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Pyroptosis, a form of inflammatory programmed cell death, is accompanied by inflammation and partic-
ipate in the body’s immune response. The expression of pyroptosis-related genes (PRGs) is associated
with tumor prognosis in ovarian cancer (OC), but it is still unknown whether pyroptosis can affect tumor
immune microenvironment (TME) of OC. Based on 30 PRGs, we comprehensively assessed the pyroptosis
patterns by using PRGscore and correlated them with TME features in 474 OC patients. Finally, we iden-
tified three pyroptosis modification patterns and TME immune characteristics of these patterns were in
response to three immune phenotypes (immune-desert, immune-inflamed, and immune-excluded phe-
notypes). PRGscore can predict patient survival, staging, grading, and immunotherapy efficacy. Low
PRGscore was associated with better survival advantage and increased mutation burden. Low
PRGscore patients showed significantly better therapeutic effects and clinical results in chemotherapy
and immunotherapy. Besides, the capability of PRGscore in predicting prognosis and immunotherapy
sensitivity was further verified in other three tumor cohorts. In conclusion, the comprehensive assess-
ment of OC pyroptosis modifications can help enhancing our understanding of TME immune infiltration
and provide better personalized treatment tactics for OC patients.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

OC is a tumor that grows on the ovary. Its incidence is relatively
high, ranking third after cervical cancer and endometrial carci-
noma [1]. Approximately 70 % of patients are at a late stage at diag-
nosis, and treatment for late OC is poor [2,3]. The standard
treatment protocol for OC is surgery, supplemented by a combina-
tion of platinum and paclitaxel drugs [4,5]. However, the therapeu-
tic effect is not optimistic, and approximate 25 % to 30 % of patients
developed drug resistance [6,7].

Immune checkpoint inhibitors (ICIs), have shown superiority of
treatment effect over conventional therapies in many tumors, par-
ticularly in lung cancer, melanoma and kidney cancer, which dra-
matically improv overall survival for patients [8,9]. For example,
a study found a significant trend towards longer objective remis-
sion rates (ORR) and overall survival in recurrent OC patients
receiving pembrolizumab (PD-1 inhibitor) monotherapy[10]. Nivo-
lumab (PD-1 inhibitor) was effective and safe in the remedy of
patients with recurrent platinum-resistant OC. However, there
was a dose-dependent response of 20 %–33 % when treated with
nivolumab individually or coupled with anti-CTLA-4 antibody
[11]. However, there are still many patients who may not respond
to ICI or are resistant to it [12]. Tumor’s own immune profile lar-
gely influences the immunological efficacy of the patient’s treat-
ment [13,14]. Full understanding of TIME infiltration is of clinical
significance in predicting whether a patient will benefit from
immunotherapy [15].

