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Abstract

Background: Brain functional connectivity under the naturalistic paradigm has been shown to be better at predicting individual
behaviors than other brain states, such as rest and doing tasks. Nevertheless, the state-of-the-art methods have found it difficult to
achieve desirable results from movie-watching paradigm functional magnetic resonance imaging (mfMRI) -induced brain functional
connectivity, especially when there are fewer datasets. Incorporating other physical measurements into the prediction method may
enhance accuracy. Eye tracking, becoming popular due to its portability and lower expense, can provide abundant behavioral features
related to the output of human’s cognition, and thus might supplement the mfMRI in observing participants’ subconscious behaviors.
However, there are very few studies on how to effectively integrate the multimodal information to strengthen the performance by a
unified framework.

Objective: A fusion approach with mfMRI and eye tracking, based on convolution with edge-node switching in graph neural networks
(CensNet), is proposed in this article.

Methods: In this graph model, participants are designated as nodes, mfMRI derived functional connectivity as node features, and
different eye-tracking features are used to compute similarity between participants to construct heterogeneous graph edges. By taking
multiple graphs as different channels, we introduce squeeze-and-excitation attention module to CensNet (A-CensNet) to integrate
graph embeddings from multiple channels into one.

Results: The proposed model outperforms those using a single modality and single channel, and state-of-the-art methods.

Conclusions: The results indicate that brain functional activities and eye behaviors might complement each other in interpreting
trait-like phenotypes.

Keywords: functional connectivity; naturalistic stimulus; eye movement; CensNet; attention

Introduction and remote cortical areas by means of a densely connected brain

Complex cognition could be a psychiatric trait that differenti-
ates high-order species, including human beings, from others (Al-
Aidroos et al.,, 2012; Baars & Gage, 2010; Barack & Krakauer, 2021,
Diamond, 2013; Gallistel & King, 2011; Harvey, 2022; Lezak et al,,
2004). Cognitive decline is usually an obvious manifestation of the
progression of many psychiatric diseases, such as Alzheimer’s dis-
ease, Parkinson’s, and depression (LeMoult & Gotlib, 2019; Pick et
al., 2019; Stern, 2012; Sun et al., 2020; Wolters et al., 2019), and is
a key determinant of a patient’s quality of life and independence.
Therefore, it has long been intriguing as to how cognition works
in the human brain for decades in multiple disciplines, including
cognitive neuroscience and psychoradiology (Baars & Gage, 2010;
Bressler & Menon, 2010). To date, much of the current knowledge
leads to a consensus that cognitive brain function comes from the
large-scale brain organization, which is the orchestration of local

network (Axer & Amunts, 2022; Bressler & Menon, 2010; Bullmore
& Sporns, 2012; Thiebaut de Schotten & Forkel, 2022; Van Den
Heuvel & Sporns, 2011). With the advent of brain imaging tech-
niques, including functional magnetic resonance imaging (fMRI),
it has become possible to record brain activity and estimate brain
networks in vivo, granting them an “objective” observer of the out-
comes of a participant’s brain. On this basis, there is a growing
interest in leveraging imaging-based whole-brain functional con-
nectivity to predict non-brain-imaging phenotypes, including a
variety of cognitive and behavioral measures (He et al., 2020). Im-
portantly, the patterns of the functional connectivity could serve
as a “fingerprint” to identify individuals (Gao et al., 2022). A well-
performed predictive model could result in potential functional
connectivity biomarkers to distinguish healthy statuses from ab-
normal ones, or monitor disease progress (Liu et al., 2017).
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Functional connectivity can manifest in various brain states.
While resting and task states are commonly used paradigms
(Deco et al., 2011; Eickhoff et al., 2020; Fox & Raichle, 2007; Grady
et al., 2021; Kannurpatti et al., 2012; Malinen et al., 2007; Yang et
al., 2020), movie-watching paradigms offer more immersive, life-
like content (Barch et al., 2013; Huijbers et al., 2017; Li et al., 2019;
Sonkusare et al., 2019), as they have been proposed to not only cap-
ture the common functional connectivity component by reducing
inter-individual variability, but also to enhance the stability,
amplification, and trait-like features of the remaining variability
(Eickhoff et al., 2020). Hence, a movie-watching paradigm outper-
forms resting and task states in high-order behavior prediction,
including cognition, and could currently be the possible upper
bound of non-brain-imaging phenotype prediction paradigms
(Finn & Bandettini, 2021). Even so, the precision from fMRI using
the movie-watching paradigm (mfMRI) still remains limited,
partly due to the small dataset size (He et al, 2020). Although
recent studies have demonstrated that large-scale datasets can
improve prediction performance by providing more training sam-
ples and a diverse range of inter-correlated phenotypic measures
that are likely to be correlated with, but not identical to, a unique
phenotype from a boutique study (He et al., 2022), the fact is that
improving the prediction performance by means of increasing
dataset size is only possible for resting state and a large-scale
collection of mfMRI datasets is challenging and costly.

