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Introduction: Contemporary stethoscope has limitations in diagnosis of chest conditions,

necessitating further imaging modalities.

Methods: We created 2 diagnostic computer aided non-invasive machine-learning models to

recognize chest sounds. Model Awas interpreter independent based on hidden markov model and

mel frequency cepstral coefficient (MFCC). Model B was based onMFCC, hidden markov model,

and chest sound wave image interpreter dependent analysis (phonopulmonography (PPG)).

Results: We studied 464 records of actual chest sounds belonging to 116 children diagnosed

by clinicians and confirmed by other imaging diagnostic modalities. Model A had 96.7%

overall correct classification rate (CCR), 100% sensitivity and 100% specificity in discrimi-

nation between normal and abnormal sounds. CCR was 100% for normal vesicular sounds,

crepitations 89.1%, wheezes 97.6%, and bronchial breathing 100%. Model B's CCR was

100% for normal vesicular sounds, crepitations 97.3%, wheezes 97.6%, and bronchial

breathing 100%. The overall CCR was 98.7%, sensitivity and specificity were 100%.

Conclusion: Both models demonstrated very high precision in the diagnosis of chest

conditions and in differentiating normal from abnormal chest sounds irrespective of operator

expertise. Incorporation of computer-aided models in stethoscopes promises prompt, precise,

accurate, cost-effective, non-invasive, operator independent, objective diagnosis of chest

conditions and reduces number of unnecessary imaging studies.

Keywords: machine learned stethoscope, operator independent diagnosis, chest, correct

classification rate, CCR, normal vesicular sounds, crepitations, ACA, automatic chest

auscultation, wheezes

Plain Language Summary
This study describes creation of accurate computer-aided sound analysis that can precisely

diagnose and label type of chest sound (normal vesicular sounds, crepitations, wheezes, and

bronchial breathing) and underlying disease (bronchopneumonia and pneumonia). It defines

the best number of MFCC coefficients and best frame duration to achieve highest correct

classification rate (CCR), sensitivity and specificity.

What’s Known on This Subject?
Computer respiratory sound analysis (CORSA) was developed to aid in chest disease

diagnosis. The accuracy range is 67.6–92.6%. CORSA uses different methods to analyze

chest sounds such as statistical, morphological complexity, energy and amplitude analysis.

What Does This Study Add?
Wecreated and validated 2modelswith 100%sensitivity and specificity for chest sound recognition

and (96.7–98.7%) correct classification rate and defined their determinants. We studied chest wave

Correspondence: Magd Ahmed Kotb
Cairo University, 5, Street 63 El Mokatam,
Cairo 11571, Egypt
Tel +20 2 2508 4994
Email magdkotb@kasralainy.edu.eg

Medical Devices: Evidence and Research Dovepress
open access to scientific and medical research

Open Access Full Text Article

submit your manuscript | www.dovepress.com Medical Devices: Evidence and Research 2020:13 13–22 13

http://doi.org/10.2147/MDER.S221029

DovePress © 2020 Kotb et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

http://orcid.org/0000-0003-2118-3793
http://orcid.org/0000-0001-6633-1652
http://orcid.org/0000-0002-9624-2375
http://orcid.org/0000-0003-1540-0376
http://orcid.org/0000-0002-3149-9233
http://www.dovepress.com
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php


image phonopulmonography (PPG) that proved unique for every

sound type. Machine learning models in chest auscultation, when

combined with machine learning heart sound models, promise an

ease ofmedical education, implementation of telemedicine, screening

of cohorts, diagnosis and medical practice in the near future.

Introduction
The prompt diagnosis of chest conditions is necessary to

achieve the best outcome for the patient. State of the art

bedside diagnosis depends upon contemporary stethoscopes.