Pyroptosis, a kind of cellular inflammatory necrosis, refers to
the activation of a variety of caspases mediated by inflammasomes,
which results in shearing and multimerization of various Gasder-
min family members, leading to cell perforation and thus to pro-
grammed cell death [16,17]. Compared with apoptosis,
pyroptosis occurs more rapidly and is followed with the releasing
of many pro-inflammatory factors [18,19]. When pyroptosis
occurs, the cell swells and a protrusion forms on the cell before
it ruptures, after which pores form in the cell membrane, leading
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to the loss of integrity and releasing of the contents, and triggering
an inflammatory reaction [20]. The pyroptosis signaling pathway
can be divided into 2 categories: caspase-1-mediated classical
pathway and caspase-4, 5, and 11- mediated non-classical path-
way [17,21]. Among them, the classical pathway refers to the acti-
vation of caspase-1 by intracellular pattern recognition receptors
(PRRs). On one side, activated caspase-1 cleaves Gasdermin D
(GSDMD) and creates a peptide which contains the nitrogen-
terminal active structural region of GSDMD, which induces cytoso-
lic perforation, cell rupture, content release and an inflammatory
response; alternatively, activated caspase-1 cleaves IL-1b and IL-
18 precursors and produces active IL-1b and IL-18, which are
released extracellularly leading to the accumulation of inflamma-
tory cells and amplification of inflammation [21]. Differently, the
non-classical pathway initiates pyroptosis by activating caspase-
4, 5 and 11 to cleave GSDMD [17]. Inflammasomes, Gasdermin pro-
tein family and pro-inflammatory cytokines are the key effector
molecules of pyroptosis [22]. The inflammasome is a multi-
protein signal transduction complex [23]. When a host-derived
or pathogen-derived danger signal is detected, the inflammasome
will begin to assemble in the cytoplasm to promote the release
of cytokines and the pyroptotic cell death and inflammation [24].
GSDM family contains GSDMA, GSDMB, GSDMC, GSDMD, GSDME
and DFNB59 [25]. In tumor cells, GSDMC can convert the process
of apoptosis into pyroptosis and promote tumor necrosis [26]. Dan-
ger signals released in tumor infiltrating macrophages and den-
dritic cells can also activate GSDMD-mediated pyroptosis of
tumor infiltrating lymphocytes (TILs), thereby enhancing antigen
presentation and functional activity [27]. These confirm that
pyroptosis is critical in tumorigenesis and progression.

Given the available research results, we know that pyroptosis
has a major function in the development of OC and in the anti-
tumor process [28]. However, there are few studies on the specific
functions of pyroptosis in TIME and immunotherapy of OC. There-
fore, we calculated the modification patterns of pyroptosis death
and immune features in OC in an integrated manner and linked
the modification patterns of pyroptosis to immune features. We
defined three different pyroptosis modification modes and found
that they have different immune characteristics, which indicates
that pyroptosis modification is critical in shaping the immune
landscape of individual OC. In addition, a score was established
according to the characteristics of pyroptosis-related genes (PRGs)
to quantitate individual OC patient’s pyroptosis modification pat-
terns. The scoring system can assist clinicians in formulating effi-
cient and personalized immunotherapy strategies.
2. Materials and methods

2.1. Ovarian cancer dataset source and processing

Fig S1 shows the research process of this article. Public RNA-seq
data and full clinical data were searched in the Cancer Genome
Atlas (TCGA) [29], Genotype-Tissue Expression (GTEx, version 7)
[30], and Gene-Expression Omnibus (GEO) [31]. Gene expression
information and corresponding clinicopathological data were
downloaded from TCGA database and gene transcriptome data
were obtained from GTEx database for normal human ovarian tis-
sue [32]. Because of the missing of normal tumor in TCGA-OC data-
set, we treated the gene expression in GTEx as the normal group,
and applied the R package limma and sva to remove the batch
effect between the TCGA and GETx datasets and define the PRGs
[33,34]. Totally, we obtained 88 normal tissues and 379 tumor tis-
sues. Considering the similarity of clinical information between
GSE9891 (285 OC patients) and TCGA-OC, we removed the batch
effect using the R package sva and merged the clinical information.
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Then, copy number variation (CNV) from TCGA-OC was down-
loaded for CNV analysis. Somatic mutation data were utilized to
compute the tumor mutational burden (TMB). R (version 4.1.0)
was utilized to process and analyze the data.

2.2. Selection and differential expression analysis of PRGs

We extracted 33 PRGs from prior reviews(Table S1) [28]. We
then used the limma package to assess the difference in PRGs
expression between OC and non-cancerous samples. Subsequently,
heat maps and violin graphs were created to show the expression
of the differentially expressed PRGs between the two groups. Heat
maps of variant genes were created using the ’pheatmap’ package
[35].

2.3. Data collection of somatic variants

Considering the potential of TMB in forecasting the response to
immunotherapy, we carried out a stratified survival analysis that
evaluated the connection between TMB and PRGs score. The maf-
tools package [36] was utilized to profile mutations in PRGs score
group and TCGA cohort. We selected top 20 genes that had the
highest probability to be mutated.

