy expenditure) or
the heart rate while performing the construction activity [1,8]. To assess the physical
demands of construction activities, early efforts were made by Abdelhamid and Everett [1]
to measure the physiological demands such as heart rate and oxygen uptake using the
KB1-C metabolic system, which was cumbersome and uncomfortable.

Photoplethysmogram (PPG) and Electrodermal activity are non-invasive techniques
that are commonly used in the field of psychophysiology but are being adopted in other
areas, such as construction. The PPG operates based on the optical and transmission prop-
erties of the human body at a particular wavelength of light to determine the changes in
blood volume in the skin’s microvascular bed [9]. The sensor consists of a light-emitting
diode (LED) and a photodetector that senses the emitted light. Based on the position of
the LED and the photodetector, PPG is classified as either transmissive or reflective [10].
The term “electrodermal activity” (EDA) refers to the electrical phenomena that occur in
the skin and its associated structures, encompassing both the active and passive electrical
properties that can be measured [11]. In simpler terms, EDA describes changes in the
skin’s ability to conduct electricity. EDA can be assessed through the application of exter-
nal current (endosomatic method) or through applying alternating current (exosomatic
method); in stress-related research, direct current is used [12]. EDA signals can also be
reflective of the intensity of our emotional state; therefore, they can be used to identify
psychological or emotional arousal episodes [13]. In recent years, with advancements
in wearable sensors and machine learning, various researchers developed objectives to
assess the workers’ physical demand using physiological sensors such as heart rate, skin
temperature, photoplethysmography (PPG), or electrodermal activity (EDA) [3,8,14,15].
Machine learning algorithms have been adopted to help identify non-trivial and complex
patterns from biological signal data captured through wearable sensors [16]. Previous
studies investigated the percentage change in heart rate [8], rating of perceived exertion [3],
and energy expenditure [15] to classify the construction work performed by the worker
into various physical demand levels (low–high). Even though heart rate, skin temperature,
PPG, or EDA were proven to be able to monitor the individual physical workload, it is still
not sufficient for continuously monitoring the physical demand of workers with different
individual characteristics (age, gender, and work experience), task characteristics (complex
activities in a short interval of time with varying workloads), or for helping quantify the
direct impacts of physical workload of activity on construction safety performance or
accidents [17–19]. To overcome this limitation, there is a necessity to develop a system
that can predict physiological demands using data that are dependent on the task and
individual characteristics. Therefore, this study proposes to predict oxygen uptake during
construction activities using forearm-based wearable sensors and deep learning.

The continuous monitoring of oxygen uptake (VO2) helps to evaluate whether the
physical demand of the activity exceeds the physiological standards and determines the
worker’s physiological status for early indication of accident potentials. Moreover, the
motion and muscle activity data obtained from the wearable sensor while workers are per-
forming the activity are influenced by the activity characteristics, individual characteristics,
and work conditions. These data could help overcome the limitations of previous studies.
The frequency and quality of data obtained from the armband sensor were proven to be
sufficient to recognize the complex construction activities in a short interval of time [19,20].
Furthermore, the continuous oxygen uptake prediction helps in measuring aerobic fatigue
threshold (AFT), which is used for workers’ fatigue monitoring, as published by the same
authors [21]. According to the fatigue monitoring system, the forearm muscle activity and
motion data obtained for the workers’ forearm while performing the work are used for
worker activity recognition and oxygen uptake prediction. This study evaluated the use of



Sensors 2025, 25, 3204 3 of 20

forearm muscle activity and motion data for construction workers’ activity recognition in
the previous study [20]. This study focuses on investigating the feasibility of using forearm
muscle activity and motion data for oxygen uptake prediction. Since the muscle activity
and motion data are highly dependent on the activity, this method is highly suitable for
construction as workers are involved in labor-intensive tasks throughout the day.

The rest of this paper is structured as follows. First, we review the current literature on
the application of wearable sensors for VO2 prediction. Next, the proposed VO2 prediction
method and the experimental protocol are introduced, followed by the Results Section that
evaluates the performance of the proposed VO2 prediction method. In the end, it concludes
with discussions of the findings, limitations of the study, and future research directions.