To improve the performance of mfMRI predictions on small
datasets, a couple of strategies are proposed. First, incorporat-
ing other physical measurements into the prediction method may
enhance accuracy. A joint use of fMRI data on a participant’s
thoughts and their response to stimuli, along with behavioral
measurements such as eye tracking, could provide a more com-
prehensive picture of the participant’s cognitive and phenotypi-
cal measures. Eye tracking, in particular, is becoming increasingly
popular due to its portability and low cost, and its features such
as pupil size, fixation duration, and saccade patterns have been
linked to cognitive and phenotypical measures (Carter & Luke,
2020; Hess & Polt, 1960; Lim et al., 2020; Lohse & Johnson, 1996).
Hence, eye-movement behavior might supplement the fMRI de-
rived brain activities in monitoring participants’ attention and
task compliance and observing their subconscious traits (Beatty
& Lucero-Wagoner, 2000; Einhduser, 2017; Laeng & Alnaes, 2019;
Laeng et al., 2012; Mathdt, 2018; Son et al., 2020). Second, increas-
ing the number of video clips watched by the same group of
participants may be an efficient way to improve prediction ac-
curacy, given the limited number of participants. Third, an ef-
fective representation of a participant’s relationship, where inter-
individual variation is well described, is needed. The graph has
been successfully used to this aim, where nodes represent indi-
viduals and edges represent cross-participant similarity. For ex-
ample, individual brain activity features have been used as nodal
features whereas demographic and behavioral measurement sim-
ilarity have been used to define edges (Gao et al., 2022), and graph
convolution networks can embed brain activity features of a co-
hort of participants and estimate a mapping of these features to
cognitive scores. This mapping can then be propagated to other
nodes to predict their cognitive scores.

In short, although it has been demonstrated that a nonlinear
model is suitable for the prediction of cognitive grade, a further
improvement of prediction performance confronts two technical
challenges: (i) how to incorporate complementary edge features
with nodal features to generate both node and edge embeddings
for graphs, and (ii) how to integrate embeddings of graphs with
heterogeneous topologies on the same set of nodes for classifi-

cation or regression tasks. To achieve this, we propose Attention-
CensNet (A-CensNet), an extension of the convolution with edge-
node switching graphic neural network (CensNet) (Jiang et al,
2019). In A-CensNet, participants are represented with nodes, and
mfMRI-derived functional connectivity is used to represent nodal
features. Gaze trajectories derived from eye tracking and tem-
poral variation in pupil size are used to measure the similarity
between participants and create a set of heterogeneous edges.
Each of these graphs is treated as an independent channel, and
CensNet is used to learn both node and edge embeddings. The
squeeze-and-excitation attention module (SENet) (Hu et al., 2018)
is then applied to combine the node-edge embeddings from mul-
tiple channels into a hybrid graph, on which the final round of
node embedding is performed. It should be noted that the same
cohort is exposed to different movie inputs, resulting in additional
channels from mfMRI and eye-tracking data.

The following sections are structured as follows: first, we in-
troduce the dataset and preprocessing steps. Next, we provide
an overview of CensNet and SENet, followed by our proposed
A-CensNet and its application to our task. We then present re-
sults from comparative and ablation studies on prediction accu-
racy (area under curve, AUC) to demonstrate the effectiveness of
our multiple channel integration strategy and the superior perfor-
mance of A-CensNet compared to other methods.

Related Studies

Linear regression, is widely used to fit brain features to cognitive
scores. However, its performance has been dwarfed by nonlinear
methods, especially in the scenarios where the relationship be-
tween samples and features is far from linear, including the per-
sonal trait prediction application (Finn & Bandettini, 2021; Gao
etal, 2022).

FNN (fully connected neural networks) (He et al, 2020), a
generic class of feedforward neural networks, is mainly composed
of an input layer, hidden layer, and output layer; the hidden layer
consists of several fully connected layers and nonlinear activation
functions.

BrainNetCNN (Kawahara et al., 2017), a convolutional neural
network (CNN) framework, consists of three layers: the edge-to-
edge, edge-to-node, and node-to-graph layers. After the first three
layers, BrainNetCNN using a fully connected layer as same as FNN.
Both FNN and BrainNetCNN have been used to predict individual
phenotypes (He et al., 2020), and have achieved better results than
linear regression. However, in these methods, participants were
taken as independent samples. Integration of multiple features
was limited in the feature space.

Since the data structure can be described effectively by a graph
in many applications, graph neural networks, such as graph con-
volutional networks (GCN) (Defferrard et al, 2016), have been
developed to implement deep representation in non-Euclidean
domains to adapt to a more effective way in describing the rela-
tionships (edges) of objects (nodes). In Gao et al. (2022), eye track-
ing information and functional connectivity was used to define
edges and nodes, respectively. This scheme of integrating het-
erogenous features was demonstrated to be effective in increas-
ing personal trait prediction. Nevertheless, the potential of GCN
for assigning heterogenous features to nodes and edges has been
underestimated.

