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Abstract 

Bac kground : Br ain functional connectivity under the naturalistic paradigm has been shown to be better at predicting individual 
behaviors than other brain states, such as rest and doing tasks. Nevertheless, the state-of-the-art methods have found it difficult to 
ac hieve desir able results from movie-watching paradigm functional magnetic resonance imaging (mfMRI) -induced brain functional 
connecti vity, especiall y when there are fewer datasets. Incorporating other physical measurements into the prediction method may 
enhance accur acy. Ey e tr ac king, becoming popular due to its portability and low er expense , can pr ovide a bundant behavioral featur es 
related to the output of human’s cognition, and thus might supplement the mfMRI in observing participants’ subconscious behaviors. 
Howev er, ther e ar e v er y few studies on how to effecti v el y inte gr ate the m ultimodal information to str engthen the performance by a 
unified fr amew ork. 

Objecti v e : A fusion approac h with mfMRI and ey e tr ac king, based on convolution with edge-node switching in graph neural networks 
(CensNet), is proposed in this article. 

Methods : In this graph model, participants are designated as nodes, mfMRI deri v ed functional connecti vity as node featur es, and 

different ey e-tr ac king featur es ar e used to compute similarity between participants to construct heter og eneous graph edg es. By taking 
multiple graphs as different c hannels, w e introduce squeeze-and-excitation attention module to CensNet (A-CensNet) to inte gr ate 
graph embeddings from multiple channels into one. 

Results : The proposed model outperforms those using a single modality and single channel, and state-of-the-art methods. 

Conclusions : The results indicate that brain functional activities and e ye beha viors might complement each other in interpreting 
trait-like phenotypes. 

Ke yw ords: functional connectivity; naturalistic stimulus; eye movement; CensNet; attention 
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Introduction 

Complex cognition could be a psychiatric trait that differenti- 
ates high-order species, including human beings, from others (Al- 
Aidroos et al., 2012 ; Baars & Gage, 2010 ; Barack & Krakauer, 2021 ; 
Diamond, 2013 ; Gallistel & King, 2011 ; Harvey, 2022 ; Lezak et al.,
2004 ). Cognitive decline is usually an obvious manifestation of the 
pr ogr ession of man y psyc hiatric diseases, suc h as Alzheimer’s dis- 
ease , Parkinson’s , and depression (LeMoult & Gotlib, 2019 ; Pick et 
al., 2019 ; Stern, 2012 ; Sun et al., 2020 ; Wolters et al., 2019 ), and is 
a k e y determinant of a patient’s quality of life and inde pendence.
Ther efor e, it has long been intriguing as to how cognition works 
in the human brain for decades in multiple disciplines, including 
cognitiv e neur oscience and psyc hor adiology (Baars & Ga ge, 2010 ; 
Bressler & Menon, 2010 ). To date, m uc h of the current knowledge 
leads to a consensus that cognitiv e br ain function comes from the 
lar ge-scale br ain or ganization, whic h is the orc hestr ation of local 
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/by-nc/4.0/ ), whic h permits non-commer cial re-use , distribution, and reproduction
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nd remote cortical areas by means of a densely connected brain
etwork (Axer & Am unts, 2022 ; Br essler & Menon, 2010 ; Bullmore
 Sporns , 2012 ; T hiebaut de Schotten & Forkel, 2022 ; Van Den
euvel & Sporns, 2011 ). With the advent of brain imaging tech-
iques, including functional magnetic resonance imaging (fMRI),

t has become possible to record brain activity and estimate brain
etworks in vivo , granting them an “objective” observer of the out-
omes of a participant’s brain. On this basis, there is a growing
nter est in le v er a ging ima ging-based whole-br ain functional con-
ectivity to predict non-brain-imaging phenotypes, including a 
ariety of cognitive and behavioral measures (He et al., 2020 ). Im-
ortantly, the patterns of the functional connectivity could serve 
s a “fingerprint” to identify individuals (Gao et al., 2022 ). A well-
erformed pr edictiv e model could r esult in potential functional
onnecti vity biomark ers to distinguish healthy statuses from ab-
ormal ones, or monitor disease pr ogr ess (Liu et al., 2017 ). 
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Functional connectivity can manifest in v arious br ain states.
hile resting and task states are commonly used paradigms

Deco et al., 2011 ; Eickhoff et al., 2020 ; Fox & Raic hle, 2007 ; Gr ady
t al., 2021 ; Kannurpatti et al., 2012 ; Malinen et al., 2007 ; Yang et
l., 2020 ), movie-watc hing par adigms offer mor e immersiv e, life-
ike content (Barch et al., 2013 ; Huijbers et al., 2017 ; Li et al., 2019 ;
onkusare et al., 2019 ), as they have been proposed to not only cap-
ure the common functional connectivity component by reducing
nter-individual variability, but also to enhance the stability,
mplification, and trait-like features of the remaining variability
Eickhoff et al., 2020 ). Hence, a movie-watching paradigm outper-
orms resting and task states in high-order behavior prediction,
ncluding cognition, and could curr entl y be the possible upper
ound of non-br ain-ima ging phenotype pr ediction par adigms
Finn & Bandettini, 2021 ). Even so, the precision from fMRI using
he movie-watc hing par adigm (mfMRI) still r emains limited,
artly due to the small dataset size (He et al., 2020 ). Although
ecent studies have demonstrated that large-scale datasets can
mpr ov e pr ediction performance by pr oviding mor e tr aining sam-
les and a div erse r ange of inter-correlated phenotypic measures
hat ar e likel y to be corr elated with, but not identical to, a unique
henotype from a boutique study (He et al., 2022 ), the fact is that

mpr oving the pr ediction performance by means of increasing
ataset size is only possible for resting state and a large-scale
ollection of mfMRI datasets is challenging and costly. 