While chest ultrasonography promises non-invasive bedside

diagnosis it is conditioned by the presence of an expensive

ultrasonographymachine in the bedside clinical setting.1Most

of the diagnostic modalities, such as chest X-ray and com-

puted tomography (CT) remain the cornerstone in diagnosing

some conditions,2,3 but are demanding with regards to cost,

time, space, and expertise. Diagnosis thus far depends on

sound recognition and radiographic imaging, while assess-

ment of function depends on pulmonary function tests.4

Computer aided auscultation employing “computer respira-

tory sound analysis (CORSA)” or “computerized lung sound

analysis (CLSA)” was developed to support clinical decision-

making.5 To capitalize on sound recognition, researchers

developed automatic chest sound recognition systems that

allow diagnosis of chest sounds such as wheezes, bronchial

breathing, and crepitation, that are caused by underlying

pathology such as bronchitis, bronchial asthma, pneumonia,

and bronchopneumonia, etc.6,7 Automatic chest auscultation

(ACA)may be used to enhance medical students’ auscultation

skills and help physicians in diagnosis. The contemporary

stethoscope is unable to record, share chest sounds for follow

up, and can miss some chest sounds that need amplification.

Previous works in ACA used different methods to analyze

chest sounds such as statistical, morphological complexity,

energy and amplitude analysis. In automatic chest ausculta-

tion, different mel frequency cepstral coefficients (MFCC) as

features, and different frame duration lengths were

employed.8 Yet, there is a need to determine the best number

of MFCC coefficients, best frame duration to achieve highest

correct classification rate (CCR), sensitivity and specificity, as

well as a need to assess the effect of combined chest wave

image phonopulmonography (PPG) and machine learning

model on CCR, sensitivity and specificity of chest sound

recognition.

We aimed to develop an automatic chest sound recog-

nition system that provides a prompt bedside diagnosis

that overcomes operator interpretation, with high sensitiv-

ity and specificity. We aimed to provide a diagnostic

model that is prompt with high sensitivity as to diagnose

“normal chest sounds” with confidence and to recognize

chest sounds (crepitations, wheezes, and bronchial breath-

ing). We also aimed to determine the best frame duration

length and the best number of MFCC coefficients to reach

the highest sensitivity, specificity, and correct classification

rate (CCR) for chest sound recognition. To overcome both

overfitting and underfitting that can lead to poor model

performance, we validated both learned models by testing

on a validation dataset to know the final performance of

both models on unseen data.9

Materials and Methods
We developed two classification models, model A used

machine learning based on hidden markov model (HMM)

as frequency features (MFCC). In model B we combined

the first model with chest sound wave image (PPG) inter-

preter based analysis. After being created, both models

were used to recognize a new dataset of chest sounds of

another group of children that were not included during the

machine learning. Diagnoses based upon recognition by

model A and B were compared to the gold standard

diagnostic tools: clinical examination, chest X-ray, and

CT chest. We compared the CCR, sensitivity, and specifi-

city of both models.

Subjects
We studied records of real 464 chest sounds that belonged

to 116 children (of them 77 were males and 39 were

females), whose diagnoses were confirmed by clinical

examination, chest X-ray, and CT as judged by

a clinician. The study commenced in May 2015 and

ended by July 2016. The study was cross sectional, with-

out risk, without invasive procedures, and the recording of

sounds was done during the scheduled examination as

a part of diagnostic work-up or follow up of the enrolled

children. Participation was subject to verbal informed

freely-given consent of caregivers of children with com-

plete protection of the privacy and the confidentiality of

their personal information,10 as approved by Cairo

University Committee for Post-Graduate Studies and

Research, Cairo University, Egypt which is committed to

the Declaration of Helsinki and within provisions of its

principles including 25 and 26.10 The chest sounds were

collected from the 4 auscultation areas (apical right and

left and basal right and left front) as shown in Figure 1.
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Methods
Chest Model A

Chest Model A Creation

I- Data acquisition: to minimize effect of computer gener-

ated simulation we studied real chest sounds. Chest sounds

were recorded at 16-bit accuracy and 44,100 Hz sampling

frequency and stored as wav format using small micro-

phone connected with stethoscope. We used Recor Pad

sound recorder software to record chest sounds.