CensNet was proposed to embed both nodes and edges to a la-
tent feature space (Jianget al., 2019), such that edges not only serve
to construct graph topology but are also fully involved in feature
embedding and fusion. Therefore, given our need in this study for



multiple eye tracking information to yield multiple graphs of het-
erogenous edges, we adopt CensNet as the basic algorithm to in-
vestigate the possibility of feature integration on the graph-level.

Materials and Methods

Dataset

The Human Connectome Project (HCP) 7T release acquired movie-
watching fMRI and resting-state fMRI data on a 7 Tesla Siemens
Magnetom scanner (Griffanti et al., 2014). Two of the four scan
sessions, Movies 2 and 3, were selected for analysis. Imaging pa-
rameters were as follows: TR = 1000 ms, TE = 22.2 ms, flip an-
gle = 45°, FOV = 208 x 208 mm, matrix = 130 x 130, spatial res-
olution = 1.6 mm?, number of slices = 85, multiband factor = 5.
The resting-state run consisted of 900 time points. During Movies
2 and 3, participants viewed four and five video clips, respectively,
each separated by five 20 s of rest sessions. Eye tracking data were
collected using an EyeLink S1000 system with a 1000 Hz sampling
rate. The HCP offers numerous phenotypic measures from vari-
ous domains. This work focuses on measures related to cognition,
which has been a common interest in previous studies (Finn &
Bandettini, 2021). After quality control, data from 81 participants
were analyzed.

Preprocessing

The fMRI data underwent preprocessing using the minimal pre-
processing pipeline for the HCP (Glasser et al., 2013). This involved
motion correction, distortion correction, high-pass filtering, non-
linear alignment to MNI template space, and regression of 24
framewise motion estimates as well as confound timeseries iden-
tified through independent components analysis (Griffanti et al.,
2014). The signals were then mapped to the grayordinate system,
which consisted of 64 000 vertices on the cortical surface and
30 000 subcortical voxels for each individual. Within-participant
cross-modal registration and cross-participant registration were
used to warp the grayordinate vertices and volumetric voxels to
the same space, ensuring cross-participant correspondence of the
associated fMRI signals.

This study focuses on cortical regions and thus excludes sub-
cortical areas from analysis. We used the Destrieux atlas (De-
strieux et al., 2010) to parcellate the cortical surface into 75 ar-
eas per hemisphere. The mean fMRI signal was calculated by av-
eraging over vertices within each cortical area, and a 150-by-150
functional connectivity matrix was constructed using the Pearson
correlation between these average signals (green panel in Fig. 1).
Specifically, we began by transforming the z to r correlation values
with a hyperbolic tangent function, which scaled them between
—1and 1.For each row in the matrix, the values of the top 10% (one
of the adjustable hyperparameters) of connections were retained,
whereas all others were zeroed. The remaining connections were
almost all positive, except for ~5000 (<10% of all connections)
with negative values from 23 voxels. The voxels with negative con-
nections were located in ventral subcortical regions. We are not
interested in these areas, and so we also zeroed the connection.
Negative correlations were zeroed out and 90% of the lowest pos-
itive correlations were removed. The upper triangular matrix was
then converted into a vector and used as the functional feature.

For the eye-tracking data, we used the time stamps to ex-
tract effective data points and synchronized eye behavior features
across participants. Blink sessions were not considered.

To account for potential correlations between phenotypic mea-
sures within the “cognition” domain, we performed principal com-
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ponents analysis on these measures (Finn & Bandettini, 2021). The
same principal components analysis strategy was applied to both
the training and testing sets, using the means and standard devi-
ations of the training set. We then used the first principal compo-
nent to classify participants into four groups based on their scores.
It is important to note that participant number balance is taken
into consideration when selecting thresholds for grouping. Each
group was assigned a label | € &Z.

Construction of graphs

Supposing we have a dataset of M participants, our objective is
to assign each participant a cognitive group label I. We construct
a graph & = {7,&, A} to represent the entire cohort as shown
in Fig. 1, where v € 7" is a node of the graph, the participants in
this work. Edges Es as well as the adjacent matrix A encode the
similarity between participants. On this graph structure, only a
subset of nodes is labeled (e.g. M labeled nodes out of N nodes in
total), leaving the rest of the nodes unlabeled (N-M nodes). Our
goal is to assign each unlabeled node a label, a cognitive level
in this work, in a semi-supervised fashion through the use of a
GCN trained on the subset of labelled graph vertices. Intuitively,
label information will be propagated over the graph under the as-
sumption that nodes connected with high-edge weights are more
comparable and similar (these edges provide a non-grid neighbor-
hood for convolution), such that a similar label is more likely to
be propagated to it.

In this work, mfMRI derived functional connectome is used as
the node feature. Two sets of edges are defined on eye tracking
data. Edge (i) is similarity between gaze trajectories of two partic-
ipants, in which the gaze trajectory of participant v is denoted by
9", which is a 2 x t vector. Its two rows record the coordinates
of x- and y-dimensions on the screen. We use 2D Pearson cor-
relation to measure the similarity of eye movement trajectories
from two participants (Gao et al., 2022). For edge (ii), similarity be-
tween temporal variation of pupil size, the pupil size along the
time line of participant v, p”, is a 1D vector. Likewise, the Pearson
correlation coefficient between two vectors is defined as the edge
weight.