2.4. Unsupervised clustering for PRGs

After merging TCGA and GSE9891 datasets, we acquired 30
PRGs. First, unsupervised cluster analysis was conducted using
ConsensuClusterPlus package to identify PRG patterns among sam-
ples according to the expression of 30 PRGs [37]. The samples were
divided into clusters with distinct biological features with a con-
sensus clustering algorithm. The parameters were set as
‘‘clusterAlg=‘‘km”, distance=‘‘euclidean”, reps = 50, pItem = 0.8,
pFeature = 1, maxK = 9” while conducting the
‘‘ConsensuClusterPlus” package. We fixed the number of resamples
to 1000 for robustness of clustering.

2.5. Gene set variation analysis (GSVA) and functional annotation

For the purpose of exploring the biological functions between
the groups defined by the expression patterns of the PRGs model,
we ran a GSVA enrichment analysis with the GSVA package. GSVA
is an unsupervised methodology for assessing variability in path-
ways and biological processes based on non-parametric assump-
tions [38]. The ‘‘c2.cp.kegg.v6.2.-symbol” gene set obtained from
MSigDB database was utilized to run GSVA analysis. The clus-
terProfiler package was employed to functionally annotate pyrop-
tosis genes with a false discovery rate (FDR) cut-off of < 0.05 [39].

2.6. Immune cell infiltration estimation by ssGSEA

We used the ssGSEA algorithm to calculate the relative abun-
dance per cell infiltration [40]. Gene sets labeling each TME-
infiltrating immune cell category were gained from the study, in
which multiple human immune cell subtypes were archived. The
enrichment fraction computed by ssGSEA analysis was applied to
express the relative abundance of TME-infiltrated cells in individ-
ual sample.

2.7. Selection of differentially expressed genes (DEGs) between PRGs
distinct subtypes

We categorized patients into three different PRG patterns
according to expression of 30 PRGs. The limma package was used
to identify the DEGs between different modification modes [33].
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The criterion for identifying a significant DEG was set at an
adjusted P-value < 0.001.

2.8. Construction of PRGscore

To measure PRGs expression patterns for each sample, we pro-
posed a score, referred to PRGscore, to predict the recurrence of OC.
DEGs obtained from various PRGs clusters were normalized and
overlapping genes were selected. Unsupervised clustering methods
were applied to analyze overlapping DEGs and to cluster patients
into subgroups for more in-depth analysis. Consensus clustering
algorithms were used to delineate how many gene clusters there
were and their stability. We then carried out a prognostic analysis
for every gene in the trait using a univariate Cox regression model.
Genes with a remarkable prediction were retrieved for later analy-
sis. We used principal component analysis (PCA) to build PRGs sig-
nature, termed as PRGscore [41].

PRGscore ¼ PC1þ PC2þ � � � þ PCp

where p is the number of PRGs.

2.9. Quantifying predictors of immune response

Immunophenoscore (IPS) is a determinant of response to anti-
CTLA-4 (PD-1) agents and serves to quantify the immunogenicity
of tumors [42] which was derived from The Cancer Immunome
Atlas (TCIA). ESTIMATE algorithm estimates stromal and immune
cells in tumors and infers tumor purity [43]. Tumor tissue with rich
immune cell infiltration represents a high level of immune score
and a low level of tumor purity.

2.10. Prediction of chemotherapeutic response

For examining the association between PRGscore and response
to chemotherapy, we used two first-line chemotherapeutics. Pub-
licly available pharmacogenomic database Cancer Drug Sensitivity
Genomics (GDSC) was used to forecast the response of selected
drugs to chemotherapy for each OC patient [44]. The half maxi-
mum inhibitory concentration (IC50) for patients with OC in differ-
ent scoring groups was estimated by using pRRophetic package
[45].

