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The current COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has com-
pletely changed human life for more than two years. Upon the emergence of this new lethal virus, multiple approaches 
were utilized to gain basic knowledge about its biology. Moreover, modern technologies, such as the organoid model 
system and next-generation sequencing, enabled us to rapidly establish strategies to tackle the disease, including vac-
cines and therapeutics. The recently developed organoid technology reflects human physiology more closely than other 
model systems. Coupled with its rapidness, high efficiency, and outstanding reliability, it has provided an opportunity 
to develop new drugs and understand the impact of the viral pathogen on the host. Recent findings using organoids 
have successfully revealed the cellular tropism of the virus in different organs and identified potential drug candidates 
that impact the disease. This review will summarize current achievements made with organoids in the fight against 
COVID-19.
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Introduction 

  Global pandemics, such as bubonic plague and Spanish 
flu, have challenged human life and economies multiple 
times across history (1). In 2019, another threat caused by 
SARS-CoV-2, which causes COVID-19, emerged as a new 
global pandemic from China (2). COVID-19 is the third 
lethal disease caused by coronaviruses that has emerged 

in many countries, after outbreaks of severe acute respira-
tory syndrome coronavirus (SARS-CoV) and Middle East 
respiratory syndrome virus (MERS-CoV) (3, 4). As of 
September 2021, more than 373 million cases have been 
diagnosed, with 5.6 million confirmed deaths from 
COVID-19 in total (5). According to a recent report, the 
number of deaths caused by COVID-19 in the US already 
exceeds that caused by the Spanish flu (6). COVID-19 has 
significantly impacted both the global economy and hu-
man life over the past two years. Advances in modern sci-
ence have made fast and efficient diagnostic tools avail-
able in response to the outbreak, along with vaccines 
against the virus developed to prevent infection and severe 
symptoms (7). However, although Remdesivir treatment is 
approved by the FDA, other therapeutics to treat the dis-
ease remain under development (8). Recently, two phar-
maceutical companies have announced clinical trials of 
antivirals against SARS-CoV-2 named Molnupiravir 
(Merck) (9), which almost halves the risk of severe 
COVID-19, and Paxlovid (Pfizer) (10), which reduces hos-
pitalizations by 89%. However, the U.S. Food and Drug 
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Administration has only recently approved these antivirals 
to quell new variant fears. Although an effective and safe 
oral antiviral could be a game-changer during the current 
pandemic, the emergence of diverse variants will neces-
sitate the continued development of further antiviral 
drugs.
  SARS-CoV-2 is a member of the beta coronavirus 
sub-family with positive-sense RNA as its genomic materi-
al (11). Its pathogenicity is similar to that of SARS-CoV, 
which belongs to the same family and contains a similar 
spike protein and cellular protease (12). The entry mecha-
nism of SARS-CoV-2 relies on the presence of the host cell 
receptor angiotensin-converting enzyme 2 (ACE2), which 
interacts with its spike protein (13). Upon virus entry into 
the host cell, the spike protein is cleaved by trans-
membrane protease serine 2 (TMPRSS2) (14-16), which 
induces fusion of the virus with the host cell. SARS-CoV-2 
has various animal reservoirs including bats, dogs, cats, 
and non-human primates. Although bats are considered 
the natural host of SARS-CoV-2, recent studies have iden-
tified more susceptible animal species, as well as possible 
animal-to-human transmission from minks (2, 17). 
  Developing advanced biological platforms that can suc-
cessfully mimic in vivo conditions in order to study 
host-pathogen communication in vitro has been a top pri-
ority in modern biomedical science. Conventional 2D cell 
lines have long been the most widely utilized platform for 
infection studies because of their benefits including ease 
of handling, relatively fast result monitoring, and cost-effe-
ctiveness. However, they have several limitations, such as 
lack of cellular heterogeneity and limited pathogen in-
fectivity caused by inaccurate representation of the natural 
host conditions. Animal models including mice and pri-
mates can provide cellular heterogeneity and similar phys-
iological conditions, resulting in similar infection effi-
ciency and corresponding disease phenotypes as those ob-
served in humans. However, animal models are typically 
expensive to maintain, difficult to control and take longer 
to yield results than conventional 2D cell lines. More im-
portantly, not all human pathogens can be studied in ani-
mal models because of differences in infectivity and dis-
ease susceptibility. 
  The organoid technology thus represents a significant 
advance for infection biology. Organoids are self-organiz-
ing 3D cultures that present an alternative to conventional 
platforms, while retaining the benefits of both conven-
tional 2D cell lines and in vivo animal models. They are 
generated from stem cells that give rise to the specific cell 
types of the tissue origin. The first adult stem cell (AdSC) 
-derived organoid model was reported in 2009 using 