Classification of population via A-CensNet

Basics of CensNet. As only a subset of nodes in the graph are la-
beled, CensNet is trained to propagate these labels throughout the
entire graph. The implementation of CensNet has been previously
described (Jiang et al., 2019), and we provide a summary next:

For spectral graph convolution, normalized graph Laplacian of
agraph ¥ = {7,&, A}is computed: ¥ =1Iy — D Y?AD~Y? where
Iy is the identity matrix and D is the diagonal degree matrix. One
of the important steps is the layer-wise propagation rule based on
an approximated graph spectral kernel as follows:

H+ = & (D—l/zAD—l/ZHIWI> (1)

where A = A +1Iy and D is the degree matrix, H' and W! are the
hidden feature matrix and learnable weight of the Ith layer.
Building on this foundation, the proposed CensNet model in-
corporates both node and edge convolution layers. As shown in
Fig. 1, the graph can be represented by both a node-center ver-
sion (yellow box) and an edge-center version (green box) for con-
venience. In the node convolution layer, the embedding of nodes
in the white box is updated while the edge adjacency matrix
and edge features in the green box remain unchanged. A similar
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Figure 1: The preprocessings and flowchart of A-CensNet. Data preprocessing stages are shown in the lighter-green panel. Construction of the graph is
in the darker-green panel. Node feature generation is highlighted with red arrows and edge generation with blue arrows. The graph is presented by its
node-center version (yellow box) and edge-center version (green box) and is fed to CensNet through different channels. The gray frame highlights the
proposed A-CensNet flow. The Attention module (SENet) is highlighted by a orange panel. Note that SENet is inserted in the middle of a CensNet
procedure, before the last round of node convolution.




update is then performed in the edge layer. This node-edge switch-
ing is accomplished using the following equations:

1. Propagation rule for node layer.
HH = o (ch (H;Pe) 7o AUH}Jw&) @)

where A, = D;% (A, -HNU)D;%, T e RN*Ne is 3 binary matrix
that indicates whether an edge connects a node. P, is a learnable
weight vector, ® denotes the diagonalization operation. ® denotes
the element-wise product.

2. Propagation rule for edge layer.
HH = o (Tch (H}JPU) To AQH;WEI) (3)

where A, = f);% (A + INe)Dg%.
Usually, CensNet ends up with a last round of node layer up-
dating. The loss function is defined as

F

Z©)=-)

Y[flOgMIf (4)
ley, f =1

where Y7 is the subset of nodes with labels, M is the softmax re-
sults of the last node layer where node feature map has F dimen-
sions.

For the squeeze-and-excitation attention block, as we used dif-
ferent eye movement features to construct heterogeneous graphs,
the main purpose of the squeeze-and-excitation module is to in-
tegrate these graphs into one framework, by taking each graph
as a channel and weighing them. The channel attention block
SENet (Hu et al., 2018) is introduced to integrate multiple graphs
that share the same nodes but have different node features and
edges. Note that a typical CensNet includes (i) the node-and-edge
switching embedding plus (ii) an additional round of node em-
bedding (for node classification). The SENet is inserted between
(i) and (ii) (carneose panel in Fig. 1). That is, multiple graphs are
sent to different channels, where node-and-edge switching em-
bedding is performed. Then, SENet integrates multiple channels
into one hybrid graph to complete the last round of node em-
bedding for node classification. Specifically, as illustrated in car-
neose panel in Fig. 1, the updated node features first pass through
a squeeze operation, which aggregates the feature maps across
spatial dimension M x H, (M: participant number, H,: node char-
acteristics) to produce a channel descriptor. This is followed by
an excitation operation, which is learned for each channel by a
self-gating mechanism based on channel dependence. The input
channels are then reweighted and fed to the SENet, where Fgy; is
global average pooling function that compresses the character-
istics of each channel into a real number, where ¢ ( = 4 in this
work) denotes the channel number. Then, a 1 x ¢ vector is sent to
Fex(-, W) which is implemented by a fully connected layer, where
W is a learnable weight for every input channel. Then, Fyq. scales
the 1 x c vector and node-and-edge features multiplied by W to
yield the new features. The process is expressed by:

1 & & .
Znode :qu (Frode) = M < H, Z Z Fnode (I’}) (5)
i—1j-1

Snode = Fex (xnodea W) =0 (9 (%nodea W)) =0 (WQS (lenode)) (6)

Edge features undergo the same process.

Predicting Cognitive Scores From FMRI and Eye Tracking | 5

Statistics

Previous studies (Destrieux et al.,, 2010; Finn & Bandettini, 2021;
Gao et al.,, 2022; He et al., 2020) used regression to predict cogni-
tive scores, and Pearson or Spearman correlation was used to as-
sess prediction accuracy (He et al., 2020). However, small dataset
size significantly reduces accuracy, particularly when the sam-
ple size is below 100 (He et al, 2020). As our dataset only in-
cludes 81 participants, we adopt a classification approach, divid-
ing participants evenly into groups based on cognitive scores and
evaluating accuracy using AUC, following the recommendation
in (Gao et al.,, 2022). For the purpose of comparison, we modify
the state-of-the-art regression-based methods (Finn & Bandettini,
2021; Gao et al., 2022; He et al., 2020; Kawahara et al., 2017) to clas-
sification by adjusting the output layer dimensions and activa-
tion function. We use the same loss function and AUC calculation
method as A-CensNet, while keeping other layers in their default
configuration.