2. Literature Review
2.1. Wearable Sensing Technology Applications in Construction

Wearable sensing technology has been widely adopted in the construction industry
for different applications, especially for construction safety and health. Wearable sens-
ing technology such as inertial measurement unit (IMU), electrocardiography (ECG), and
seismocardiography (SCG) have been extensively used in different applications for con-
struction health and safety. IMU sensors are quite common; they are embedded in devices
or applied in processes to obtain velocity, orientation, and gravitational force. IMU devices
have benefited from advancements in technology with a shift from only accelerometers
and gyroscope-based devices to the addition of a magnetometer to improve the reading of
the gyroscope [22]. In recent years, kinematic sensors such as inertial measurement units
(IMUs) have been successfully implemented in several construction applications to monitor
a worker’s body posture, acceleration, and orientation [23–25] to prevent musculoskeletal
disorders from the detected awkward postures [26–28] or identify a fall from a high eleva-
tion from the identified sudden body acceleration change [29–31]. Electrocardiography is
a non-invasive procedure that captures the electrical activity in the heart and circulatory
system [32]. The diagnostic tool translates the electrical impulses of the heartbeat into a
series of waves [33]. ECG has evolved from the traditional systems consisting of electrodes
and electrolyte gel to dry electrodes and more recently capacitively coupled electrodes.
Studies commonly integrate the sensor with other wearable sensors for various applica-
tions. Altini et al. [34] combined a necklace ECG with an accelerometer to estimate the
walking speed of participants, activity recognition, and energy expenditure estimation.
Unlike ECG, seismocardiography (SCG) monitors mechanical vibrations caused by the
heart at the surface of the chest, including vibrations that are below the range of human
hearing [35]. Recent studies have used lightweight low-noise accelerometers to enhance
the quality of recorded SCG signals [35] such as smartphone accelerometers [36] and laser
Doppler vibrometers [37]. A worker’s cardiac activity can also be monitored by wearable
sensors such as ECG, SCG, and PPG, and researchers have been studying how to deter-
mine the physical and mental condition of the workers using these sensors to monitor the
metrics such as heart rate variability (HRV), inter-beat-intervals (IBIs), pulse-rate variability
(PRV), and heart-rate reserve (HRR) derived from heart rate [38,39]. Electromyography
(EMG) is a method used to record and assess the electrophysiological signals associated
with muscle activity, also known as the myoelectric signal. EMG serves as a vital tool
for comprehending the muscle activity of the human body, both in typical and abnormal
conditions [40]. The non-invasive technique involves placing the electrodes on the muscles
of interest and recording signals based on the muscle activity and is referred to as surface
electromyography (sEMG) (Systematic review of textile-based electrodes for long-term
and continuous surface electromyography recording). Nimbarte [41] studied assessing the
muscle load and forces for the ergonomic assessment using the captured muscle activi-
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ties from the EMG sensors, and other researchers [1,3,42,43] also pioneered the feasibility
of assessing workers’ physical workload and fatigue using the PPG, EDA, ST, or heart
rate sensors. For construction safety training, eye-tracking and EEG sensors were also
implemented to measure workers’ visual attention and brain activities to help evaluate
the training effectiveness and monitor trainees’ mental status for training improvement.
Although the current literature has shown the feasibility of using wearable sensors for
construction safety and health applications, there still exist some challenges, such as high
sensor cost, inability to be used for multiple complex activities, noise and artifacts in
field measurements, variability in standards to assess personal safety and health risks, the
uncertainty of return of investments, and user resistance for adoption [18].

2.2. VO2 Prediction Using Wearable Sensors

Recent studies explored VO2 prediction model development using wearable sensors
and machine learning but mainly limited to activities with light-to-moderate intensity such
as treadmill walking [17,44], daily living activities [17,45–47], cycling exercise [48], and
outdoor walking [17]. These studies used physiological and motion sensors such as an
electrocardiogram, seismocardiogram, atmospheric pressure, heart rate, respiratory band,
Garmin vector power meter, and accelerometer. Except for Shandhi et al. [17], all the other
studies have used multiple sensors on different body parts to capture the input data for
VO2 prediction models. The use of multiple wearable sensors on construction workers
while performing the work is cumbersome and unrealistic considering the location of the
sensors. Sensor location largely depends on the mechanism of the sensor and the intended
application. Aloqlah et al. [49] placed sensors on the head for gait assessment, and while
this was effective in that application, sensor signals may suffer interference with hard hats
in a typical construction environment. Zignoli et al. [48] placed the sensor on the foot,
which obstructs the mobility and interferes with the worker’s steel toe shoes. Moreover,
the VO2 prediction models were developed using machine learning algorithms such as
Logistic regression [45], XGBoost [17], Random Forest [46], Multilayer Perceptron Neural
Network [47], Artificial Neural Network [44], and Recurrent Neural Network [48,50] and
features such as absolute acceleration, heart rate, cadence, breathing frequency, and power
output. Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM)
have been effective for sequence data and regression [50,51]. Even though these studies
have achieved acceptable model performance in predicting oxygen uptake, limitations of
these studies still exist, such as only light-to-moderate activities were evaluated, the use of
multiple sensors for data acquisition, and the inability to predict VO2 for high intensity
and complex activities performed in short intervals.