2.11. Verify the performance of PRGscore in predicting patient
responsiveness to ICIs

Further validation of the relationship between PRGscore and
immunotherapy efficacy was conducted in a relatively complete
anti-PD1/PD-L1 treatment cohort (imvigor210) which could be
acquired through the R package ‘‘IMvigor210CoreBiologies” [46].
The clinical information of the cohort is shown in Table S2. Sam-
ples that lacked validity data were removed, and 298 samples were
eventually enrolled. The information of TCGA-UCEC and TCGA-
CESC could be downloaded from the online website (https://por-
tal.gdc.cancer.gov/).

2.12. Statistical analyses

Kruskal-Wallis test was utilized to compare the gene expression
between groups, and Wilcoxon test was applied for two group
comparisons. Kaplan-Meier plotters were applied to plot survival
curves. The log-rank test was applied to assess statistical differ-
ences of TMB between groups. Survcutpoint method stratified
the sample into high and low scoring groups, according to the
median risk score. A chi-square test was applied to test the rela-
tionship between PRGscore and clinical features. We used Spear-
man correlation coefficients to estimate the correlation between
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immune cells and PRGs scores. The CNV landscape of PRG in chro-
mosomes was mapped by using the RCirco package [47]. All statis-
tical p value were two side, with p < 0.05 indicating a difference of
statistical significance.
3. Result

3.1. Landscape of somatic gene mutation and PRGs expression of in OC

We first analyzed the expression patterns of 33 PRGs between
379 OC (TCGA-OC dataset) and 88 normal tissues (GTEx dataset)
between GTEx and TCGA-OC individuals. Interestingly, the expres-
sion of majority of PRGs, such as CASP5, CASP9, GSDMB and GSDMD,
etc. were markedly decreased in OC patients. Conversely, several
PRGs including AIM2, CASP3, CASP6 and GSDMA etc. was signifi-
cantly higher expressed in OC patients (Fig. 1a). There were two
types of pyroptosis: canonical and non-canonical pyroptosis. The
core genes in canonical pathway include NLRP1, NLRP3, NLRC4,
AIM2, CASP1, GSDMD, and PYCARD, and those in non-canonical
pathway include GSDME, CASP3, CASP4, CASP5, CASP11, CASP8,
TNF, GSDMC, GZMB, GSDMB, and GZMA. The expression differences
of these core genes between patients and controls were specifically
presented in Fig S2, showing that most of these core genes were
downregulated in tumor tissues compared to those in normal tis-
sues. On the other hand, using log-rank test, we found most of
them were protective and adverse prognostic factors, such as
NLRP2 and TIRAP (P < 0.001, Fig S3). Furthermore, Correlation heat-
map was used to elucidate the relevance of the 33 PRGs to each
other and showed that NLRP3 and PLCG1may be hub genes of PRGs
(Fig. 1b). Interestingly, NLRP3 was positively correlated with 24
genes, and its expression was highly positively correlated with
NLRC4, IL1B, CASP1 and others. While PLCG1 were negatively
related with 14 genes, especially CASP1, PYCARD and IL18
(Fig. 1b). The expressions of NLRP3 and PLCG1 were significantly
increased and decreased in OC patients, respectively (Fig. 1a),
implying that these might be critical genes in the PRGs that affects
tumorigenesis and development.

Furthermore, we concluded the occurrence of CNV in 33 PRGs.
Fig. 1c showed widespread CNV alterations in 33 PRGs were mostly
copy number deletions, while GSDMC, GSDMD, PRKACA and NLRP3
had extensive CNV amplification frequencies. The position of the
altered CNV of PRGs on chromosome was illustrated in Fig. 1d.
According to expressions of 33 PRGs, we fully differentiated
between OC and normal tissue (Fig. 1e). With the aim of testing
the association between above genetic variants and linked to PRG
expression in OC patients, we examined PRG expression levels and
observed that CNV alterations may be a major factor in the pertur-
bation of PRGs expression. Expressions of CNV-deficient PRGs were
markedly lower in tumor tissues (e.g. ELANE and CASP9) compared
to normal tissues and the opposite was also true (e.g. GSDMC and
NLRP3) (Fig. 1a, c). The above analysis displayed considerable
heterogeneity in the genetics and expressions of PRGs between
normal and OC tissues, demonstrating that PRGs expression levels
may be linked to the onset and progression of OC.
3.2. Immune characteristics in distinct PRGs patterns