To impr ov e the performance of mfMRI pr edictions on small
atasets, a couple of strategies are proposed. First, incorporat-

ng other physical measurements into the prediction method may
nhance accuracy. A joint use of fMRI data on a participant’s
houghts and their response to stimuli, along with behavioral

easur ements suc h as eye tr ac king, could pr ovide a mor e com-
r ehensiv e pictur e of the participant’s cognitiv e and phenotypi-
al measures. Eye tracking, in particular, is becoming incr easingl y
opular due to its portability and low cost, and its features such
s pupil size, fixation duration, and saccade patterns have been
ink ed to cogniti v e and phenotypical measur es (Carter & Luke,
020 ; Hess & Polt, 1960 ; Lim et al., 2020 ; Lohse & Johnson, 1996 ).
ence , eye-mo vement beha vior might supplement the fMRI de-

iv ed br ain activities in monitoring participants’ attention and
ask compliance and observing their subconscious traits (Beatty
 Lucer o-Wa goner , 2000 ; Einhäuser , 2017 ; Laeng & Alnaes, 2019 ;
aeng et al., 2012 ; Mathôt, 2018 ; Son et al., 2020 ). Second, increas-
ng the number of video clips watched by the same group of
articipants may be an efficient way to impr ov e pr ediction ac-
ur acy, giv en the limited number of participants . T hird, an ef-
ectiv e r epr esentation of a participant’s r elationship, wher e inter-
ndividual variation is well described, is needed. The graph has
een successfully used to this aim, where nodes r epr esent indi-
iduals and edges r epr esent cr oss-participant similarity. For ex-
mple, indi vidual brain acti vity featur es hav e been used as nodal
eatur es wher eas demogr a phic and behavior al measur ement sim-
larity have been used to define edges (Gao et al., 2022 ), and gr a ph
onv olution netw orks can embed br ain activity featur es of a co-
ort of participants and estimate a mapping of these features to
ognitiv e scor es . T his ma pping can then be pr opa gated to other
odes to predict their cognitive scores. 

In short, although it has been demonstrated that a nonlinear
odel is suitable for the prediction of cognitive grade, a further

mpr ov ement of prediction performance confronts two technical
hallenges: (i) how to incorporate complementary edge features
ith nodal features to generate both node and edge embeddings

or gr a phs, and (ii) how to integr ate embeddings of gr a phs with
eterogeneous topologies on the same set of nodes for classifi-
ation or r egr ession tasks. To ac hie v e this, we propose Attention-
ensNet (A-CensNet), an extension of the convolution with edge-
ode switching graphic neural network (CensNet) (Jiang et al.,
019 ). In A-CensNet, participants ar e r epr esented with nodes, and
fMRI-deri ved functional connecti vity is used to re present nodal

eatur es. Gaze tr ajectories deriv ed fr om eye tr ac king and tem-
or al v ariation in pupil size are used to measure the similarity
etween participants and create a set of heterogeneous edges.
ach of these graphs is treated as an independent channel, and
ensNet is used to learn both node and edge embeddings . T he
queeze-and-excitation attention module (SENet) (Hu et al., 2018 )
s then applied to combine the node-edge embeddings from mul-
iple channels into a hybrid gr a ph, on whic h the final round of
ode embedding is performed. It should be noted that the same
ohort is exposed to different movie inputs, resulting in additional
 hannels fr om mfMRI and eye-tr ac king data. 

The following sections ar e structur ed as follows: first, we in-
roduce the dataset and preprocessing steps. Next, we provide
n ov ervie w of CensNet and SENet, follo w ed b y our proposed
-CensNet and its application to our task. We then present re-
ults from comparative and ablation studies on prediction accu-
 acy (ar ea under curv e, AUC) to demonstr ate the effectiv eness of
ur m ultiple c hannel integr ation str ategy and the superior perfor-
ance of A-CensNet compared to other methods. 

elated Studies 

inear r egr ession, is widel y used to fit br ain featur es to cognitiv e
cores. Ho w ever, its performance has been dwarfed by nonlinear
ethods, especially in the scenarios where the relationship be-

ween samples and features is far from linear, including the per-
onal trait prediction application (Finn & Bandettini, 2021 ; Gao
t al., 2022 ). 

FNN (full y connected neur al networks) (He et al., 2020 ), a
eneric class of feedforw ar d neural networks, is mainly composed
f an input layer, hidden layer, and output layer; the hidden layer
onsists of se v er al full y connected layers and nonlinear activ ation
unctions. 

Br ainNetCNN (Kawahar a et al., 2017 ), a convolutional neural
etwork (CNN) fr ame work, consists of three layers: the edge-to-
dge , edge-to-node , and node-to-gr a ph la yers . After the first three
a yers , Br ainNetCNN using a full y connected layer as same as FNN.
oth FNN and Br ainNetCNN hav e been used to predict individual
henotypes (He et al., 2020 ), and hav e ac hie v ed better results than

inear r egr ession. Ho w e v er, in these methods, participants were
aken as independent samples. Integration of multiple features
as limited in the feature space. 
Since the data structure can be described effectively by a graph

n many applications, graph neural networks, such as graph con-
 olutional netw orks (GCN) (Defferrar d et al., 2016 ), have been
e v eloped to implement deep r epr esentation in non-Euclidean
omains to adapt to a more effective way in describing the rela-
ionships (edges) of objects (nodes). In Gao et al. ( 2022 ), eye tr ac k-
ng information and functional connectivity was used to define
dges and nodes, r espectiv el y. This sc heme of integr ating het-
r ogenous featur es was demonstr ated to be effectiv e in incr eas-
ng personal trait prediction. Nevertheless, the potential of GCN
or assigning heterogenous features to nodes and edges has been
nderestimated. 