2.3. Points of Departure

To overcome the above-mentioned limitations in the current literature, this study
explores a new method to predict oxygen uptake for complex construction activities through
EMG and IMU data collected from only one low-cost armband-based wearable sensor.
A bidirectional long-short-term memory (BiLSTM) established a VO2 prediction method
using the forearm IMU and EMG data. A series of scaffold-building activities were tested
to evaluate the performance of the proposed prediction model. Compared with the existing
techniques, the preliminary results show that the proposed method has improved results
for complex high-intensity construction activities. In addition, this study evaluates and
compares the performance of using different sensor features (i.e., IMU alone, EMG alone,
and IMU + EMG) and other RNN models. Finally, this study estimates the average VO2

required to build one scaffolding unit model using the proposed model.
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3. Materials and Methods
3.1. Data Collection
3.1.1. Participants

Ten active male university students participated in this study (27 ± 1.70 years,
171.7 ± 4.13 cm, 76.70 ± 8.25 kg). The activity level of the participants was moderate-
to-vigorous. All the participants were right-handed, non-smokers, and had no lower-back
injuries or musculoskeletal disorders. Before starting the experiment, the study’s objective
was demonstrated to the participants, and written informed consent was obtained from all
the participants. The experiment protocol consistent with the Declaration of Helsinki was
approved by the University’s Institutional Review Board (IRB) (ID: IRBAM-20-0539).

3.1.2. Construction Activity Description

Construction activities involve heavy labor-intensive tasks and complex motions. In
this study, the authors adopted scaffold-building activities that are considered as manual
work-intensive activities [20]. One of the significant reasons to choose scaffold-building
activities involves moderate-to-heavy workload tasks involving different body part move-
ments (wrist, upper body, forearm, lower body, whole body) and various motions (free
motion, repetitive motion, and impulsive motion). This study identified fourteen scaffold-
building activities, as shown in Table 1. The tasks involve carrying and installing different
objects such as a scaffold frame (38 Lbs.), crossbars (10 Lbs.), leveling jacks (6.5 Lbs.),
baseboard (33 Lbs.), and wooden guardrail (5 Lbs.). Also, it involves going up and down
the vertical ladder. Figure 1 shows some of the scaffold-building tasks performed by
the participant.

Table 1. Scaffold-building activities.

SL. No. Activities

1 Walking

2 Carrying or Positioning Scaffold Frame

3 Carrying Leveling Jacks

4 Inserting and Adjusting Leveling Jacks

5 Carrying Crossbars

6 Installing Crossbars

7 Hammering

8 Wrenching

9 Carrying and Dragging baseboard

10 Installing Baseboard on Different Level

11 Carrying Guardrail

12 Dragging Guardrail

13 Installing Guardrail

14 Going Up and Down Vertical Ladder
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Figure 1. Participants performed different scaffold-building activities. (a) Hammering, (b) carrying
scaffold frame, (c) carrying baseboard, (d) carrying guardrail, (e) going up the vertical ladder,
(f) installing baseboard on a different level, (g) installing crossbars, and (h) adjusting leveling jacks.

3.1.3. Measurements and Instrumentation

This study proposes to use a forearm-based wearable armband sensor (Myo Armband)
developed by Thalmic Lab Inc. (Kitchener, ON, Canada) to collect forearm IMU and EMG
data. The armband consists of eight dry EMG surface electrodes and a 9-axe IMU sensor
(3-axe accelerometer, 3-axes gyroscope, and 3-axe magnetometer). The IMU sensor is
embedded in the EMG channel 4. The EMG electrodes capture the forearm muscle activity
and return an 8-bit array of integer values ranging between −128 and 127, acquired at
200 Hz frequency. In contrast, the IMU data capture the forearm’s motion by measuring
acceleration, angular velocity, and orientation in x, y, and z-direction at 50 Hz frequency.
The real-time raw IMU and EMG data were transmitted from the armband sensor to local
computer storage via Bluetooth Low Energy (BLE) wireless connection. To capture the
gold standard breath-by-breath oxygen uptake while performing construction activities,
a portable metabolic analyzer, the VO2 Master Analyzer (VO2 Master Health Sensor Inc.,
Vernon, British Columbia, CA, USA), was used, as shown in Figure 2. The metabolic
analyzer records VO2 at a frequency of 1 Hz. The armband sensor and metabolic analyzer
were calibrated according to the manufacturer’s guidelines. As shown in Figure 2, the
armband is required to be worn at the thickest part of the forearm during the experiment,
and the blue Myo logo needs to be located at the lower forearm with the EMG channel
1–4 in the line of the index finger of the participant [21].
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Figure 2. Participant wearing forearm Myo armband sensor and metabolic analyzer.