After integrating TCGA-OC and GSE9891 datasets, we character-
ized patients with a PRG expression pattern according to the
expression of 30 PRGs and ultimately defined three PRclusters by
using unsupervised clustering, with 259 patients included in pat-
tern A, 263 patients in pattern B and 139 patients in pattern C
(Fig. 2a and Fig. S4a-b). After that, we grouped samples in GTEx
into pattern D. The K-M curve indicated a particular survival disad-
vantage in PRcluster B pattern (P = 0.035, Fig. 2b). Moreover, we
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Fig. 1. Landscape of genetic and expression variation of pyroptosis genes in ovarian cancera Differential expression heatmap of pyroptosis genes in OC and normal tissues
from TCGA. Tumor, red; Normal, blue. The upper and lower ends of the boxes represented interquartile range of values (*P < 0.05; **P < 0.01; ***P < 0.001). b Connection
heatmap of 33 PRGs. c The CNV variation frequency of pyroptosis regulators. d The location of CNV alteration of pyroptosis regulators on 23 chromosomes using TCGA cohort.
e Boxplot of pyroptosis genes expression in OC and normal samples. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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ran GSVA enrichment analysis to discover the differences between
PRclusters in terms of all gene expression levels. PRcluster-A was
heavily enriched in pathways related to immune activation, such
as the activation of cytokine–cytokine receptor, interaction and
chemokine signaling pathway, TCR signaling pathway and BCR sig-
naling pathway. At the same time, PRcluster-C displayed a rich set
of matrix-activated pathways, like cell adhesion and Jak Stat sig-
naling pathways. In contrast, PRcluster-B was strongly involved
in the biological process of immunosuppression (Fig. 2c). As
healthy control, the biological processes which PRcluster-D mainly
involved were obviously different with other clusters (Fig S5). As
expect, subsequent result of TME cell infiltration indicated the rank
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of immune cell infiltration of three cluster was PRcluster-C,
PRcluster-A and PRcluster-B (Fig. 2d). The rank of rich was consis-
tent to the survival time of three PRclusters (Fig. 2b and 2d). More-
over, we used the ESTIMATE algorithm to measure immune cell
infiltration and tumor purity in three PRG patterns, and studied
the biological functions of three clusters in immunological terms.
First, PRcluster-C showed the highest immune and stromal scores,
followed by PRcluster-A, B (Fig. 2e, f, g), demonstrating the lowest
tumor purity in cluster C.

Considering that immune checkpoints can serve as biomarkers
for predicting treatment response to ICIs, we compared PD-L1,
PD-L2 and CTLA4 expression levels in different PRGs clusters and



Fig. 2. Pyroptosis modification patterns in OC and biological and immune characteristics of pyroptosis subtypesa Differences in clinicopathologic features and expression
levels of PRGs between the three PRGs clusters. b Survival analyses for the pyroptosis clusters, including 184 cases in PRcluster-A, 182 cases in PRcluster-B, and 108 cases in
PRcluster-C. c GSVA enrichment analysis indicating the activation states of biological pathways in distinct pyroptosis clusters. The heatmap was applied to visualize these
biological pathways. d The abundance of each TME infiltrating cell in three pyroptosis modification patterns. The box plot indicated the difference of immune score(e),stromal
score(f) and estimate score (g) between pyroptosis modification patterns. Difference of PD-L1(h),CTLA-4(i) and PD-L2(j) expression among distinct pyroptosis clusters.
(Kruskal-Wallis test).
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observed a markable expression increase in these genes in cluster-
C (Fig. 2h, i, j). We proved that the three PRGs patterns had varied
immune infiltration characteristics. In addition, we further
explored the characteristics of these PRGs subtypes in different
clinical information. At the same time, the immune cell infiltration,
TME score and immune checkpoints expression of health control
were significantly different from the three PRGs patterns. Similar
to the previous study, the tumor staging and cancer recurrence rate
of cluster B samples were higher than those in other two clusters
(Fig. S4c).
3.3. Generation of PRGs gene clusters and functional annotation