Results
Implementation details

In our application, participants are divided to four cognitive
groups (~20 participants in each one, a total of 81 participants).
The specific selection criteria of the 81 participants are summa-
rized as follows. Eye movement information is one of the major
foci of our selection of participants. The eye movement informa-
tion in HCP data provides the 2D coordinates of fixation point and
pupil area according to the time stamp. When participants are
in the state of blinking, the eye tracker will not be able to com-
pletely record the coordinates of fixation point and pupil area at
this moment. The eye-movement information at this moment is
invalid. In this situation, we reorganize the eye movement data,
retain only the valid eye movement information, set a threshold
for the size of the valid eye movement data file, and then exclude
the participants with a lot of invalid information (the file size does
not reach the threshold, where effective data reach 15 000 KB and
all datais 40 000 KB). In this paper, we use the data in Movies 2 and
3. We identify the individuals who meet the requirements on both
of the two movie datasets, yielding 81 participants, an intersection
between the two datasets.

We evaluate our method with 50% labeled data in training set,
while equally splitting the remaining data sets as validation and
test sets (25 to 25%). That is, we randomly select 10 participants
from each cognitive group for training (40 participants for train-
ing), 20 participants for validation, and 21 participants for testing.
The selection of participants is random.

We experiment on preserving {10%, 15%, 20%} top graph edges
by their weights, and find that preserving 10% nodes and 10%
edges yields the best prediction performance (further details are
found in section Ablation study). We try different settings of learn-
ing rate from {0.05, 0.01, 0.005, 0.001}, dropout {0.2, 0.3, 0.4, 0.5},
and hidden {16, 32, 64, 128, 512, 1024}, and find that the best per-
formance is yielded by a learning rate setting of 0.005, dropout of
0.2, and hidden of 1024. The following results presented are also
based on this parameter setting.

Basic model studies

Since the A-CensNet structure is proposed by adding the Atten-
tion mechanism to CensNet, which serves as the basic model
of this method, we first investigate whether the performance
of CensNet is superior to a more basic model GCN. The results
are reported in Table 1. Note that 65 participants (a subset of
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Table 1: Basic model studies. The prediction accuracy is measured by AUC. Linear model uses only fMRI, other models use graph structure
with eye trajectory similarity as the edge definition. Digits in parentheses indicate the number of participants used.

Models Linear (65)

GCN (65)

CensNet (65) CensNet (81)

AUC 41.94 +£0.81

48.51 4+ 0.94

49.75 £ 0.65 50.36 £0.71

81 participants) are used in our previous works (Gao et al., 2022) to
demonstrate the superiority of GCN over linear method, and the
results are reported in Table 1 for reference.

We first apply CensNet to the same 65 participants in (Gao et
al., 2022). The AUC is 49.75 £ 0.65, higher than that of GCN (65)
(48.51 + 0.94). Note that the linear method (RidgeClassifier (Pe-
dregosa et al., 2011) yields the worst performance (41.94 + 0.81).
This comparison supports the choice of CensNet as the basic
model, and demonstrates that prediction performance of cogni-
tion can be improved by a consecutive convolution on both graph
nodes and edges, compared with single node convolution step on
GCN. When all 81 participants are used in CensNet, prediction per-
formance is further improved (50.36 + 0.71), supporting the con-
clusion in (He et al., 2020) that the abundance of training samples
largely improves the prediction performance. Note that the effect
of dataset size is not the major interest of this work. We only use
the 81 participants as a possible lower bound of dataset size, to
investigate how far the upper bound of prediction performance
can be pushed by means of algorithm refinement.

Ablation study
Effects of attention module (SENet)

Inserting attention module (SENet) into CensNet at different posi-
tions (as shown in Figs 1 and 2) could yield different results. Here,
we conduct ablation experiments on the original CensNet with
no attention module (“AttentionNo” for short) and two different
A-CensNets with the attention module inserted into the Middle
of the CensNet (“Attention-Middle”, Fig. 1) and in front of CensNet
(“Attention-Before”, Fig. 2). The prediction accuracy by AUC of 100
repeated experiments are reported in Table 2.