3.1.4. Experiment Protocol

Before starting the experiment, participants were asked to warm up their bodies to
prevent injuries. Once the participant was ready, the armband sensor and metabolic
analyzer were attached to the participant and calibrated using the manufacturer’s
guidelines. All the participants performed the fourteen scaffold-building activities for
five minutes each. Enough rest was provided between the activities until the heart rate
reached below 100 bpm. VO2, IMU, and EMG data were recorded continuously for
each activity. The activities were performed in a warehouse environment at an average
temperature of 72 F. The ten participants’ data were further used for regression model
building, training, and evaluation. Moreover, all the participants performed a whole
sequence of activities to build one scaffolding unit to simulate the actual work situation.
While performing the whole sequence activities, the actual oxygen uptake was measured
using the VO2 analyzer. The data (unseen dataset) collected while performing the whole
sequence were used to determine the average oxygen consumption required to build
one scaffold unit.

3.2. BiLSTM-Based VO2 Prediction
3.2.1. Overview of the Proposed Approach

The proposed framework to develop an oxygen uptake prediction model using
forearm-based IMU and EMG data is shown in Figure 3. The raw IMU and EMG data
obtained from the armband sensor were preprocessed and synchronized with the oxygen
uptake recorded using a VO2 analyzer. The preprocessed data were used to train the
BiLSTM-based regression model and evaluated using the Leave-One-Subject-Out (LOSO)
cross-validation. Furthermore, the trained model was used to predict the oxygen uptake
on unseen data to estimate the VO2 required to build one scaffold unit.
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Figure 3. The proposed approach to develop a BiLSTM-based oxygen prediction model using forearm
IMU and EMG data.

3.2.2. Data Processing

Since the IMU, EMG, and VO2 data were at different frequencies, 17 statistical
features were extracted from the raw acceleration, gyroscope, and EMG data for every
second without any overlap. Later, the extracted features were synchronized with VO2

data at a 1 Hz frequency. In addition to these features, a lag feature was applied by
shifting the resultant acceleration (ACC), gyroscope (GYRO), and EMGsum variable and
rolling mean for window size by one and mean for window size 3, respectively. Using
the lag feature helps the recurrent neural network models see the sufficient past values
relevant for future prediction and improves model performance [52]. In total, 289 statis-
tical features and one lag feature were extracted from 17 raw data features, as shown in
Table 2. However, all the extracted features may not add value to performance. Addition-
ally, they might cause overfitting problems. Therefore, feature selection techniques such
as Pearson’s correlation and mutual information were applied to the 290 features. Pear-
son’s correlation measures the linear correlation between two features. Simultaneously,
mutual information measures the amount of information obtained from one feature
given another [53,54]. In this study, the features were selected if Pearson’s correlation
and mutual information were more significant than 0.1. Therefore, 69 of 290 features
were selected to build the proposed model. The final step of data preprocessing involves
data scaling since all the features are in varied scales. For regression and numeric input
variables, the normalization technique is used to scale the data between 0 and 1 [55]. After
the feature extraction, the dataset of ten participants consists of 52,631 samples with
69 features. The “sample” here refers to a single data point representing one second of
synchronized forearm sensor data and corresponding oxygen uptake measurement.
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Table 2. Feature extraction and selection from raw IMU and EMG data.

Features Extracted from Raw Data

Dataset Raw Features Statistical Features

Acceleration ax, ay, az, ACC
sum, avg, min, max, median, stdev,
cv, var, percentiles (5, 10, 25, 75, 90,
95), skew, kurtosis

Gyroscope gx, gy, gz, GYRO

EMG EMG1, EMG2, EMG3, EMG4, EMG4, EMG5,
EMG6, EMG7, EMG8, EMGsum

ACC, GYRO, EMGsum Lag Feature, Rolling Mean Shift (1), rolling (window = 3)

Features Selected for Proposed Model

Acc_mean, EMGsum_lag1, Gyro_mean, az_per50, az_median, az_avg, az_per25, az_sum, az_per75, az_per10,
az_per90, az_per95, az_per5, az_max, ax_max, gz_stdev, ax_per95, gz_min, gz_max, ax_stdev, gz_per95, ax_per90,

ay_stdev, gz_per5, az_min, gz_per90, gz_var, gx_stdev, gz_per10, gx_max, ax_per75, gx_min, gy_stdev, res_gyro_max,
gy_max, ay_var, res_acc_skew, res_gyro_per95, gy_min, res_gyro_avg, res_gyro_sum, ay_min, ax_sum, ax_var, gx_var,

res_gyro_median, res_gyro_per50, res_gyro_stdev, res_gyro_per90, gx_per5, gy_per95, gz_per75, az_skew,
EMG7_per25, ax_skew, res_acc_max, res_gyro_per75, gy_per5, gx_per95,ax_avg, res_acc_per95, ax_median, ax_per50,