mouse Lgr5-positive small intestine stem cells (18). After 
this initial innovation, various organoids from different 
organs and stem cells have been generated from humans 
and other animals, including bats (19-21). Typically, two 
types of stem cells, pluripotent stem cells and adult stem 
cells, have been actively used to generate organoids. Organoid 
technology is now utilized in different research fields, in-
cluding disease modelling, host-pathogen interaction, and 
patient-derived organoid biobanks (19). With the emer-
gence of COVID-19, various organoid systems have been 
used as a fast, efficient, and accurate system to study the 
biology of the SARS-CoV-2, candidate drug efficiency, and 
cellular tropism. This review summarizes the achieve-
ments of organoid-based COVID-19 research over the past 
2 years (Fig. 1).

COVID-19 and Pluripotent Stem Cell-Derived 
Organoids (PSC-Derived Organoids)

Lung organoids
  Viral transmission of SARS-CoV-2 is considered to be 
mediated primarily by respiratory droplets (2) and respira-
tory system failure is a typical symptom of COVID-19, in-
duced by the production of cytokines that lead to a cyto-
kine storm in the lungs (11). The lung is a highly 
branched organ that exchanges gases at the alveoli. It com-
prises various cell types including epithelial, vascular, 
stromal, and immune cells (22). Since conventional lung 
cell lines do not reflect in vivo lung conditions appropri-
ately, lung organoids have become a valuable tool to study 
SARS-CoV-2.
  There are multiple reports on COVID-19 research in 
human PSC-derived lung organoids that cover various 
topics: cell tropism, host cell responses, genetic variation 
influencing virus susceptibility, novel drug candidates, 
and impact of the environment (23-28). Studies by Pei et 
al. (24) and Tiwari et al. (26) have demonstrated that 
SARS-CoV-2 can infect human PSC-derived lung organo-
ids and that they are susceptible to SARS-CoV-2 infection 
and replication because they highly express ACE2 and 
TMPRSS2, which are both critical for viral entry. Interestingly, 
Pei et al. (24) observed no viral infection in AT1 cells, 
even though they are present in lung organoids, indicating 
that not all cells expressing ACE2 or TMPRSS2 are sus-
ceptible to SARS-CoV-2 infection. In contrast, another re-
port by Han’s research group (27) noted that ACE2 ex-
pression is primarily limited to the AT2-like cell pop-
ulation of lung organoids, and SARS-CoV-2 infection can 
be detected in a broad area of the lung organoid. These 
differences may be due to the different culture conditions 
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Fig. 1. Overview of organoids on 
COVID-19 research.

and differentiation methods used in these studies. 
  Host cell responses upon SARS-CoV-2 infection have al-
so been investigated in organoids, such as virus-induced 
interferons, cytokines, and chemokines. Gene set enrich-
ment analysis (GSEA) revealed that genes involved in 
rheumatoid arthritis, tumor-necrosis factor signaling, in-
terleukin-17 signaling, and cytokine-cytokine receptor in-
teractions are overrepresented in the genes upregulated 
following infection. Another interesting report by Kim and 
colleagues (25) has demonstrated increased SARS-CoV-2 
infection susceptibility induced by diesel fine particulate 
matter (dPM2.5). The addition of dPM2.5 was found to 
upregulate ACE2 and TMPRSS2 expressions, leading to 
higher SARS-CoV-2 susceptibility, in addition to increas-
ing the expression of genes associated with inflammation, fib-
rosis, and epithelial-to-mesenchymal transition. Lung orga-
noid research has also shown that the single nucleotide 
polymorphism rs4702 influences viral infection, which was 
also observed in intestinal organoids (28). Finally, meta-
bolic changes have been reported in response to 
SARS-CoV-2 infection. RNA-seq analysis has shown that 
genes involved in cellular metabolism are down-regulated 
after viral infection, whereas immune response genes are 
upregulated (24). As male patients exhibit higher preva-
lence and more severe complications (29) Samuel et al. 
(30) have used a human PSC-derived lung organoid model 