II - Chest sound normalization: after data acquisition,

chest sounds were normalized using the following formula

in Equation (1) to reduce noise effect, with each chest sound

located within maximum and minimum amplitude (1 to −1).

x n½ � ¼ y n½ �=max j y n½ � jð Þ (1)

where y[n] is the original chest signal.

III - MFCC feature to extract feature matrix for each

type of chest sound. Block diagram in Figure 1 shows

MFCCs computation according to the following steps:

1. initialization of MFCC parameter analysis, frame

duration 40 ms, analysis frame shift 10, pre-

emphasis coefficient α=0.97.
2. Pre-emphasis filtering using Equation (2).

p½n� ¼ x½n� � α:x n� 1½ � (2)

1. Windowing using Hamming window w(n) in

Equation (3)

w n½ � ¼ 0:54� 0:46cos 2πn=N � 1ð Þ (3)

1. Keeping the continuity of the first point and the last

point in each frame as shown in Figure 1C using

Equation (4).

c n½ � ¼ w n½ �p n½ � (4)

1. FFT transform.

2. Warping to mel scale using Equation (5) and apply-

ing triangular filter-bank on mel-scale to get filter-

bank energy.

Mel fð Þ ¼ 1127 � log 1þ f =700ð Þ (5)

1. Applying log on filter bank energy.

2. Taking DCT of logarithmic spectrum to get MFCC.

IV- To determine the best frame duration length and

number of MFCC coefficients in MFCC feature extraction

we used two different scenarios:

1. First scenario: we extracted MFCC using different

number of MFCC coefficients (13 MFCCs to 19

MFCCs) to determine best number of MFCC

coefficients.

2. Second scenario: we extracted MFCC using differ-

ent frame duration lengths (30ms to 60ms) to deter-

mine the best frame duration length.

V- Classification of chest sounds was according to “left to

right” discrete hidden markov model (HMM) using four

parameters:

1. T: the number of distinct observations: we have four

distinct observations (crepitations, wheezes,

Apical 
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Basal 
right Basal 

left

Framing Windowing 

Mel scale 
triangular 

Filter

FFT 
Transform

Logarithmic DCT 
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C 

Figure 1 (A) Chest sound auscultation and recording areas. (B) MFCC feature

extraction steps. (C) Computation windowing and frame continuing.
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bronchial breathing, and normal sounds) combined

with two different states (normal and abnormal

states).

2. π: initial state probability.

3. A: transition probability matrix.

4. B: observation probability matrix.

VI- HMM was built as follows:

1. HMM was trained using MFCC feature matrix (in

each scenario HMM was trained using a different

number of MFCC coefficients and different frame

duration lengths).

2. Baum-Welch EM algorithm was used in HMM to

produce new parameter estimates using forward-

backward algorithm that have equal or greater like-

lihood of training data.

3. Forward algorithm was used to calculate the log-

likelihood.

4. Maximum log-likelihood was used.

5. We classified detected signals by machine learning into

nominal characters denoting specific chest defects.

Chest Model A Validation

Validation was done in 2 tiers:

1. recognition of the initial training sound records;

2. recognition of new blinded chest sounds diagnosed

via clinicians and confirmed by chest X-ray and CT

according to clinical judgment. The validation was

compared to diagnosis according to clinicians’ deci-

sion, standard X-ray, and CT. Recognition of new

blinded chest sounds was applied using two previous

scenarios. Each scenario was evaluated according to

CCR, sensitivity, and specificity.

For the two models’ (A and B) validation we used the

two scenarios, the first scenario using different number of

MFCC coefficients and the second scenario using different

frame duration lengths.

Experimental Environment

Model A

Experiment 1 included 13, 14, 15, 16, 17, 18 and 19

MFCCs and frame duration of 30 ms, 35 ms, 40 ms, 45

ms, 50 ms, 55 ms and 60 ms.