EMG8_per25, EMG8_per75, gy_per10, EMGsum_var, res_gyro_per25, gy_per90

3.2.3. BiLSTM Model Building and Training

RNN is a type of neural network suitable for sequence data. In RNNs, the recurrent
layers store the information from the previous step and combine it with the future times-
tamp input. Once all the time steps are evaluated, the output layer generates output using
the activation function. The output error generated is backpropagated to the network for
updating the weights during training and continues until the error is minimized [56]. The
most commonly used RNN models for time-series problems are LSTM, BiLSTM, and gated
recurrent unit (GRU) [57]. An LSTM cell consists of three gates: input, forget, and output
gate, as shown in Figure 4. The input from the previous hidden state and the current input
will be sent to these three gates, and the outputs from these are passed to the cell state,
which carries the required information. The gates are the neural networks responsible for
retaining or removing the information during the training [58]. A BiLSTM-based recurrent
neural network is a variation of a long-short-term memory (LSTM) model that consists
of a backward and forward LSTM layer to learn information from the past layer [59]. It
duplicates the first LSTM layer so that the two layers are trained side-by-side on all the
available input data in the past and future timestamps. The combination of backward and
forward LSTM layers helps understand the long-term dependencies between the time steps
of the sequence data to improve the model performance [60–62].

Figure 4. The structure of LSTM cell.
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In this study, the proposed BiLSTM models were implemented in Keras [63], a high-
level neural networks API written in Python 3.9.0 and capable of running on top of Ten-
sorFlow. The proposed BiLSTM model’s architecture consists of two stacked BiLSTM
layers, dropout layers, dense layers, and an output layer, as shown in Figure 5. The data
obtained from the preprocessing step were used as input data for the model. The input
data consisted of 52,631 samples with 69 features for 10 participants and were reshaped to
three-dimensional input for LSTM models, which is in the format of [samples, timestamps,
features]. The reshaped input sequence data were fed into two stacked BiLSTM layers with
1024 neurons. The BiLSTM layers’ output was passed through a Dropout (0.3) layer to
randomly drop 30% units from the network to prevent overfitting of the model. Later, the
data were passed through a series of fully connected dense layers (1024) and a dropout layer
(0.3) before reaching the output layer. Since the regression model’s output is a numerical
value, no activation function is applied in the final output layer. The hyperparameters such
as the number of layers, neurons, optimizers, batch size, and the number of epochs were
chosen using the random search hyperparameter optimization technique [64]. An Adam
optimizer with a learning rate of 0.001 and a mean square error (MSE) loss function was
used to compile the model. An early stopping method with 100 epochs was used to fit
the model. The early stopping method helps prevent the model overfit by stopping the
training process if there is no improvement in the metrics.

 

Figure 5. The architecture of the proposed BiLSTM-based oxygen prediction using IMU and EMG.

3.2.4. Cross-Validation and Model Evaluation

The leave-one-subject-out cross-validation technique was implemented to evaluate
the proposed model’s performance to prevent the overlap between the training and testing
datasets, affecting prediction accuracy [65]. Moreover, LOSO helps obtain realistic and
generalized model performance on the unseen dataset. In the LOSO method, the dataset of
N subjects is divided into N folds or iterations. For each fold, data from (N-1) subjects are
used for model training, and the left-out subject data are used for testing. This is repeated
with all the N subjects’ data, and the model performance is the average of the results for all
subjects. Various metrics such as mean absolute error (MAE), mean square error (MSE),
root mean square error (RMSE), coefficient of correlation (R), coefficient of determination
(R2), and mean absolute percentage error (MAPE) were used to assess the performance of
the regression models. MSE is calculated as the squared difference between actual (y) and
predicted (ŷ) output, as shown in Equation (1). MAE measures the magnitude of residuals
which is the sum of the absolute difference between actual and predicted outputs, as shown
in Equation (2). MSE is the most prominent error, which is calculated using Equation (1).
Unlike MAE, MSE is highly sensitive to outliers. The metric RMSE is the standard deviation
of the residuals, which helps understand the spread of predicted outputs around expected
outputs. RMSE is the square root of MSE, which is calculated using Equation (3). The MSE,
MAE, and RMSE are expressed in mL·kg−1·min−1. This study also reports MAPE, r, and
R2, which are as shown in Equations (4)–(6), respectively. In addition to evaluating the test
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dataset, the trained model was implemented on the unseen dataset to determine the error
between measured and predicted oxygen uptake.

MSE =
1
n∑(y − ŷ)2 (1)

MAE =
1
n∑|y − ŷ| (2)

RMSE =

√
1
n∑(ŷ − y)2 (3)

MAPE =
100%

n ∑
∣∣y − ŷ

∣∣
y

(4)

r = ∑n
i=1(ŷ − y)2

∑n
i=1(y − y)2 (5)

R2 =

(
∑n

i=1(ŷ − y)2

∑n
i=1(y − y)2

)2

(6)