CensNet was proposed to embed both nodes and edges to a la-
ent feature space (Jiang et al., 2019 ), such that edges not only serve
o construct gr a ph topology but are also fully involved in feature
mbedding and fusion. Ther efor e, giv en our need in this study for



Pr edicting Cognitiv e Scor es Fr om FMRI and Eye Tr ac king | 3 

 

 

 

 

 

 

 

 

p  

s  

t  

a  

n  

I  

i
g

C
S  

t  

a  

i  

t  

s  

s  

t  

g  

i  

G  

l  

s
c
h  

b
 

t  

d  

i  

g  

o  

r  

f  

t  

t  

c  

w

C
B  

b  

e  

d

a  

I  

o  

a

w  

h

c  

F  

s  

v  

i  

a  
multiple eye tracking information to yield multiple graphs of het- 
erogenous edges, we adopt CensNet as the basic algorithm to in- 
vestigate the possibility of feature integration on the graph-level. 

Materials and Methods 

Dataset 
The Human Connectome Project (HCP) 7T r elease acquir ed movie- 
watching fMRI and resting-state fMRI data on a 7 Tesla Siemens 
Magnetom scanner (Griffanti et al., 2014 ). Two of the four scan 

sessions , Mo vies 2 and 3, were selected for anal ysis. Ima ging pa- 
r ameters wer e as follows: TR = 1000 ms, TE = 22.2 ms, flip an- 
gle = 45 ◦, FOV = 208 × 208 mm, matrix = 130 × 130, spatial res- 
olution = 1.6 mm 

3 , number of slices = 85, multiband factor = 5.
The resting-state run consisted of 900 time points. During Movies 
2 and 3, participants viewed four and five video clips, respectively,
eac h separ ated by fiv e 20 s of r est sessions. Eye tr ac king data wer e
collected using an EyeLink S1000 system with a 1000 Hz sampling 
rate . T he HCP offers numerous phenotypic measures from vari- 
ous domains . T his work focuses on measur es r elated to cognition,
which has been a common interest in pr e vious studies (Finn & 

Bandettini, 2021 ). After quality control, data from 81 participants 
wer e anal yzed. 

Preprocessing 

The fMRI data underwent pr epr ocessing using the minimal pre- 
processing pipeline for the HCP (Glasser et al., 2013 ). This involved 

motion correction, distortion correction, high-pass filtering, non- 
linear alignment to MNI template space, and r egr ession of 24 
fr ame wise motion estimates as well as confound timeseries iden- 
tified through independent components analysis (Griffanti et al., 
2014 ). The signals were then mapped to the gray or dinate system,
which consisted of 64 000 vertices on the cortical surface and 

30 000 subcortical voxels for each individual. Within-participant 
cr oss-modal r egistr ation and cr oss-participant r egistr ation wer e 
used to warp the gray or dinate vertices and v olumetric v oxels to 
the same space, ensuring cross-participant correspondence of the 
associated fMRI signals. 

This study focuses on cortical regions and thus excludes sub- 
cortical ar eas fr om anal ysis. We used the Destrieux atlas (De- 
strieux et al., 2010 ) to parcellate the cortical surface into 75 ar- 
eas per hemisphere . T he mean fMRI signal was calculated by av- 
er a ging ov er v ertices within eac h cortical ar ea, and a 150-by-150 
functional connectivity matrix was constructed using the Pearson 

correlation between these average signals (green panel in Fig. 1 ).
Specifically, we began by transforming the z to r correlation values 
with a hyperbolic tangent function, which scaled them between 

−1 and 1. For each row in the matrix, the values of the top 10% (one 
of the adjustable hyper par ameters) of connections were retained,
whereas all others were zeroed. The remaining connections were 
almost all positi ve, exce pt for ∼5000 ( < 10% of all connections) 
with negative values from 23 voxels . T he voxels with negative con- 
nections were located in ventral subcortical regions. We are not 
interested in these areas, and so we also zeroed the connection.
Negativ e corr elations wer e zer oed out and 90% of the lo w est pos- 
itiv e corr elations wer e r emov ed. The upper triangular matrix was 
then converted into a vector and used as the functional feature. 

For the eye-tr ac king data, we used the time stamps to ex- 
tr act effectiv e data points and sync hr onized eye behavior featur es 
across participants. Blink sessions were not considered. 

To account for potential correlations between phenotypic mea- 
sures within the “cognition” domain, we performed principal com- 
onents analysis on these measures (Finn & Bandettini, 2021 ). The
ame principal components anal ysis str ategy was a pplied to both
he training and testing sets, using the means and standard devi-
tions of the training set. We then used the first principal compo-
ent to classify participants into four groups based on their scores.

t is important to note that participant number balance is taken
nto consideration when selecting thresholds for grouping. Each 

roup was assigned a label l ∈ L . 

onstruction of graphs 

upposing we have a dataset of M participants, our objective is
o assign each participant a cognitive group label l . We construct
 gr a ph G = { V , E, A } to r epr esent the entir e cohort as shown
n Fig. 1 , where v ∈ V is a node of the gr a ph, the participants in
his work. Edges E s as well as the adjacent matrix A encode the
imilarity between participants. On this gr a ph structur e, onl y a
ubset of nodes is labeled (e.g. M labeled nodes out of N nodes in
otal), leaving the rest of the nodes unlabeled ( N - M nodes). Our
oal is to assign each unlabeled node a label, a cognitive level
n this work, in a semi-supervised fashion through the use of a
CN trained on the subset of labelled gr a ph v ertices. Intuitiv el y,

abel information will be pr opa gated ov er the gr a ph under the as-
umption that nodes connected with high-edge weights are more 
omparable and similar (these edges provide a non-grid neighbor- 
ood for convolution), such that a similar label is mor e likel y to
e pr opa gated to it. 