Since the original CensNet (the “Attention-No” row in Table 2)
does not integrate different graphs. It is constructed as four dif-
ferent graph structures: the fMRI connectivities of Movies 2 and
3 are used as node features, respectively, and the correspond-
ing eye movement trajectories and pupil area during viewing are
used to reconstruct edges, respectively. In general, we find that
using pupil area to construct edge yields better results than eye
movement (Pupil > Track). The “Attention-Middle” model feeds
the four graph structures into CensNet, and fuses them through
the attention module after updating node and edge features. In-
stead, the “Attention-Before” model updates weights and merges
the graphs by the attention module before the update of node and
edge features. The “Attention-Middle” model yields the best re-
sult (54.63 £ 0.65), while the “Attention-Before” model yields the
worst results (50.24 + 0.67); even worse than a single graph in the
“Attention-No” row. This comparison suggests that a node-edge
embedding could yield latent features more sensitive to individ-
ual variations, such that a channel attention works better at this
deep feature space than being applied immediately after the orig-
inal shallow features (“Attention-Before”).

In addition, we find that the weights in the attention module as-
sociated with multiple channels do not significantly change from
the initial ones when the algorithm converge, suggesting that all
channels equally contribute to the final classification decision-

making and that the node and edge feature do compensate each
other.

Effects of channels and feature fusion strategy

To investigate the influence of the number of channels on perfor-
mance, we conduct a series of experiments using two channels.
The AUC prediction accuracy from 100 repeated experiments is
presented in Table 3.

The results in Table 3 indicate that using two channels does not
lead to a significant improvement in accuracy. Specifically, within
a single movie dataset (indicated by gray rows in Table 3), when
fixing the node feature and using eye trajectory and pupil size
variation as the two channels, the performance is not superior to
that of the single-channel model in the “Attention-No” section of
Table 2.

The results in Tables 2 and 3 show that integrating different
eye features is crucial for improving the prediction accuracy. The
experiments in the “orange” rows of Table 3 show that using only
one eye feature (either trajectory or pupil size) does not signifi-
cantly improve the performance compared to the single-channel
models. Concatenating the features from two datasets (green row)
yields the lowest AUC among all experiments, suggesting that fea-
ture concatenation alone is not sufficient for improving the per-
formance. Feature concatenation does not yield satisfied results
by means of the original CensNet model (yellow rows). These re-
sults indicate that multimodal features can only compensate for
each other in a “deep” embedding space, but not via a “shallow”
fusion. Therefore, the integration strategy across datasets is ex-
tremely important.

Finally, it is worth noting that the sparsity of the graph is a very
important parameter, and results are shown in Table 4. We use
10% nodes and 10% edges as they yield the best prediction perfor-
mance.

Comparison with the state-of-the-art

We compare our results with those of state-of-the-art methods
listed in Table 5. The results obtained via linear model and GCN
were previously reported in Gao et al. (2022) for Movie 2 and are
included here for reference. It should be noted that linear (Finn &
Bandettini, 2021), FNN (He et al., 2020), and BrainNetCNN (He et al.,
2020) are not GNN-related methods, as they do not involve edges
but only rely on mfMRI features.

Our results demonstrate that all nonlinear deep neural net-
works provide a significant improvement in contrast to the lin-
ear method (41.94 & 0.81). Within each algorithm, the concatena-
tion of mfMRI features from two datasets (mfMRI2 + 3 rows) does
not improve the prediction accuracy in contrast to that of a sin-
gle dataset. For instance, BrainNetCNN achieves the second-best
performance on Movie 2 (53.42 + 0.63), indicating the importance
of the strategy selection for concatenating features from multiple
datasets. Within a single movie dataset (unshaded rows), models
that integrate multiple modalities of features, such as mfMRI and
eye behavior, outperform models (FNN and BrainNetCNN) that
use a single modality (mfMRI). After integrating mfMRI and eye
behavior from multiple datasets, our results surpass all state-of-
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Figure 2: As a comparison, attention module is moved before multiple channels of CensNet.

Table 2: Ablation studies. The prediction accuracy is measured by AUC. Graph structure is represented by {Node, Edge}. C: channel. Trj:
eye movement trajectory. Ppl: pupil size variation. The index after mfMRI, Trj and Ppl indicates which movie dataset it comes from. Red:

the highest AUC. Blue: the second-highest one.

Models

Graph structure and AUC

. {mfMRI2, Trj2}
Attention-No

{mfMRI2, Ppl2}

{mfMRI3, Trj3} {mfMRI3, Ppl3}

50.36 £ 0.71

52.11 4+ 0.62

5149 £0.75 51.83 £ 0.85

Attention-Middle

1: {mfMRI2, Trj2} C2: {(mfMRI2, Ppl2}
3: {mfMRI3, Trj3} C4: {mfMRI3, Ppl3}

54.63 + 0.65

Attention-Before

1: {mfMRI2, Trj2} C2: (mfMRI2, Ppl2]
3: {mfMRI3, Trj3} C4: {mfMRI3, Ppl3}

50.24 £0.67

Table 3: Twwo-channel attention ablation study. “+” denotes a tem-
poral concatenation of two features.