4. Results
4.1. Performances of the Proposed Model

This section presents the LOSO cross-validation results of the proposed BiLSTM-based
regression model using IMU and EMG features. The proposed model was built using 10 par-
ticipants’ data and 69 selected IMU and EMG features. The average metrics of 10-fold LOSO
cross-validation metrics shows are shown in Table 3. The average R2, RMSE, and MAE
values of the proposed model for all the participants are 0.80, 1.257 mL·kg−1·min−1, and
1.581 mL·kg−1·min−1, respectively. Moreover, Table 3 presents the LOSO cross-validation
results on test Subject#1, where R2, RMSE, and MAE are 0.75, 1.685 mL·kg−1·min−1, and
1.264 mL·kg−1·min−1. The measured and predicted oxygen consumption for each second
on Subject#1 test data are shown in Figure 6. From Figure 6, it can be observed that the
model has predicted the pattern perfectly, but some of the extreme values were missed.
Even though the desired results are achieved, it is essential to assess the training perfor-
mance using learning curves to understand whether the model is suffering from variance
or bias [66]. Figure 7 shows that the proposed model loss function (i.e., MSE) decreased
with the number of epochs. Moreover, the training and validation loss curves are close to
each other, showing that the model has a good fit with low bias and variance.

Table 3. LOSO cross-validation metrics of proposed BiLSTM model on test and unseen data.

Model R R2 MAE MSE RMSE MAPE

All Participants Data 0.895 0.800 0.757 1.581 1.257 10%

Subject#1 as Test Data 0.866 0.750 1.264 2.838 1.685 16%

Unseen Data of All Participants 0.833 0.695 1.236 2.525 1.589 13%

A further trained model was used to predict oxygen consumption on the unseen
data (i.e., participants performed an entire sequence of activities to build one unit of
scaffold frame). The unseen dataset consists of 4116 number samples from all the par-
ticipants. The average R2, RMSE, and MAE on unseen data of all participants are 0.75,
1.685 mL·kg−1·min−1, and 1.264 mL·kg−1·min−1. Figure 8 shows the linear correlation
analysis for measured and predicted VO2. It should be noted that these results are from
second-by-second oxygen uptake predictions.
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Figure 6. Oxygen uptake prediction on test Subject#1 using the proposed BiLSTM model.

Figure 7. The learning curve of the proposed BiLSTM model using IMU and EMG data.

Figure 8. Correlation analysis for measured and predicted VO2.
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4.2. Average Oxygen Consumption to Build One Scaffolding Unit

The prediction of the proposed BiLSTM model on unseen data of the participants
was used to determine the average oxygen consumption required to build a scaffold unit
involving fourteen activities shown in Table 1. The average time taken for the participants
to build one unit of scaffold is 6.67 minutes (i.e., approximately 400 samples in the unseen
dataset for each subject). The average measured and estimated oxygen uptake to build a
scaffold unit is 9.18 ± 1.97 and 9.22 ± 1.30, as shown in Table 4. To assess whether the pre-
dicted oxygen uptake (VO2) values were significantly different from the measured values
during scaffold-building, we computed the difference column in Table 4 by subtracting the
measured VO2 (in mL/kg/min) from the estimated VO2 for each participant. To statistically
evaluate the agreement between the measured and estimated values, a one-way repeated
measures ANOVA was conducted using VO2 as the dependent variable and condition
(measured vs. estimated) as the within-subject factor. The ANOVA results showed no
significant difference between measured and estimated VO2 values across participants
(p = 0.9641), indicating that the proposed BiLSTM model provides accurate average oxygen
consumption estimates for the scaffold-building task. This statistical result supports the
model’s potential to serve as a reliable surrogate for direct metabolic measurements in field
conditions. It is observed that the error is minimized for the average oxygen consumption
over the duration of the build compared to second-by-second predictions. The oxygen
consumption estimated using the proposed model can be used to determine the activity’s
physical workload. However, it should be noted that the physical workload or oxygen
consumption increases with an increase in the work duration and the number of units.

Table 4. Measured and estimated oxygen uptake to build one scaffold unit using the proposed model.

Participant Measured VO2 Estimated VO2
Difference

Weight (Lbs.) mL/kg/min L/min mL/kg/min L/min

Participant—1 75 9.15 0.69 9.33 0.71 −0.18

Participant—2 74.25 7.67 0.81 8.27 0.78 −0.60

Participant—3 73 9.26 0.68 9.19 0.70 0.07

Participant—4 85 8.24 0.96 8.63 0.91 −0.39

Participant—5 77.70 5.95 0.88 7.09 0.83 −1.13

Participant—6 75 9.35 0.84 9.33 0.80 0.02

Participant—7 63 12.80 0.62 11.67 0.62 1.13

Participant—8 93 8.53 0.82 8.70 0.86 −0.17

Participant—9 81 8.90 0.89 9.02 0.85 −0.12

Participant—10 70 11.98 0.67 10.94 0.68 1.04

Average 76.70 9.18 0.79 9.22 0.77 −0.03

SD 8.25 1.97 0.11 1.30 0.09 0.68

4.3. Comparison with Other RNN Models and Different Sensor Combinations

Furthermore, this study compared other RNN models’ performance and different sen-
sor combinations using the proposed framework (i.e., feature extraction, feature selection,
model training, hyperparameter tuning, and LOSO CV evaluation). Three commonly used
RNN models (i.e., LSTM, BiLSTM, and GRU) were built for three different sensor feature
combinations (i.e., IMU + EMG, IMU alone, and EMG alone). The LOSO cross-validation
results for all the models are shown in Table 5. The BiLSTM model has the lowest error and
highest correlation for each sensor combination compared to LSTM and GRU. Similarly, the