In this work, mfMRI derived functional connectome is used as
he node feature. Two sets of edges are defined on eye tracking
ata. Edge (i) is similarity between gaze trajectories of two partic-

pants, in which the gaze trajectory of participant v is denoted by
 

v , which is a 2 × t vector. Its tw o ro ws recor d the coordinates
f x - and y -dimensions on the screen. We use 2D Pearson cor-
 elation to measur e the similarity of eye mov ement tr ajectories
rom two participants (Gao et al., 2022 ). For edge (ii), similarity be-
ween temporal variation of pupil size, the pupil size along the
ime line of participant v , p v , is a 1D v ector. Like wise, the Pearson
orrelation coefficient between two vectors is defined as the edge
eight. 

lassification of population via A-CensNet 
asics of CensNet. As only a subset of nodes in the gr a ph ar e la-
eled, CensNet is trained to pr opa gate these labels throughout the
ntir e gr a ph. The implementation of CensNet has been pr e viousl y
escribed (Jiang et al., 2019 ), and we provide a summary next: 

For spectral graph convolution, normalized graph Laplacian of 
 gr a ph G = { V , E, A } is computed: L = I N − D 

−1 / 2 AD 

−1 / 2 where
 N is the identity matrix and D is the dia gonal degr ee matrix. One
f the important steps is the layer-wise pr opa gation rule based on
n a ppr oximated gr a ph spectr al kernel as follows: 

H 

l+1 = σ
(

˜ D 

−1 / 2 ˜ A ̃

 D 

−1 / 2 H 

l W 

l 
)

(1) 

here ˜ A = A + I N and 

˜ D is the degr ee matrix, H 

l and W 

l ar e the
idden feature matrix and learnable weight of the l th layer. 

Building on this foundation, the proposed CensNet model in- 
or por ates both node and edge con volution la yers . As shown in
ig. 1 , the gr a ph can be r epr esented by both a node-center v er-
ion (y ello w box) and an edge-center v ersion (gr een box) for con-
enience. In the node convolution layer, the embedding of nodes
n the white box is updated while the edge adjacency matrix
nd edge features in the green box remain unchanged. A similar
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Figur e 1: T he pr epr ocessings and flowc hart of A-CensNet. Data pr epr ocessing sta ges ar e shown in the lighter-gr een panel. Construction of the gr a ph is 
in the darker-green panel. Node feature generation is highlighted with red arrows and edge generation with blue arrows . T he graph is presented by its 
node-center version (y ello w box) and edge-center version (green box) and is fed to CensNet through different channels . T he gra y frame highlights the 
proposed A-CensNet flow. The Attention module (SENet) is highlighted by a orange panel. Note that SENet is inserted in the middle of a CensNet 
pr ocedur e, befor e the last round of node convolution. 
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update is then performed in the edge la yer. T his node-edge s witch- 
ing is accomplished using the following equations: 

1. Propagation rule for node layer. 

H 

l+1 
v = σ

(
T �

(
H 

l 
e P e 

)
T T � ˜ A v H 

l 
v W 

l 
v 

)
(2) 

where ˜ A v = 

˜ D 

− 1 
2 

v ( A v + I Nv ) ̃  D 

− 1 
2 

v , T ∈ R 

N v ×N e is a binary matrix 
that indicates whether an edge connects a node. P e is a learnable 
weight vector, � denotes the diagonalization operation. � denotes 
the element-wise product. 

2. Propagation rule for edge layer. 

H 

l+1 
e = σ

(
T T �

(
H 

l 
v P v 

)
T � ˜ A e H 

l 
e W 

l 
e 

)
(3) 

where ˜ A e = 

˜ D 

− 1 
2 

e ( A e + I Ne ) ̃  D 

− 1 
2 

e . 
Usually, CensNet ends up with a last round of node layer up- 

dating. The loss function is defined as 

L ( �) = −
∑ 

l∈ Y L 

F ∑ 

f = 1 
Y l f logM l f (4) 

where Y L is the subset of nodes with labels, M is the softmax re- 
sults of the last node layer where node feature map has F dimen- 
sions. 

For the squeeze-and-excitation attention block, as we used dif- 
fer ent eye mov ement featur es to construct heter ogeneous gr a phs,
the main purpose of the squeeze-and-excitation module is to in- 
tegr ate these gr a phs into one fr ame w ork, b y taking eac h gr a ph
as a channel and weighing them. The channel attention block 
SENet (Hu et al., 2018 ) is introduced to integr ate m ultiple gr a phs 
that share the same nodes but have different node features and 

edges. Note that a typical CensNet includes (i) the node-and-edge 
switching embedding plus (ii) an additional round of node em- 
bedding (for node classification). The SENet is inserted between 

(i) and (ii) (carneose panel in Fig. 1 ). That is, multiple graphs are 
sent to differ ent c hannels, wher e node-and-edge switc hing em- 
bedding is performed. Then, SENet integrates multiple channels 
into one hybrid gr a ph to complete the last round of node em- 
bedding for node classification. Specifically, as illustrated in car- 
neose panel in Fig. 1 , the updated node features first pass through 

a squeeze oper ation, whic h a ggr egates the featur e ma ps acr oss 
spatial dimension M × H n ( M : participant number, H n : node char- 
acteristics) to produce a channel descriptor. This is follo w ed b y 
an excitation oper ation, whic h is learned for each channel by a 
self-gating mechanism based on channel dependence . T he input 
c hannels ar e then r e weighted and fed to the SENet, where F sq is 
global av er a ge pooling function that compr esses the c har acter- 
istics of each channel into a real number, where c ( = 4 in this 
work) denotes the channel number. Then, a 1 × c vector is sent to 
F ex ( ·, W ) which is implemented by a fully connected layer, where 
W is a learnable weight for e v ery input c hannel. Then, F scale scales 
the 1 × c vector and node-and-edge featur es m ultiplied by W to 
yield the new features . T he process is expressed by: 

z node = F sq ( F node ) = 

1 
M × H n 

M ∑ 

i = 1 

H n ∑ 

j = 1 
F node ( i, j ) (5) 

s node = F ex ( z node , W ) = σ ( g ( z node , W ) ) = σ ( W 2 δ ( W 1 z node ) ) (6) 