Model B

Experiment 2 included experiment 1 and wave

shape (PPG).

Statistical Analysis
Sensitivity, specificity, and CCR were used in the first

and second model validation and were computed accord-

ing to Equation (6, 7 and 8) respectively:

Sensitivity ¼ TP= TPþ FNð Þ (6)

Specificity ¼ TN= TN þ FPð Þ (7)

CCR ¼ CR= CRþ IRð Þ (8)

● True Positive (TP): sick people correctly identified as

sick.
● False Positive (FN): healthy people incorrectly iden-

tified as sick.
● True Negative (TN): healthy people correctly identi-

fied as healthy.
● False Negative (FN): sick people incorrectly identi-

fied as healthy.
● Correctly Recognized (CR): correctly classified to

specific class.
● Incorrectly Recognized (IR): incorrectly classified to

specific class.

Chest Model B

We used the same steps as the first model combined with

chest sound wave image as shown in block diagram in

Figure 1. We plotted the wave for each chest sound type

and underlying pathology (pneumonia and bronchopneu-

monia) as shown in Tables 1 and 2. According to Figure 1

each chest sound has a distinct wave shape. To determine

the type of chest sound the wave shape was analyzed by an

independent trained author (operator dependent), in an

attempt to enhance the first model’s CCR, sensitivity, and

specificity.

Results
The study was conducted on 464 records of real chest sounds

belonging to 116 childrenwhowere diagnosed by clinicians, as

confirmed by chest X-ray, CT, and other diagnostic modalities

according to clinical decision. The mean age and standard

deviation (SD) of children was 36.9 months ± 39.8 (ranged

from 1month to 144months). The studied group comprised 77

(66.4%) males and 39 (33.6%) females. Table 1 shows the age

and gender of children in creation and groups (minimum child

age 1 month and maximum age 144 months). Table 2 and

Figure 2 show the frequency range, the different diagnoses of

studied records and the number of records in creation and
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Table 2 Chest Model CCR, Sensitivity, and Specificity Using Different Number of MFCC Coefficients and Different Frame Durations

& Chest Models A and B Confusion Matrix, CCR, Sensitivity, and Specificity Using 13 MFCCs and Frame Duration 40 ms

CCR % Overall

Sensitivity %

Overall

Specificity %

Number of MFCCs

13 MFCCs 96.7 100 100

14 MFCCs 94.8 100 100

15 MFCCs 94.5 99.6 100

16 MFCCs 93.8 99.6 100

17 MFCCs 94.9 100 100

18 MFCCs 94.5 100 96.6

19 MFCCs 95.6 100 98.3

Frame duration

30 ms 95.5 99.6 100

35 ms 95.5 99.6 100

40 ms 96.7 100 100

45 ms 93.8 99.6 93.3

50 ms 94.5 99.6 95.0

55 ms 92.6 99.6 88.3

60 ms 91.6 98.6 93.3

Normal Bronchial

Breathing

Crepitation Wheezes Number CCR % Overall

Sensitivity %

Overall

Specificity %

Chest Model A

Normal 60 0 0 0 60 100 100 100

Bronchial

breathing

0 21 0 0 21 100

Crepitation 0 0 33 4 37 89.1

Wheezes 0 0 2 83 85 97.6

Chest Model B

Normal 60 0 0 0 60 100 100 100

Bronchial

breathing

0 21 0 0 21 100

Crepitation 0 0 36 1 37 97.3

Wheezes 0 0 2 83 85 97.6

Notes: Sensitivity = true positive/(true positive + false negative). Specificity = true negative/(true negative + false positive). Number: total number of records for each sound type.

Abbreviations: MFCCs, mel frequency cepstral coefficients; CCR, correct classification rate; ms, millisecond.