For the purpose of exploring the underlying biological behavior
of individual PRGs patterns, we selected 1,024 DEGs using limma
package (Fig. 3a). Univariate Cox regression analysis was per-
formed to assess the prognosis of DEGs linked to PRGs subtypes.
The biological processes obtained from GO and KEGG enrichment
were summarized in Fig. S4d. Amazingly, these genes exhibited
substantial enrichment for biological processes related to immu-
nity, reaffirming that PRGs played a non-negligible role in TME
immune regulation. 67 PRGs phenotype-related genes with signif-
icant prognosis were isolated and used to further characterize
PRGs gene signature. We then carried out an unsupervised cluster
analysis of 67 genes to categorize patients into four subtypes
(Fig. S4e). Patients in gene cluster B have the worst prognostic
results (Fig. 3b and S3f). PRGs were remarkably differentially
expressed across the four PRGs gene clusters. Generally speaking,
the expression profiles of PRGs were the highest in gene cluster
C, while the lowest in gene cluster D(Fig. 3c).

Similarly, we applied the ssGESA method to evaluate the
immune infiltration in the four gene clusters. The results showed
that there were differences in the immune infiltration conditions
between the four clusters. The rich levels of immune cell infiltra-
tion were gene cluster-C, B, A and D (Fig. 3d). ESTIMATE algorithm
results showed that gene cluster C contained the most immune
and stromal cells, that is, the lowest tumor purity, followed by
gene cluster B, A and D (Fig. 3e). This was consistent with the dif-
ference in immune cell infiltration. Moreover, we compared four
immune checkpoints expression levels in different gene clusters,
and observed that these genes expression levels in gene cluster
subtypes were also C, B, A, and D (Fig. 3f). From the above analysis,
we confirmed that the four gene clusters did have different
immune infiltration characteristics.
3.4. Construction of PRGscore and its TME features and biological
processes

Given the individual heterogeneity of PRGs, according to 67
DEGs expression, a scoring model was built to quantitate the PRGs
for each OC patient. Alluvial plots are applied to monitor changes
in the attributes of single patients (Fig. 4a). Kruskal-Wallis test
revealed marked discrepancies in PRGs scores between PRGs clus-
ters and gene clusters (Fig. 4b). More importantly, PRGs cluster B
displayed dramatically higher PRGs scores, in contrast to PRGs
cluster C, implying that low PRGscore would be strongly correlated
with immune activation-related features, while high PRGscore may
be correlated with stromal activation-related signatures. More-
over, PRGs gene cluster D showed a significant increase in
PRGscores in relation to the other clusters and PRGs gene cluster
C showed the lowest score. These results highly emphasized that
low PRGscores were clearly linked to immune activation, while
high PRGscores were linked to stromal activation. PRGscore
allowed a better assessment of pyroptosis pattern of single tumors
and better characterization of TME cellular infiltration.
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Subsequently, a discussion of the PRG scores of OC patients was
conducted to determine their prognostic value. Patients were cat-
egorized into high or low PRGscore groups and best cut-off value
was identified by log-rank test. Patients with high PRGs scores
demonstrated poor outcome (Fig. 4c). Furthermore, the hierarchi-
cal analysis of different clinical variables was performed on
PRGscore. We first analyzed the distribution of PRGscore across
levels of these clinical factors. As shown in Fig. S6a, PRGscore
was significantly higher in patients with advanced cancer and
recurrence than other patients. The PRGscore of patients receiving
chemotherapy was also likely to be higher than that of patients
receiving other treatments, although there was no statistical differ-
ence between the two. Patients with higher PRGscore were more
likely to be in advanced stage, experiencing recurrence and receiv-
ing chemotherapy. Subsequently, through log-rank test, we found
the PRGscore was significant associated with survival time in the
smaller age, grade G3, stage III and IV and chemotherapy
(P < 0.05, Fig. S6b).