Edge features undergo the same process. 
tatistics 

r e vious studies (Destrieux et al., 2010 ; Finn & Bandettini, 2021 ;
ao et al., 2022 ; He et al., 2020 ) used r egr ession to predict cogni-

iv e scor es, and Pearson or Spearman corr elation was used to as-
ess pr ediction accur ac y (He et al., 2020 ). Ho w e v er, small dataset
ize significantly reduces accuracy, particularly when the sam- 
le size is below 100 (He et al., 2020 ). As our dataset only in-
ludes 81 participants, we adopt a classification a ppr oac h, divid-
ng participants e v enl y into groups based on cognitive scores and
 v aluating accur ac y using AUC, follo wing the recommendation
n (Gao et al., 2022 ). For the purpose of comparison, we modify
he state-of-the-art r egr ession-based methods (Finn & Bandettini,
021 ; Gao et al., 2022 ; He et al., 2020 ; Kawahara et al., 2017 ) to clas-
ification by adjusting the output layer dimensions and activa- 
ion function. We use the same loss function and AUC calculation

ethod as A-CensNet, while k ee ping other layers in their default
onfiguration. 

esults 

mplementation details 

n our application, participants are divided to four cognitive 
roups ( ∼20 participants in each one, a total of 81 participants).
he specific selection criteria of the 81 participants are summa-
ized as follo ws. Ey e movement information is one of the major
oci of our selection of participants . T he eye mo vement informa-
ion in HCP data provides the 2D coordinates of fixation point and
upil area according to the time stamp. When participants are

n the state of blinking, the eye tr ac ker will not be able to com-
letel y r ecor d the coor dinates of fixation point and pupil area at
his moment. The eye-movement information at this moment is 
nvalid. In this situation, we reorganize the eye movement data,
 etain onl y the v alid eye mov ement information, set a threshold
or the size of the valid eye movement data file, and then exclude
he participants with a lot of invalid information (the file size does
ot r eac h the thr eshold, wher e effectiv e data r eac h 15 000 KB and
ll data is 40 000 KB). In this paper, we use the data in Movies 2 and
. We identify the individuals who meet the r equir ements on both
f the two movie datasets, yielding 81 participants, an intersection
etween the two datasets. 

We e v aluate our method with 50% labeled data in training set,
hile equally splitting the remaining data sets as validation and

est sets (25 to 25%). T hat is , we r andoml y select 10 participants
r om eac h cognitiv e gr oup for tr aining (40 participants for tr ain-
ng), 20 participants for validation, and 21 participants for testing.
he selection of participants is random. 

We experiment on preserving {10%, 15%, 20%} top gr a ph edges
 y their w eights, and find that preserving 10% nodes and 10%
dges yields the best prediction performance (further details are 
ound in section Ablation study). We try different settings of learn-
ng rate from {0.05, 0.01, 0.005, 0.001}, dropout {0.2, 0.3, 0.4, 0.5},
nd hidden {16, 32, 64, 128, 512, 1024}, and find that the best per-
ormance is yielded by a learning rate setting of 0.005, dropout of
.2, and hidden of 1024. The following results presented are also
ased on this parameter setting. 

asic model studies 

ince the A-CensNet structure is proposed by adding the Atten-
ion mechanism to CensNet, which serves as the basic model
f this method, we first investigate whether the performance 
f CensNet is superior to a more basic model GCN. The results
r e r eported in Table 1 . Note that 65 participants (a subset of
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Table 1: Basic model studies . T he pr ediction accur acy is measur ed by AUC. Linear model uses only fMRI, other models use gr a ph structur e 
with eye trajectory similarity as the edge definition. Digits in parentheses indicate the number of participants used. 

Models Linear (65) GCN (65) CensNet (65) CensNet (81) 

AUC 41.94 ± 0.81 48.51 ± 0.94 49.75 ± 0.65 50.36 ± 0.71 
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1 participants) are used in our previous works (Gao et al., 2022 ) to
emonstrate the superiority of GCN over linear method, and the
 esults ar e r eported in Table 1 for r efer ence. 

We first a ppl y CensNet to the same 65 participants in (Gao et
l. , 2022 ). The A UC is 49.75 ± 0.65, higher than that of GCN (65)
48.51 ± 0.94). Note that the linear method (RidgeClassifier (Pe-
regosa et al., 2011 ) yields the worst performance (41.94 ± 0.81).
his comparison supports the choice of CensNet as the basic
odel, and demonstrates that prediction performance of cogni-

ion can be impr ov ed by a consecutive convolution on both gr a ph
odes and edges, compared with single node convolution step on
CN. When all 81 participants are used in CensNet, prediction per-

ormance is further impr ov ed (50.36 ± 0.71), supporting the con-
lusion in (He et al., 2020 ) that the abundance of training samples
ar gel y impr ov es the pr ediction performance. Note that the effect
f dataset size is not the major interest of this work. We only use
he 81 participants as a possible lo w er bound of dataset size, to
nvestigate how far the upper bound of prediction performance
an be pushed by means of algorithm refinement. 

blation study 

ffects of attention module (SENet) 
nserting attention module (SENet) into CensNet at different posi-
ions (as shown in Figs 1 and 2 ) could yield different results . Here ,
e conduct ablation experiments on the original CensNet with
o attention module (“AttentionNo” for short) and two different
-CensNets with the attention module inserted into the Middle
f the CensNet (“Attention-Middle”, Fig. 1 ) and in front of CensNet
“Attention-Befor e”, Fig. 2 ). The pr ediction accur ac y b y AUC of 100
epeated experiments are reported in Table 2 . 