Table 1 Frequency Range and Different Diagnoses of Studied Records

Chest Sound Number of Records Frequency Range (Hz) Creation Models A & B Validation of Models

A

& B
N % Min Max N % N %

Normal 147 31.6 68 133 87 33.3 60 29.6

Bronchial breathing 68 14.7 110 158 47 18.0 21 10.3

Crepitation 70 15.1 161 205 33 12.7 37 18.2

Wheezes 179 38.6 133 265 94 36.0 85 41.9

Total 464 100 – – 261 100 203 100

Notes: Bronchial breathing caused by pneumonia. Crepitation caused by Bronchitis. Wheezes caused by bronchial asthma.

Abbreviations: N, total number of records; Min, minimum frequency; Max, maximum frequency.
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Figure 2 Building of chest sound recognition models A & B and recognition of chest sounds wave shape.

Notes: (A) Model A building. (B) Model B building. (C) Wave shape of (a) wave of wheezes sound, (b) wave of bronchial breathing sound, (c) wave of crepitation sound, (d)

wave of normal chest sound, (e) wave of underlying pathology pneumonia sound, (f) wave of underlying pathology bronchopneumonia sound.

Abbreviations: PPG, phonopulmonography; s, second.
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validation according to clinicians, X-ray, and CT.

Wheezes had the highest frequency 265 Hz and we found

small frequency overlap between normal sound (68 Hz–133

Hz) and bronchial breathing (110 Hz–158 Hz) as shown in

Table 2.

Chest Model Creation
In chest model training we built the model using 261 chest

sounds, of them 87 (33.3%) were normal chest sounds and

174 (66.7%) were abnormal chest sounds. Abnormal chest

sounds studied included wheezes, crepitations, and bron-

chial breathing caused by underlying pathology such as

bronchitis, bronchial asthma, pneumonia, and bronchop-

neumonia as shown in Table 2. The training time was

found to be 40 seconds, initial testing sound was 3 seconds

and any consequent sound test time was 1 second.

Chest Model Validation
After the learned machine model was created, the model was

validated to assess its performance and overcome overfit-

ting. We recorded another 203 different real chest sounds

(blinded chest sounds) covering 60 normal chest, 143 abnor-

mal chest sounds (21 bronchial breathing, 37 crepitations, 85

wheezes) to test chest sound recognition using models A and

B. Table 3 and Figure 2 show chest model CCR, sensitivity,

and specificity based on machine learning and MFCCs with

a different number of MFCC coefficients according to clin-

icians decision, chest X-ray, and CT.

Experimental Results
Model A

Model A's overall CCR range was 93.8%-96.7%, sensitiv-

ity range was 99.6%-100%, and specificity range was

96.6%-100%. The chest model based on 13 MFCCs and

a frame duration of 40 ms had the highest CCR (96.7),

sensitivity (100%), and specificity (100%) (Table 2 and

Figure 2). Table 2 shows confusion matrix of first chest

classification model based on 13 MFCCs and frame dura-

tion 40 ms. Model A demonstrated CCR range (89.1%-

100%), sensitivity 100% and specificity 100% as shown in

Table 2.

Model B

Model B overall CCR range was (97.3%-100%), sensitiv-

ity range was 100% and specificity was 100%. Table 2

shows the confusion matrix of the second chest sounds

classification model based on 13 MFCCs, a frame duration

of 40ms and a wave shape image (PPG).

Discussion
Discrete wavelet transform (DWT), wavelet packet trans-

form (WPT), and artificial neural network (ANN) were

used to classify breath sound, yet, the accuracy of auto-

matic system range was 67.6–92.6%.11 Machine learning

was always considered as the efficient replacement of

human operator to overcome inter-operators, helping to

overcome inter-operator differences and misinterpreta-

tions. Thus, ANN systems, K nearest neighbor (K-NN),

Adaptive Resonance Theory 2 Neural Network (ART2NN)

and spectrogram image analysis were developed.