to investigate the potential reason behind the gender-de-
pendent severity of COVID-19. They showed that an-
drogen receptor signaling regulates ACE2 expression lev-
els and that treatment with antiandrogenic drugs can re-
duce ACE2 expression, thereby decreasing viral infection.

Brain organoids
  Numerous case reports have suggested that COVID-19 
can present with neurological symptoms including tempo-
ral or complete loss of olfactory function (31, 32). These 
reports suggest that SARS-CoV-2 has neurotropic charac-
teristics. Moreover, viral RNA has been detected in patient 
brain samples (33-36). Recent progress in SARS-CoV-2 re-
search using human PSC-derived brain organoids has 
broadened our knowledge about neurotropism and related 
cellular responses. 
  Neural tropism is currently debated because individual 
reports have indicated different primary target cells for vi-
ral infection, with neurons suggested by several studies 
(37-41). In addition, astrocytes (41, 42), choroid plexus 
cells (43, 44), and pericyte-like cells (45) were shown to 
be susceptible to SARS-CoV-2 infection in different orga-
noid models. Interestingly, in contrast to neurons and per-
icyte-like cells, the astrocytes in the study by Andrews et 
al. (42) did not exhibit high levels of ACE2 expression. 
Instead, this study identified alternative SARS-CoV-2 re-
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ceptors on astrocytes, including DPP4 and CD147 (42). 
Different models also showed different host cell responses. 
The studies by Jacob and by Pellegrini and colleagues 
(43-45) described an upregulation of genes related to in-
flammatory signaling in a choroid plexus organoid model, 
while Song et al. (37) did not observe any evidence of type 
I interferon responses using 10× single-cell sequencing on 
brain organoids. In addition, Wang et al. (41) have identi-
fied another important risk factor for COVID-19: ApoE4, 
a known genetic risk factor for Alzheimer’s disease, was 
found to be strongly correlated with SARS-CoV-2 in-
fection and disease severity. Lastly, Poirier and colleagues 
(46) have confirmed that antiviral Dicer (aviD), an iso-
form of Dicer, which cleaves double-stranded viral RNA, 
participates in innate mammalian immunity protecting 
stem cells from SARS-CoV-2 infection in human brain 
organoids.

Gut organoids
  COVID-19 patients also present with various gastro-
intestinal symptoms including diarrhea, nausea, vomiting, 
anorexia, and abdominal pain (29). Single-cell analyses 
have shown that ACE2 and TMPRSS2 expression can be 
detected in enterocytes from the ileum and colon (47), 
with the small intestine exhibiting the highest level of 
ACE2 expression in the human body. Therefore, both 
PSC-derived and AdSC-derived gut organoids have been 
widely used for SARS-CoV-2 studies.
  Multiple studies have confirmed that human PSC-de-
rived intestinal organoids also express ACE2 and 
TMPRSS2 and are susceptible to SARS-CoV-2 infection. 
Krüger and colleagues (48) have reported that ACE2 ex-
pression is broadly detected in all the different cell types 
found in human gut organoids, except in goblet cells, 
which do not express ACE2. Other studies have monitored 
responses to infection, such as interferon signaling. Mithal 
et al. (49) have demonstrated that human intestinal orga-
noids can be infected by the virus, resulting in the stim-
ulation of interferon-related genes, including BST2, 
OASL, MX1, IFITM1, and IRF7. Bozzo et al. (50) found 
that the viral spike protein is able to hijack interferon-in-
duced transmembrane proteins (IFITM 1, 2 and 3) for 
more efficient infection, and interfering IFITMs can sup-
press viral infection in gut organoids. 