Since the original CensNet (the “Attention-No” row in Table 2 )
oes not integrate different graphs. It is constructed as four dif-
er ent gr a ph structur es: the fMRI connectivities of Movies 2 and
 are used as node features, respectively, and the correspond-
ng eye mov ement tr ajectories and pupil area during viewing are
sed to reconstruct edges, respectively. In general, we find that
sing pupil area to construct edge yields better results than eye
ovement (Pupil > Track). The “Attention-Middle” model feeds

he four gr a ph structur es into CensNet, and fuses them through
he attention module after updating node and edge features. In-
tead, the “Attention-Before” model updates weights and merges
he gr a phs by the attention module before the update of node and
dge features . T he “Attention-Middle” model yields the best re-
ult (54.63 ± 0.65), while the “Attention-Before” model yields the
orst results (50.24 ± 0.67); even worse than a single graph in the

Attention-No” row. This comparison suggests that a node-edge
mbedding could yield latent features more sensitive to individ-
al v ariations, suc h that a c hannel attention works better at this
eep feature space than being applied immediately after the orig-

nal shallow features (“Attention-Before”). 
In addition, we find that the weights in the attention module as-

ociated with multiple channels do not significantly change from
he initial ones when the algorithm conv er ge, suggesting that all
 hannels equall y contribute to the final classification decision-
aking and that the node and edge feature do compensate each
ther. 

ffects of channels and feature fusion strategy 

o investigate the influence of the number of channels on perfor-
ance, we conduct a series of experiments using two channels.

he AUC prediction accuracy from 100 repeated experiments is
resented in Table 3 . 

The results in Table 3 indicate that using two channels does not
ead to a significant impr ov ement in accur acy. Specificall y, within
 single movie dataset (indicated by gray rows in Table 3 ), when
xing the node feature and using eye trajectory and pupil size
ariation as the two channels, the performance is not superior to
hat of the single-channel model in the “Attention-No” section of
able 2 . 

The results in Tables 2 and 3 show that integrating different
ye features is crucial for improving the prediction accuracy. The
xperiments in the “or ange” r ows of Table 3 show that using only
ne eye feature (either trajectory or pupil size) does not signifi-
antl y impr ov e the performance compar ed to the single-c hannel
odels. Concatenating the features from two datasets (green row)

ields the lo w est AUC among all experiments, suggesting that fea-
ure concatenation alone is not sufficient for improving the per-
ormance . F eature concatenation does not yield satisfied results
y means of the original CensNet model (y ello w ro ws). These re-
ults indicate that multimodal features can only compensate for
ach other in a “dee p” embed ding space, but not via a “shallow”
usion. Ther efor e, the integr ation str ategy acr oss datasets is ex-
r emel y important. 

Finally, it is worth noting that the sparsity of the gr a ph is a very
mportant parameter, and results are shown in Table 4 . We use
0% nodes and 10% edges as they yield the best prediction perfor-
ance. 

omparison with the state-of-the-art 
e compare our results with those of state-of-the-art methods

isted in Table 5 . The results obtained via linear model and GCN
er e pr e viousl y r eported in Gao et al. ( 2022 ) for Movie 2 and are

ncluded here for reference. It should be noted that linear (Finn &
andettini, 2021 ), FNN (He et al., 2020 ), and BrainNetCNN (He et al.,
020 ) are not GNN-related methods, as they do not involve edges
ut only rely on mfMRI features. 

Our r esults demonstr ate that all nonlinear deep neural net-
orks provide a significant improvement in contrast to the lin-

ar method (41.94 ± 0.81). Within each algorithm, the concatena-
ion of mfMRI features from two datasets (mfMRI2 + 3 rows) does
ot impr ov e the pr ediction accur acy in contr ast to that of a sin-
le dataset. For instance, Br ainNetCNN ac hie v es the second-best
erformance on Movie 2 (53.42 ± 0.63), indicating the importance
f the strategy selection for concatenating features from multiple
atasets. Within a single movie dataset (unshaded rows), models
hat integrate multiple modalities of features, such as mfMRI and
ye behavior, outperform models (FNN and BrainNetCNN) that
se a single modality (mfMRI). After integrating mfMRI and eye
ehavior from multiple datasets, our results surpass all state-of-
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Figure 2: As a comparison, attention module is moved before multiple channels of CensNet. 

Table 2: Ablation studies . T he pr ediction accur acy is measur ed by AUC. Gr a ph structur e is r epr esented by {Node, Edge}. C: channel. Trj: 
eye movement trajectory. Ppl: pupil size variation. The index after mfMRI, Trj and Ppl indicates which movie dataset it comes from. Red : 
the highest AUC. Blue : the second-highest one. 

Models Graph structure and AUC 

Attention-No 
{mfMRI2, Trj2} {mfMRI2, Ppl2} {mfMRI3, Trj3} {mfMRI3, Ppl3} 

50.36 ± 0.71 52.11 ± 0.62 51.49 ± 0.75 51.83 ± 0.85 

Attention-Middle 
C1: {mfMRI2, Trj2} C2: {mfMRI2, Ppl2} 
C3: {mfMRI3, Trj3} C4: {mfMRI3, Ppl3} 

54.63 ± 0.65 

Attention-Before 
C1: {mfMRI2, Trj2} C2: {mfMRI2, Ppl2} 
C3: {mfMRI3, Trj3} C4: {mfMRI3, Ppl3} 

50.24 ± 0.67 

Ta ble 3: Tw o-channel attention ablation study. “+ ” denotes a tem- 
poral concatenation of two features. 

Model Attention-Middle 

C1: {mfMRI2, Trj2} 
C2: {mfMRI2; Ppl2} 

50.66 ± 0.67 

C1: {mfMRI3, Trj3} 
C2: {mfMRI3, Ppl3} 

51.79 ± 0.67 

C1: {mfMRI2, Trj2} 
C2: {mfMRI3, Trj3} 

49.35 ± 0.69 

C1: {mfMRI2, Ppl2} 
C2: {mfMRI3, Ppl3} 

50.38 ± 0.62 

C1: {mfMRI2 + mfMRI3, Trj2 + Trj3} 
C2: {mfMRI2 + mfMRI3, Ppl2 + Ppl3} 

46.21 ± 0.55 

Single channel 
{mfMRI2 + mfMRI3, Trj2 + Trj3} 

51.94 ± 0.81 

Single channel 
{mfMRI2 + mfMRI3, Ppl2 + Ppl3} 

45.45 ± 0.43 

Our model (four channels) 54.63 ± 0.65 

Table 4: The influence of gr a ph node and edge sparsity on predic- 
tion. The prediction accuracy is measured by AUC. 