Model Attention-Middle
C1: {mfMRI2, Trj2) 50.66 % 0.67
C2: {mfMRI2; Ppl2}

C1: [mfMRI3, Trj3} 51.79 + 0.67
C2: {mfMRI3, Ppl3}

C1: {mfMRI2, Trj2} 49.35 + 0.69
C2: {mfMRI3, Trj3}

C1: {mfMRI2, Ppl2} 50.38 £ 0.62
C2: {mfMRI3, Ppl3}

C1: [mfMRI2 4+ mfMRI3, Trj2 + Trj3} 4621+ 055
C2: {mfMRI2 + mfMRI3, Ppl2 + Ppl3}

Single channel 51.94 +0.81
{mfMRI2 + mfMRI3, Trj2 + Trj3}

Single channel 45.45 £ 0.43
{mfMRI2 + mfMRI3, Ppl2 + Ppl3}

Our model (four channels) 54.63 + 0.65

Table 4: The influence of graph node and edge sparsity on predic-
tion. The prediction accuracy is measured by AUC.

Node (reserved) Edge (reserved) AUC

10% 10% 54.63 £ 0.65
10% 15% 51.58 £0.91
15% 15% 50.93 £0.91

the-art methods. These findings highlight the effectiveness of in-
tegrating brain activity and eye behavior into a single framework
for cognition prediction. Moreover, with a limited number of par-
ticipants, the integration of multiple loads of stimuli via attention
modules could significantly improve the prediction performance.

Table 5: Comparison with the state-of-the-art. Bold font high-
lights the highest AUC and italic font highlights the second-
highest one. “+” denotes a temporal concatenation of two fea-
tures. NA denotes that no edge is defined in the model. Shaded
rows highlight the results on the joint use of Movies 2 and 3.

Models
Linear (Finn & Bandettini, 2021)

Graph structure AUC
{mfMRI2, NA} 41.94 +0.81

GCN (Gao et al., 2022) {mfMRI2, Trj2} 48.51 £ 0.94
CensNet (Jiang et al., 2019) {mfMRI2, Trj2} 49.75 + 0.65
{ mfMRI2, Trj2} 50.36 £ 0.71

{mfMRI2,Ppl2} ~ 52.91+0.73

FNN (He et al., 2020) {mfMRI2, NA} 50.81 + 0.66
{mfMRI3, NA} 4945 +0.85

{mfMRI2 + 3, NA} ~ 50.54 + 1.01

BrainNet CNN (He et al., 2020) {mfMRI2, NA} 53.42 + 0.63
{mfMRI3, NA} 49.8140.78

{mfMRI2 + 3, NA} 50.66 £ 0.82

A-CensNet Four channels 54.63 + 0.65

Discussion and Conclusion

We propose A-CensNet to predict participants’ cognitive scores,
with participants taken as nodes, mfMRI derived functional con-
nectivity as node features, and different eye-tracking feature simi-
larities between participants as heterogeneous graph edges. These
graphs from different dataset are all taken as different channels.
The proposed model integrates graph embeddings from multiple
channels into one. This model outperforms the one using single
modality, single channel, and state-of-the-art methods. Our re-
sults indicate that the brain functional activity patterns and the
behavior patterns might complement each other in interpreting
trait-like phenotypes, and might provide new clues to studies of
diseases with cognitive abnormality.

Currently, we use classification paradigm to evaluate the pre-
diction performance. Since the distribution of score is continuous,
regression is theoretically a more suitable model and has been
adopted in many previous studies (Bzdok & loannidis, 2019; Finn
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Table 6: Multiple: classification prediction results. The prediction accuracy is measured by AUC.

Number of classes 4 6

8 10 12

AUC 54.63 £0.65 56.34 £ 0.65

56.95 £ 0.48 51.53 £0.60 4552 +0.38

& Bandettini, 2021; Finn et al., 2017; Gal et al., 2022; He et al., 2020; Li
et al., 2019; Pereira et al., 2020; Sui et al., 2020). However, the map-
ping between scores and brain connectivity fingerprint could be
far from linear within a cohort and the huge inter-individual vari-
ability would lead to a large deviation from the group-wise trend.
In short, the predictability of regression could hugely degrade due
to the noisy scores and brain activity with huge inter-individual
variabilities. For example, in Finn & Bandettini (2021), the regres-
sion prediction accuracy for cognition measured by Pearson’s r is
around 0.20 (the best performance on Movie 2 is close to 0.40).
Therefore, we use classification scheme instead, to improve the
tolerance of the model to noise. In fact, if we increase the class
numbers (to the limit, each participant is classified into a unique
group), the classification problem ultimately becomes a regres-
sion one. In fact, in addition to the four-group classification, we
evenly divide the participants into six and eight groups, respec-
tively, and AUCs via our model are 56.34 + 0.65 and 56.95 + 0.48,
respectively (AUC is 54.63 + 0.65 for four groups), demonstrating
the robustness of the algorithm to classification scheme.

Indeed, to make the results more like a regression, we divide the
81 participants into more groups and report the AUC and accuracy
in Table 6. Note that if the class number is 81, to the limit, the
classification will be equivalent to regression.