Sensors 2025, 25, 3204 14 of 20

IMU + EMG sensor combination performed better compared to IMU and EMG alone. This
shows that the fusion of IMU and EMG features improved the performance of the model.

Table 5. LOSO CV metrics for different recurrent neural networks and sensor combinations.

Sensor Combination Model R R-Square MAE MSE RMSE MAPE

IMU + EMG

LSTM 0.871 0.760 1.005 1.905 1.380 11%

BiLSTM 0.895 0.800 0.757 1.581 1.257 10%

GRU 0.817 0.667 1.299 2.639 1.624 18%

IMU

LSTM 0.776 0.603 1.509 3.143 1.773 21%

BiLSTM 0.887 0.787 0.936 1.687 1.299 11%

GRU 0.469 0.220 2.001 6.173 2.485 22%

EMG

LSTM 0.797 0.636 1.252 2.870 1.694 16%

BiLSTM 0.816 0.667 1.082 2.627 1.621 13%

GRU 0.793 0.629 1.254 2.922 1.709 14%

5. Discussions
The results show that the combination of motion (IMU) and muscle activity (EMG)

has achieved the highest performance compared to IMU and EMG alone. This is because
the fusion of motion and muscle intensity data provides distinctive feature patterns for
the model to learn quickly. For example, carrying a guardrail (5 Lbs.) and baseboard
(33 Lbs.) can have the same motion, but the muscle intensities are different, helping to
detect the oxygen uptake levels. It was previously proved that handling different weights
results in different EMG signal patterns [67]. Similarly, the muscle activity is the same
for carrying the scaffold frame (38 Lbs.) and baseboard (33 Lbs.), but the motion pattern
is different. Since the motion and muscle intensity pattern changes with the physical
activity level, the IMU + EMG model performance is higher than others. As suggested by
previous studies, sensor data fusion improved model performance compared to individual
models [18,20,47,65].

Table 6 compares the current study with similar studies related to oxygen uptake
predictions using wearable sensors and machine learning algorithms. For construction
applications, it is essential to use a minimum number of sensors to prevent ongoing work
obstruction. In the current study, low-cost wearable armband sensors were used to col-
lect forearm IMU and EMG data that can be worn for the entire workday without any
discomfort or obstruction to work [20,68]. Except for the study conducted by Shandhi
et al. [17], all the previous studies used multiple sensors for data acquisition. However,
Shandhi et al. [17] evaluated oxygen consumption only for treadmill walking and the
chest strap electrocardiogram sensor might require gel for signal conductivity, which is
impractical on construction sites [69]. Moreover, most previous studies have investigated
oxygen consumption for daily living activities, walking, and cycling, in light-to-moderate
intensity. This is the first study to investigate oxygen consumption using wearable sensors
for construction activities. Due to the dynamic nature of the construction activities, dif-
ferent intensity activities are performed in a short interval of time [4]. The use of forearm
muscle activity and motion data in this study helped capture the complex movements
performed quickly.
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Table 6. Comparison of activities and sensors of the current and previous studies on oxygen uptake
prediction.

Study Activities Activity Type No. of Sensors Sensor Signals Sensor Location

The proposed Study Scaffold Building Light—Heavy 1 IMU
EMG Forearm

Zignoli et al. [47] Cycling Exercise Light—Moderate 2
Heart Rate,
Garmin Vector
Power Meter

Foot

Shandhi et al. [16] Treadmill
Walking Light—Moderate 1

Seismocardiogram
Electrocardiogram
Atmospheric
Pressure

Mid-Sternum

Borror et al. [43] Treadmill Light—Moderate 2
Heart Rate
Garmin Vector
Power Meter

Chest
Foot

Lu et al. [46]