Node (reserved) Edge (reserved) AUC 

10% 10% 54.63 ± 0.65 
10% 15% 51.58 ± 0.91 
15% 15% 50.93 ± 0.91 

Table 5: Comparison with the state-of-the-art. Bold font high- 
lights the highest AUC and italic font highlights the second- 
highest one. “+ ” denotes a temporal concatenation of two fea- 
tures. NA denotes that no edge is defined in the model. Shaded 

rows highlight the results on the joint use of Movies 2 and 3. 

Models Gr a ph structur e AUC 

Linear (Finn & Bandettini, 2021 ) {mfMRI2, NA} 41.94 ± 0.81 

GCN (Gao et al., 2022 ) {mfMRI2, Trj2} 48.51 ± 0.94 

CensNet (Jiang et al., 2019 ) {mfMRI2, Trj2} 49.75 ± 0.65 
{ mfMRI2,Trj2} 50.36 ± 0.71 
{ mfMRI2,Ppl2} 52.91 ± 0.73 

FNN (He et al., 2020 ) {mfMRI2, NA} 50.81 ± 0.66 
{mfMRI3, NA} 49.45 ± 0.85 

{mfMRI2 + 3, NA} 50.54 ± 1.01 

BrainNet CNN (He et al., 2020 ) {mfMRI2, NA} 53.42 ± 0.63 
{mfMRI3, NA} 49.81 ± 0.78 

{mfMRI2 + 3, NA} 50.66 ± 0.82 

A-CensNet Four channels 54.63 ± 0.65 
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the-art methods . T hese findings highlight the effectiveness of in- 
tegr ating br ain activity and eye behavior into a single fr ame work 
for cognition pr ediction. Mor eov er, with a limited number of par- 
ticipants, the integration of multiple loads of stimuli via attention 

modules could significantly improve the prediction performance. 
iscussion and Conclusion 

e propose A-CensNet to predict participants’ cognitive scores,
ith participants taken as nodes, mfMRI derived functional con- 
ectivity as node features, and different eye-tracking feature simi- 

arities between participants as heterogeneous graph edges . T hese 
r a phs fr om differ ent dataset ar e all taken as differ ent c hannels.
he proposed model integrates graph embeddings from multiple 
hannels into one . T his model outperforms the one using single
odality, single channel, and state-of-the-art methods. Our re- 

ults indicate that the brain functional activity patterns and the
ehavior patterns might complement each other in inter pr eting
rait-like phenotypes, and might provide new clues to studies of
iseases with cognitive abnormality. 

Curr entl y, we use classification paradigm to evaluate the pre-
iction performance. Since the distribution of score is continuous,
 egr ession is theor eticall y a mor e suitable model and has been
dopted in many previous studies (Bzdok & Ioannidis, 2019 ; Finn
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Table 6: Multiple: classification prediction results . T he prediction accuracy is measured by AUC. 

Number of classes 4 6 8 10 12 

AUC 54.63 ± 0.65 56.34 ± 0.65 56.95 ± 0.48 51.53 ± 0.60 45.52 ± 0.38 

&  

e  

p  

f  

a  

I  

t  

v  

s  

a  

T  

t  

n  

g  

s  

e  

t  

r  

t
 

8  

i  

c
 

b  

m  

n  

t  

v  

a  

o  

s  

v  

o  

i  

f  

a  

b  

t  

a  

s
 

g  

i  

B  

f  

s  

t  

t
 

a  

d  

(  

G  

t  

d  

t  

a  

e  

f  

t  

b  

e  

t  

e  

a  

t  

2  

b
 

m  

s  

e  

b  

p  

i  

p  

c  

t  

b  

s  

p  

t  

d  

i  

r  

I  

c  

M  

i  

a  

t  

g  

e  

h  

o  

S  

g  

p  

m  

t  

s
 

s  

p  

w  

u  

t  

f  

a  

r  

b  

a  

s

 Bandettini, 2021 ; Finn et al., 2017 ; Gal et al., 2022 ; He et al., 2020 ; Li
t al., 2019 ; Per eir a et al. , 2020 ; Sui et al. , 2020 ). Ho w e v er, the ma p-
ing between scores and brain connectivity fingerprint could be
ar from linear within a cohort and the huge inter-individual vari-
bility would lead to a large deviation from the group-wise trend.
n short, the predictability of regression could hugely degrade due
o the noisy scores and brain activity with huge inter-individual
ariabilities . For example , in Finn & Bandettini ( 2021 ), the r egr es-
ion prediction accuracy for cognition measured b y P earson’s r is
round 0.20 (the best performance on Movie 2 is close to 0.40).
her efor e, we use classification scheme instead, to impr ov e the
olerance of the model to noise. In fact, if we increase the class
umbers (to the limit, each participant is classified into a unique
r oup), the classification pr oblem ultimatel y becomes a r egr es-
ion one. In fact, in addition to the four-group classification, we
 v enl y divide the participants into six and eight gr oups, r espec-
iv el y, and AUCs via our model are 56.34 ± 0.65 and 56.95 ± 0.48,
 espectiv el y (AUC is 54.63 ± 0.65 for four gr oups), demonstr ating
he robustness of the algorithm to classification scheme. 

Indeed, to make the r esults mor e like a r egr ession, we divide the
1 participants into mor e gr oups and r eport the AUC and accuracy
n Table 6 . Note that if the class number is 81, to the limit, the
lassification will be equivalent to regression. 