From the results, we can see that with the increase of the num-
ber of classes, the classification accuracy increases first but dra-
matically drops below the chance line (AUC = 0.50) when the class
number is 12. Although regression is the ultimate goal of predic-
tion, prediction accuracy measured by a correlation coefficient is
very low due to the limitation of dataset size, and thus cannot be
a trustworthy metric to compare the performance with the state-
of-the-art. Even though the AUCs via the classification scheme are
still low in this work, in line with the low Pearson’s r (around 0.20)
via a regression scheme (Finn & Bandettini, 2021), the key point
of this work is to demonstrate the improvement brought by the
introduction of node-edge joint embedding and attention module
for multiple source integration, which has been well validated by
a variety of comparative studies. Given that the dataset size might
be a critical factor to the prediction performance, as mentioned in
the Introduction section, we expect that our algorithm applied on
a large-size dataset could achieve a significantly improved preci-
sion that still outperforms the state-of-the-art.

The BrainNetCNN model in Finn & Bandettini, 2021 has yielded
good results using only fMRI. GCN was adopted simply because it
is relatively easier to be implemented on a cohort. By contrast,
BrainNetCNN (Kawahara et al., 2017) was specifically developed
for brain connectome data and, at the current stage, it is not
straightforward for us to used it to fuse eye-movement informa-
tion with fMRI data. Nevertheless, we may take the advantages of
this model and realize the feature fusion before a graph model.

In this work, we only predict cognitive scores. In fact, we also
apply our algorithm to emotion score prediction. But the pre-
diction performance is not as successful as that on cognition
(AUC = 0.45 via GCN for emotion, contrast by AUC = 0.49 via
GCN for cognition), in line with previous studies (Finn & Bandet-
tini, 2021). A possible reason is that the scores in the cognition
domain in HCP dataset are performance-based, while those in
the emotion domain are self-reported, which can suffer from bias

and may be less biologically valid. Another possible reason is that
emotion measures simply do not robustly correlate with static
functional brain connectivity. Unlike measures including cogni-
tion and fluid intelligence, emotion could be dynamically evoked
by the prosperous content of a movie clip. The instant arousal of
emotion could hardly be promptly reflected by connectivities es-
timated from the signal correlation, a static measure that cov-
ers the whole span of the signal duration. Adopting or adapting
an algorithm that focuses more on temporal resolution and rela-
tion, such as LSTM (Graves & Graves, 2012) and BERT (Sun et al.,
2019) could improve the performance of predicting instant in-task
behavior.

Even though the work was applied to healthy participants, the
modalities used here, including mfMRI and eye tracking, are es-
sential to advancing the discovery of brain imaging-based mark-
ers of psychiatric illness (Eickhoff et al.,, 2020). Eye tracking has
become one of the most popular tools in the research field of
psychiatric illness, especially the ones with attention abnormal-
ity (Armstrong & Olatunji, 2012; Guillon et al., 2014). For exam-
ple, context-dependent different visual attention patterns to so-
cial stimuli have been found in autism spectrum disorders in con-
trast to controls (Guillon et al., 2014). Note that our framework can
be easily extend to incorporate more eye movement features by
simply adding more channels to the SE module, in which multi-
ple eye-movement features are used to represent various defini-
tions of the similarity between individuals. Likewise, it has been
demonstrated that using movie fMRI for psychiatric imaging can
improve data quality and quantity. Movie watching can decrease
repetitive behavioral demands and increase scanner tolerability.
It may thus be particularly useful in populations that have diffi-
culties during scanning, including those with psychiatric illness.
Moreover, since a movie-watching scheme can magnify the inter-
individual variability (Eickhoff et al., 2020; Finn & Bandettini, 2021),
a carefully chosen or designed purpose-built movie could poten-
tially magnify the inter-group difference, which, in turn, could
greatly facilitate the identification of imaging-based brain mark-
ers (Eickhoff et al., 2020). From the perspective of techniques, we
have demonstrated a possibility of integrating multiple sources
of information to improve the cognition prediction performance.
Since cognitive decline is usually an obvious manifestation of pro-
gression of many psychiatric diseases, we postulate that the pro-
posed method could be applied to disease study. For example, it
might be used to quantify the extent to which a patient’s cogni-
tive ability deviate from the trajectory of controls and even predict
such deviation ahead of time.

It is worth noting that although the proposed model is not
specifically designed for a movie-watching paradigm but the ap-
plication is only to movie-watching, eye movement data are used,
which can only be collected under the paradigm of natural stim-
ulus but this is not possible during a resting state. However, fea-
tures of other modalities can be jointly used with resting-state
fMRI data. For example, we can use resting-state fMRI features
as nodal features while using demography metrics, such as age,
race, and sex, to measure the similarity between and define edges
between participants, and use this graph structure to predict
any other personal traits, including the cognition score in this
study.



Finally, our method show promise in improving cognition pre-
diction by cross-modality fusion. This avenue deserves further ef-
forts. A possible solution could be cross-modality attention, where
we may carry out feature extraction at common frequency do-
mains as suggested in Huddar et al. (2020). After that, we can align
the features of the two modalities in the time dimension and feed
them to the cross-modality models (such as Wei et al., 2020). Fi-
nally, the aligned feature can be used feed to the cross-attention
module for inter-modal correlation (e.g. Wei et al., 2020), where
transformer modules, followed by a 1D-CNN and pooling opera-
tion, are used to fuse features.
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