Other organoids
  Other types of PSC-derived organoids that have been 
employed in COVID-19 research, include kidney, retinal, 
blood vessel, and liver organoids. 
  In one of the first studies on COVID-19, Monteil et al. 

(51) demonstrated that SARS-CoV-2 can directly interact 
with blood vessel and kidney organoids, and that this in-
teraction can be blocked by treatment with clinical-grade 
soluble human ACE2. A follow-up study by the same 
group also reported that the combination with remdesivir 
further improved the therapeutic activity of human solu-
ble ACE2 against SARS-CoV-2 infection in human kidney 
organoids (52). Similarly, Wysocki and colleagues (53) 
used kidney organoids to show that a shorter ACE2 var-
iant had improved neutralizing activity against the 
infection. A new potential drug candidate, MEDS433, also 
demonstrated its inhibitory activity on SARS-CoV-2 repli-
cation in kidney organoids (54). 
  A study of patient eye samples noticed that the virus 
can be detected in the ocular fluid; however, it could not 
determine whether the human retina can also be a target 
for viral infection and replication. Lai et al. (55) sub-
sequently used PSC-derived human retinal organoids to 
show that they express both ACE2 and TMPRSS2 and are 
susceptible to SARS-CoV-2 infection and replication. 
  In addition, Yang et al. (56) have demonstrated that 
PSC-derived human liver organoids, as well as adult hep-
atocyte and cholangiocyte organoids, are also susceptible 
to SARS-CoV-2 infection. In response to the infection, 
they observed induction of chemokines in a pattern sim-
ilar to that found in patient samples. 

COVID-19 and Adult Stem Cell-Derived Organoids 
(AdSC-Derived Organoids)

Lung organoids
  With respiratory system failure among the most com-
mon symptoms of COVID-19, many studies have em-
ployed adult stem cell-derived (AdSC-derived) lung orga-
noids for COVID-19 research. 
  Cellular tropism of SARS-CoV-2 was the primary inter-
est of these studies and different studies have identified 
different target cells, similar to the observations made in 
PSC-derived lung organoids. A report by Tindle et al. (57) 
suggested that the proximal airway is important for in-
fection while the distal alveolar region controls host re-
sponses against infection. Another report from Suzuki et 
al. (58) showed that AdSC-derived lung organoids com-
prise basal, club, ciliated, and goblet cells, which express 
high levels of ACE2 and TMPRSS2, allowing infection 
with SARS-CoV-2. Hysenaj et al. (59) have identified main-
ly ciliated-like and goblet-like cells, marked by expression 
of TUBA and MUC5AC, respectively, to retain the highest 
tropism. However, the correlation of TUBA, MUC5AC, and 
ACE2 expression with infection rate was not investigated. 
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Instead, the authors identified a novel mediator, Tetraspanin 
8 (TSPAN8), which exhibits a strong correlation with the 
rate of viral infection. In contrast, Salahudeen et al. (60) 
have suggested that club cells are the primary targets of 
SARS-CoV-2. The question of viral tropism in the lung 
thus requires further studies and validations. 
  An advantage of using AdSC-derived human lung orga-
noids is that they can reveal varying sensitivities of the 
different SARS-CoV-2 variants to host immune responses, 
with the delta variant exhibiting 6–8-fold lower sensitivity 
(61). Moreover, Mykytyn and colleagues (62) have used 
this model to identify novel characteristics of SARS-CoV-2, 
including the multi-basic cleavage site (MBCS), which dis-
tinguish the virus from SARS-CoV. The presence of the 
MBCS on SARS-CoV-2 enables the virus to penetrate host 
cells with greater ease and speed. AdSC-derived human 
lung organoids have also been used to broadly monitor 
host cell responses to SARS-CoV-2 infection (57, 58, 
63-67). The most common response was the induction of 
genes related to interferon-responsive signaling. Recent 
findings also suggest that perturbed metabolism, autoph-
agy, and immune response are among the top listed com-
mon features induced by virus-mediated gene expression 
changes.