However, their accuracy was reported to be 77.1–92.3%,

up to 86%, and 84.8–92.8% respectively.12–14 Visual deter-

minant based analysis was made possible with the devel-

opment of audio visual recognition of breath sounds based

on two spectrograms using fast fourier transform (FFT).15

The visual determinant based analysis provides

a diagnostic modality for specific chest conditions

(wheezes and crepitations) but its accuracy did not exceed

85%.14 Vector quantization (VQ) and back propagation

neural network (BPNN) were used as classifiers in chest

sounds recognition and mel frequency cepstral coefficient

(MFCC) was used as feature, BPNN accuracy was 93.1%

and VQ accuracy was 86.8%. Morphological complexities

of respiratory sound and support vector machine (SVM)

were also used to classify chest sounds, but the reported

sensitivity was 86.3% and accuracy was 92.8%.16

We created ACA models that analyzed sound waves

according to MFCC. The models were based on machine

learning. Each chest sound type was found to have

a distinct PPG. Radiologic imaging has limited ability in

diagnosing wheezes, therefore physicians are the corner-

stone for the diagnosis of conditions such as bronchial

asthma as opposed to radiologic imaging. ACA model

A based on HMM achieved an overall CCR of 96.7%,

sensitivity of 100%, and 100% specificity using 13

MFCCs and a frame duration of 40 ms. ACA model

B based on wave shape achieved overall CCR of 98.7%,

sensitivity of 100%, and 100% specificity).

We detected very clear overlap between the frequency of

normal vesicular sounds and some abnormal sounds such as

bronchial breathing as shown in Table 2, nevertheless when

we employed the analysis of MFCC (depending on filter-

bank energy), model A was able to discriminate the over-

lapping frequencies. Also in model BMFCC and chest sound

wave shape as features were sensitive enough to detect all

“abnormal” cases and annulled false negative diagnosis, thus
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none of the examined children will be dismissed as normal,

while being sick.

The A and B ACA models had a higher sensitivity and

CCR in recognizing sounds over analysis based upon

MFCC. PPG (wave shape image) analysis of chest sounds

was achieved by model B. Model B ACA machine learn-

ing model based on HMM recognition and wave shape,

had greater CCR than that detected by the first ACA model

and others, such as Riella et al (2009) where the model

they created had CCR and accuracy of 85%.14 We com-

pared some previously reported studies and types of chest

sounds recognized in Table 3.

The ACA model B based on HMM overcomes CT and

X-ray inability to aid in the diagnosis of wheezes. ACA

models A and B, based on HMM comprise the largest

reported databank size of real chest sounds (464 chest

sounds); of which 203 chest sounds were for validation

(testing) and 261 chest sounds were for creation (training).

We did not study simulated chest sounds, although some

previous reports used simulated sounds,17 to allow projec-

tion of results and validation of real sounds. In the two

ACA models, we created a large databank, thus our results

are reliable and reproducible. The accuracy of ACA model

A promises future implications in chest sound recognition,

namely using simpler devices compared to the more com-

plex operator dependent CT machines, and promises a new

role in clinical education and diagnosis. The ACA model

B based on HMM might prove valuable in the diagnosis of

Table 3 Comparison of Chest Sound Recognition Ability of Previous ACA Models and Current Models A B

Reference Analyzed Sounds Method Results

Gogus et al, 20159 Asthmatic breath sound and normal sound (11

records)

WPT, DWT

ANN

DWT accuracy = 67.67-91.67%

WPT accuracy = 80.80%-90.0%

Chen et al, 201512 Wheezes, ronchi, crackles

(29 records)

MFCC

K-NN

System A average identification

rate= 77.1%.

System B average identification

rate= 92.3%

Rizal et al, 200613 Crackles, grunting, ronchi and pleural rub

(324 online records)

ART2

NN

Overall accuracy up to 86%

Riella et al, 200914 Wheezes, normal vesicular sounds (112 records) Spectrogram image Accuracy= 84.82%-92.86%

Syafria et al, 2014 Normal and abnormal* VQ, BPNN VQ accuracy= 86.8%,

BPNN accuracy= 93.1%

Mondal et al, 201417 Normal and abnormal* SVM Sensitivity= 86.3%

Accuracy= 92.8%

Sengupta et al, 201519 Normal, crackle and wheeze (72 records) ANN, Cepstral feature Accuracy= 92–97%

Hashemi et al, 201220 Wheezes* ANN, MFCCs Accuracy = 92.8%.