Office
Painting
Postal Delivery
Meat Cutting
Lifting Tasks

Light—Heavy 8 Electrocardiogram
Accelerometer

Chest
Wrist
Thigh

Beltrame et al. [45]
Daily Living
Activities
Controlled Walking

Light—Moderate 3
Electrocardiogram
Accelerometer
Respiratory Bands

Chest
Hip

Altini et al. [44] Daily Living
Activities Light—Moderate 4 Electrocardiogram,

Accelerometer Chest

Table 7 compares the current and previous studies’ machine learning model perfor-
mance related to oxygen consumption using wearable sensors. The application of BiLSTM
for oxygen uptake prediction is a novel aspect of the current study. The BiLSTM cell’s
ability to preserve the information from past and future timestamps helped to model com-
plex data [70]. Moreover, the use of BiLSTM and MSE loss function can handle extreme
values compared to LSTM and GRU. The coefficient of determination of the proposed
model (R2 = 0.80) is lower than that of Zignoli et al. [48] (R2 = 0.89) and Borror et al. [44]
(R2 = 0.91). It should be noted that those studies only evaluated cycling and treadmill activ-
ities which are less complex. Lu et al.’s [47] model achieved RMSEs of 1.69, 2.36, 1.62, and
3.88 mL/kg/min for the painting, postal delivery, meat cutting, and lifting activities which
are much higher compared to the RMSEs of the proposed model (i.e., 1.26 mL/kg/min).
From Table 7, it can be observed that, as the complexity of the activities increases, the
performance of the previous models goes down. Except for Shandhi et al. [17], previous
studies used raw sensor signals as model input data. The feature engineering process
proposed in this study helped to achieve improved model performance on unseen data.

Considering the proposed study’s experimental conditions, the average measured and
estimated oxygen consumption for building one scaffold unit is 0.77 and 0.79 L/min, which
can be classified as moderate work based on the published work severity guidelines [71].
However, continuous physical activity monitoring is required to evaluate the activity’s
workload [1]. The statistical analysis has shown that the measured and estimated average
oxygen consumption for building one scaffold unit is similar, providing an opportunity to
use the forearm-based IMU and EMG sensor instead of an expensive metabolic analyzer.
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Table 7. Comparison of model performance of the current and previous studies on oxygen uptake
prediction.

Study Activities Model R2 RMSE

The proposed Study Scaffold Building BiLSTM 0.80 1.26

Zignoli et al. [47] Cycling Exercise LSTM 0.89 N/A

Shandhi et al. [16] Treadmill
Walking Xgboost Treadmill—0.77

Outdoor Walk—0.64

Treadmill
(3.68 ± 0.98)
Outdoor Walk
(4.30 ± 1.47)

Borror et al. [43] Treadmill ANN 0.91 N/A

Lu et al. [46]

Office
Painting
Postal Delivery
Meat Cutting
Lifting Tasks

MLP N/A

Office—0.86
Painting—1.69
Postal Delivery—2.36
Meat Cutting—1.62
Lifting—3.88

Beltrame et al. [45]
Daily Living
Activities
Controlled Walking

Random Forest
Daily Living
Activities—0.75
Random Walking—0.48

N/A

Altini et al. [44] Daily Living
Activities

Linear,
Exponential
Logistic

N/A 4.38 ± 0.80

The accurate oxygen consumption prediction using a low-cost wearable sensor helps
evaluate the activities’ physical workload and quantify the direct impacts of physical
workload on construction safety and productivity. Additionally, determining physiological
demands by measuring oxygen uptake helps design construction activities with ergonomic
interventions to prevent musculoskeletal disorders.

6. Conclusions
This study concludes that, using forearm IMU and EMG features, the proposed BiL-

STM RNN model can predict second-by-second oxygen uptake. The model achieved a
coefficient of correlation and RMSE of 0.90 and 1.257 mL/kg/min using the ten participants’
data of scaffold-building activities. The results show that the data fusion of IMU + EMG
(R = 0.90) yielded the highest performance compared to IMU alone (R = 0.88) and EMG
alone (0.81). Moreover, the average oxygen consumption for building one scaffold unit
is estimated to be 0.77 L/min. The main advantages of the proposed system over previ-
ous studies are the use of low-cost sensors, complex construction activities with varying
intensities in a short interval of time, the use of a fully automated framework, feature
engineering process to improve performance on the unseen dataset, and use of BiLSTM
and appropriate hyperparameters to handle complex time-series data. The proposed model
can be embedded into the wearable sensor for real-time workload assessment and the
worker’s physiological status. The continuous monitoring of oxygen uptake helps evaluate
the physical workload of various construction activities, the physiological status of the
worker, and early detection of the potential hazards on the construction site.

Even though the result of the study validates the feasibility of using forearm motion
and muscle activity data for continuous oxygen monitoring, some of the limitations of this
study include the short monitoring time (i.e., for building one scaffold unit), only right-
handed male participants, and an indoor warehouse environment. Since the proposed
framework is independent of human variability and environmental factors, retraining
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the model with more diverse participant data on real construction sites can help develop
production-level models.

The future work includes implementation of the proposed model on the real construc-
tion site for the entire workday to monitor oxygen uptake, understand the influence of
sensor position on the model performance, investigate the frequency and time domain
features for model building and training, extend the proposed framework for other con-
struction trade activities, and implement time-series data augmentation techniques to
improve model performance.
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