Gut organoids
  Detection of SARS-CoV-2 infection in human AdSC-de-
rived gut organoids by Clevers’ group was one of the ear-
liest reports to explain why COVID-19 patients often 
struggle with the above-mentioned gastrointestinal symp-
toms (68). This report highlights the speed and efficiency 
with which organoids are able to recapitulate viral in-
fection events in vitro. The study observed high levels of 
ACE2 expression on enterocytes, making the gut organo-
ids susceptible to SARS-CoV-2 infection. Subsequently, 
Zang et al. (69) demonstrated that TMPRSS2 and TMPRSS4 
also have the potential to induce SARS-CoV-2 infection 
in intestinal organoids. Interestingly, the host responses to 
SARS-CoV-2 in gut organoids reported by Stanifer and 
colleagues revealed only an induction of type III interfer-
on as a host response (70), while others also reported a 
type I interferon response (68, 71). 

Other organoids
  COVID-19 patients with severe symptoms are more 
likely to exhibit liver failure than patients with mild 
symptoms (72). While one reason could be the hepatotox-
icity induced by drug treatments, Zhao and colleagues 
(73) have described that SARS-CoV-2 infection itself can 
cause misregulation of tight junctions and tight junc-

tion-related gene expression in cholangiocytes. They have 
suggested that this malfunction directly stems from the 
toxicity induced by viral infection of ACE2 and 
TMPRSS2-positive target cells. 
  Another rare type of organoid employed in COVID-19 
research is the tonsil organoid model, representing a lym-
phoid organ. Using this new type of organoid, Wagar et 
al. (74) could successfully recapitulate the function of the 
original organ, such as antibody production and maturation. 
Moreover, they showed that tonsil organoids can be used 
to validate vaccine efficacy. 

Applications of organoid in COVID-19 drug 
development
  Conventional high-throughput drug screening based on 
2D cell lines is cost-efficient, fast, and able to cater to high 
chemical complexity, with hundreds of thousands of 
chemical candidates. Numerous drug screenings have uti-
lized this platform to identify novel therapeutic candidates. 
However, the limitations of 2D cell lines, such as 
non-physiological conditions and lack of cellular hetero-
geneity, call for a new high-throughput strategy for drug 
screening on organoids. Since their development, many 
studies have performed drug discovery tests on organoids 
for various reasons, from validating the effects of candi-
date drugs shortlisted from prior screening in 2D cell 
lines, to initial drug screening with a set of drugs includ-
ing FDA-approved molecules, and drug responsiveness 
monitoring. 
  However, as organoid cultures are still expensive and 
more difficult to handle than a conventional 2D cell line 
model, currently the most widely accepted use of organo-
ids in drug screening is to validate candidate molecules 
identified from conventional screening, e.g. examining 
their efficiency and monitoring their cytotoxicity. The cur-
rent emergency caused by the pandemic demands the rap-
id development of efficient therapeutics against COVID-19. 
To this end, a preliminary screening on 2D cell lines with 
higher complexity, and validating the efficacy of selected 
candidates on organoids is considered a well-designed 
strategy. Multiple cell lines have been utilized for primary 
drug screening, including Vero E6, A549, and Calu-3. Saul 
et al. (75) have tested 4,413 compounds on the Vero E6 
cell line to identify candidates that reduce lethality caused 
by SARS-CoV-2 infection, followed by a second round of 
screening to monitor dose-dependency. The authors identi-
fied an antiviral effect of Lapatinib and other inhibitors 
against the ErbB family. These were then validated in hu-
man AdSC-derived lung organoids, which exhibited sup-
pressed viral replication upon Lapatinib treatment. Duarte 
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and colleagues (23) have reported another screening of 
FDA-approved drugs using a similar strategy. The authors 
started from available large-scale data sets and identified 
candidates that might potentially affect COVID-19, based 
on gene expression profiles. Consequently, they identified 
atorvastatin as a promising candidate for COVID-19 treat-
ment, which was further validated using human PSC-de-
rived lung organoids. 
  Despite the cost, drug screening for COVID-19 treat-
ments directly based on a lung organoid model represents 
an excellent strategy because the system accurately reflects 
in vivo conditions. Han and colleagues (27) have per-
formed high-throughput screening of FDA-approved 
drugs on human PSC-derived lung organoids. The authors 
identified the three most efficient compounds to be im-
atinib, mycophenolic acid, and quinacrine dihydro-
chloride, from the first screening. The effects of these 
three drugs in preventing SARS-CoV-2 infection in host 
cells were also validated further. 
  Human organoids are considered to be among the best 
in vitro models to monitor drug responsiveness against 
COVID-19; therefore, numerous studies have employed 
organoids as a validation platform for known drug candi-
dates. For example, soluble ACE2 treatment is considered a 
straightforward strategy to interfere with SARS-CoV and 
SARS-CoV-2 infection in humans. Starting from the study 
by Penninger’s group, the efficacy of clinical-grade soluble 
ACE2 in treating COVID-19 patients has been demon-
strated in vitro using blood vessel and kidney organoid sys-
tems (51). A follow-up study of ACE2 variants with pro-
longed neutralizing activity has been reported by Wysocki 
et al. (53). Moreover, Monteil et al. (52) showed that com-
bined treatment of remdesivir along with soluble ACE2 is 
more effective in preventing viral entry and replication. 
In addition, Ebisudani and colleagues (63) have tested the 
effects of three selected antiviral drugs on lung organoids, 
identifying remdesivir as the one with the highest activity 
in preventing SARS-CoV-2 infection. Recent studies have 
discovered further inhibitors of SARS-CoV-2, including a 
spike protein inhibitor (EK1 peptide), TMPRSS2 in-
hibitors (camostat/nafamostat), and a human dihydroor-
otate dehydrogenase inhibitor (MEDS433) (26, 54). 