Chien et al, 200721 Wheezes and normal* Gaussian Mixture Models,

MFCC

Accuracy = 90%.

Lin et al, 201522 26 Normal and 32 wheezes BPNN Sensitivity = 94.6%

Specificity = 100%

#Chest machine

learning model A

Normal, wheezes, bronchial breathing and

crepitation (464 records)

HMM, MFCC Sensitivity = 100%,

CCR = 96.7%

Specificity = 100%.

#Chest machine

learning model B

Normal, wheezes, bronchial breathing and

crepitation (464 records)

HMM, MFCC, Wave shape Sensitivity = 100%,

CCR = 98.7%

Specificity = 100%.

Notes: Accuracy measurements: measures amount of uncertainty with respect to an absolute standard. *Number of sound records was not mentioned. #Model described

in current study.

Abbreviations: ANN, artificial neural network; ART2, adaptive resonance theory 2; HMM, hidden markov model; MFCC, mel frequency cepstral coefficient; DWT,

discrete wavelet transform; WPT, wavelet packet transform; VQ, vector quantization; BPNN, back propagation neural network; SVM, support vector machine.
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specific conditions such as pneumonia, bronchitis, hydro-

thorax etc.

To reliably diagnose “normal” and “abnormal” we need

to examine all chest areas. A single area auscultation by chest

auscultation model yields less CCR for diagnosis of any

underlying pathologic chest condition compared to at least

12 areas of lung auscultation, yet a four area auscultation

overall CCR for any chest sound was 96.7% with the first

ACA model and 98.7% with the second model as shown in

Figure 3. Both models enhance the diagnostic abilities of the

interpreter who listens and visualizes the respective phono-

gram, promising easier and more objective acquisition of

breath sound teaching skills.17,20–22 Machine learning mod-

els in chest auscultation, when combined with machine

learning heart soundmodels,21–24 promise an ease of medical

education, implementation of telemedicine, screening of

cohorts, diagnosis and medical practice in the near future.

Conclusion
The ACA models built based on HMM algorithm, MFCC

feature and extra element PPG demonstrated high sensitivity,

specificity, and CCR. The model based on frequency, energy

and computational analysis had 100% sensitivity, 100% spe-

cificity, and 96.7% overall CCR. Adding operator dependent

PPG analysis to the ACA model demonstrated higher sensi-

tivity, specificity, and overall CCR (100%, 100%, and 98.7%

respectively) for recognizing “normal” and “abnormal” chest

sounds (bronchial breathing, wheezes, and crepitation). The

chest model A may be used in diagnosis while model B may

be used in both diagnosis and learning as it allows demon-

stration of chest sound wave shape (PPG) beside recorded

signal, which will provide the medical student with an extra

element (wave shape on screen) beside auscultation techni-

que to enhance auscultation skills. The ACA models are

foreseen to prove valuable for screening and as reliable

prompt bedside physician aid.

Abbreviations
ACA, automatic chest auscultation; ANN, artificial neural

network; BPNN, back propagation neural network; CCR,

correct classification rate; CLSA, computerized lung

sound analysis; CORSA, computer respiratory sound ana-

lysis; CT, computed tomography; DWT, discrete wavelet

transform; FFT, fast fourier transform; K-NN, K nearest

neighbor; MFCC, mel frequency cepstral coefficient; PPG,

phonopulmonography; SVM, support vector machine; VQ,

vector quantization; WPT, wavelet packet transform.
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Notes: (A) Automatic chest auscultation model CCR, sensitivity and specificity using

different numberofMFCCelements combinedwith frame duration length 40ms, and (B)
according to different frame duration length combined with 13 MFCCs coefficients. (C)
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