Fr om the r esults, we can see that with the increase of the num-
er of classes, the classification accur acy incr eases first but dra-
aticall y dr ops below the chance line (AUC = 0.50) when the class

umber is 12. Although r egr ession is the ultimate goal of predic-
ion, pr ediction accur acy measur ed by a corr elation coefficient is
ery low due to the limitation of dataset size, and thus cannot be
 trustworthy metric to compare the performance with the state-
f-the-art. Even though the AUCs via the classification scheme are
till low in this work, in line with the low Pearson’s r (around 0.20)
ia a r egr ession sc heme (Finn & Bandettini, 2021 ), the k e y point
f this work is to demonstrate the improvement brought by the
ntroduction of node-edge joint embedding and attention module
or multiple source integration, which has been well validated by
 variety of comparative studies. Given that the dataset size might
e a critical factor to the prediction performance, as mentioned in
he Introduction section, we expect that our algorithm applied on
 large-size dataset could ac hie v e a significantl y impr ov ed pr eci-
ion that still outperforms the state-of-the-art. 

The BrainNetCNN model in Finn & Bandettini, 2021 has yielded
ood results using only fMRI. GCN was adopted simply because it
s r elativ el y easier to be implemented on a cohort. By contr ast,
r ainNetCNN (Kawahar a et al., 2017 ) was specifically developed
or brain connectome data and, at the current stage, it is not
traightforw ar d for us to used it to fuse eye-movement informa-
ion with fMRI data. Ne v ertheless , we ma y tak e the ad v anta ges of
his model and realize the feature fusion before a graph model. 

In this w ork, w e only predict cognitive scores. In fact, we also
 ppl y our algorithm to emotion score prediction. But the pre-
iction performance is not as successful as that on cognition

AUC = 0.45 via GCN for emotion, contrast by AUC = 0.49 via
CN for cognition), in line with pr e vious studies (Finn & Bandet-

ini, 2021 ). A possible reason is that the scores in the cognition
omain in HCP dataset are performance-based, while those in
he emotion domain are self-reported, which can suffer from bias
nd may be less biologically valid. Another possible reason is that
motion measures simply do not robustly correlate with static
unctional brain connecti vity. Unlik e measures including cogni-
ion and fluid intelligence, emotion could be dynamically evoked
y the pr osper ous content of a mo vie clip. T he instant arousal of
motion could hardly be promptly reflected by connectivities es-
imated from the signal correlation, a static measure that cov-
rs the whole span of the signal duration. Adopting or adapting
n algorithm that focuses more on temporal resolution and rela-
ion, suc h as LSTM (Gr av es & Gr av es, 2012 ) and BERT (Sun et al.,
019 ) could impr ov e the performance of predicting instant in-task
ehavior. 

Even though the work was applied to healthy participants, the
odalities used here, including mfMRI and eye tr ac king, ar e es-

ential to advancing the discovery of brain imaging-based mark-
rs of psychiatric illness (Eickhoff et al., 2020 ). Eye tracking has
ecome one of the most popular tools in the r esearc h field of
syc hiatric illness, especiall y the ones with attention abnormal-

ty (Armstrong & Olatunji, 2012 ; Guillon et al., 2014 ). For exam-
le, context-dependent different visual attention patterns to so-
ial stim uli hav e been found in autism spectrum disorders in con-
rast to controls (Guillon et al., 2014 ). Note that our framework can
e easily extend to incorporate more eye movement features by
impl y adding mor e c hannels to the SE module, in whic h m ulti-
le eye-movement features are used to represent various defini-
ions of the similarity between indi viduals. Lik ewise, it has been
emonstrated that using movie fMRI for psychiatric imaging can

mpr ov e data quality and quantity. Movie watching can decrease
e petiti ve behavioral demands and increase scanner tolerability.
t may thus be particularly useful in populations that have diffi-
ulties during scanning, including those with psychiatric illness.
or eov er, since a movie-watc hing sc heme can ma gnify the inter-

ndividual v ariability (Eic khoff et al., 2020 ; Finn & Bandettini, 2021 ),
 car efull y c hosen or designed pur pose-built movie could poten-
iall y ma gnify the inter-gr oup differ ence, whic h, in turn, could
r eatl y facilitate the identification of ima ging-based br ain mark-
rs (Eickhoff et al., 2020 ). From the perspective of techniques, we
av e demonstr ated a possibility of integr ating m ultiple sources
f information to impr ov e the cognition prediction performance.
ince cognitive decline is usually an obvious manifestation of pro-
r ession of man y psyc hiatric diseases, we postulate that the pro-
osed method could be applied to disease study. For example, it
ight be used to quantify the extent to which a patient’s cogni-

iv e ability de viate fr om the tr ajectory of contr ols and e v en pr edict
uc h de viation ahead of time. 

It is worth noting that although the proposed model is not
pecifically designed for a movie-watching paradigm but the ap-
lication is only to movie-w atching, ey e mov ement data ar e used,
hic h can onl y be collected under the par adigm of natur al stim-
lus but this is not possible during a resting state. Ho w ever, fea-
ures of other modalities can be jointly used with resting-state
MRI data. For example, we can use resting-state fMRI features
s nodal features while using demography metrics, such as age,
 ace, and sex, to measur e the similarity between and define edges
etween participants, and use this gr a ph structur e to pr edict
ny other personal traits, including the cognition score in this
tudy. 



Pr edicting Cognitiv e Scor es Fr om FMRI and Eye Tr ac king | 9 

 

B  

B  

 

B  

B  

B  

C  

D  

 

D  

 

D  

D
E  

E  

 

F  

F  

F  

G  

 

G  

 

G  

 

G  

G  

 

G  

G  

 

Finally, our method show promise in improving cognition pre- 
diction by cross-modality fusion. This avenue deserves further ef- 
forts. A possible solution could be cross-modality attention, where 
we may carry out feature extraction at common frequency do- 
mains as suggested in Huddar et al. ( 2020 ). After that, we can align 

the features of the two modalities in the time dimension and feed 

them to the cross-modality models (such as Wei et al., 2020 ). Fi- 
nally, the aligned feature can be used feed to the cross-attention 

module for inter-modal correlation (e.g. Wei et al., 2020 ), where 
transformer modules, follo w ed b y a 1D-CNN and pooling opera- 
tion, are used to fuse features. 
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