Conclusions

  The emergence of this pandemic, which can cause se-
vere illness and death, has required urgent development 
of new vaccines and drugs. New advanced technologies 
such as mRNA vaccines, antibody engineering, and orga-
noid models have allowed us to develop vaccines and anti-

virals against SARS-CoV-2 at an unprecedented pace. In 
particular, organoid models have already proven their val-
ue during the Zika virus epidemic, when studies involving 
brain organoids revealed a clear connection between mi-
crocephaly and Zika virus infection. During the COVID-19 
pandemic, we have once again witnessed the utility of the 
human organoid system to study infectious diseases. It 
provides an ideal platform to investigate SARS-CoV-2 
with proper cellular heterogeneity, viral susceptibility, and 
appropriate host cell responses. Evidently, human organo-
id systems have also been instrumental in screening and 
validating drug candidates. 
  However, despite all its advantages over conventional 
2D cell line models, the human organoid system still has 
numerous limitations. Organoid cultures are more ex-
pensive, difficult to handle, and still lack many physio-
logical aspects of in vivo models. In the aforementioned 
examples, it is evident that anti-viral responses and cel-
lular tropism are often not consistent among different 
studies. This could be caused by the lack of standardized 
protocols among labs, which may influence the maturation 
status and cellular composition of the organoids. Finally, 
although organoids are comparatively cheaper than animal 
models, performing large-scale drug screening in organo-
ids remains challenging. 
  Despite all these hurdles, organoid models are the best 
available choice for future biomedical studies and drug 
development. Organoids are currently under development 
or in clinical trials to identify drugs not only against 
SARS-CoV-2, but also to treat other diseases. The organo-
id system will continue to be useful in reducing and even-
tually replacing animal experiments. With the massive in 
silico prediction of drug candidates based on predicted tar-
get protein structures and protein-protein interactions, 
more and more drug candidates will need to be tested rap-
idly on an appropriate in vitro system that closely mimics 
human physiology. Therefore, we believe that the value of 
the human organoid system as a suitable preclinical model 
system will continue to increase in the future.
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