After determining the prognostic value of PRGscore, we
assessed the importance of PRGscore in immunology. First, we cal-
culated the relevance of 22 immune cell types to the PRGscore with
data from the CIBERSORT analysis and found that plasma cells,
resting DCs, M1 macrophages, resting mast cells, neutrophils, cd
T cells, activated CD4 memory T cells and CD8 + T cells decreased
with the increase of PRGscore, and the two were negatively corre-
lated to a certain degree. In contrast, memory B cells, dendritic
cells, activated mast cells, activated NK cells and resting
CD4 + memory T cells had faint positive correlation with PRGscore
(Fig. S7a). Subsequently, we evaluated the degree of tumor
immune infiltration in high and low PRGscore groups with ssGSEA.
Fig. 4D-E showed that apart from CD56dim NK cells and type 2 T
helper cells, the infiltration of other immune cells was much
greater in low PRGscore group than in high group and was nega-
tively correlated with PRGscore (P < 0.001). Similarly, ESTIMATE
algorithm results proved that there were more infiltrating mes-
enchymal and immune cells in tumor tissue in low PRGscore
group, which also meant decreased in tumor purity (P < 0.001,
Fig. 4f). GSEA revealed that the low PRGscore group could enrich
several immune and matrix activation pathways, including BCR
pathway and TCR pathway, chemokine signaling pathway and
cytokine-cytokine receptor interaction signaling pathway. These
studies also explained from the side why the low PRGscore group
had a better prognosis (Fig. 4g).

3.5. Correlation between PRGscore and tumor burden mutation

The above results indirectly indicated that the difference in
pyroptosis in tumors may be the key factor leading to different
clinical responses of patients to immunotherapy. Research
revealed a positive relation between TMB and tumor stage, grade
and immune infiltrating cells [48]. Given the clinical importance
of TMB, we sought to exploit the intrinsic connections that existed
within TMB and PRGscore to elucidate the true markers of these
two groups. First, we applied the maftools package to analyze the
differences in the distribution of somatic mutations between low
PRGscore and high PRGscore. As shown in Fig. 5A, the somatic
mutation load in the two subgroups remained basically the same.
TMB quantitative analysis confirmed that low PRGscore tumors
were significantly correlated with higher TMB (P = 0.022, Fig. 5b).
However, there was no statistical correlation between PRGscore
and TMB (Fig. S7b).

Subsequently, we noticed that high TMB patients had superior
overall survival (p = 0.016; Fig. 5c). Given the prognostic con-
traindications of TMB and PRGscore, we further explored the col-
laborative effectiveness of both scores in OC prediction
stratification. Stratified analysis showed that TMB did not influence



Fig. 3. Pyroptosis gene clusters and biological features of pyroptosis gene subgroupsa Venn plot performed different pyroptosis related genes between three PRGS clusters. b
Kaplan-Meier curves shows pyroptosis gene types were correlated with overall survival of OC patients (P = 0.001, Log-rank test). c The expression of 30 PRGs in four gene
clusters. d The abundance of each TME infiltrating cell. e The box plot shows difference in TME score between the gene clusters. f Difference of CTLA-4, PD1, PD-L1 and PD-L2
expression among four PRGs clusters.

J. Liu, C. Chen, R. Geng et al. Computational and Structural Biotechnology Journal 20 (2022) 5440–5452
prediction according to PRGscore, and PRGscore subtypes showed
dramatic differences in prognosis among the two TMB subgroups
(P = 0.015, Fig. 5d). For genes with specific changes in OC, such
as MUC16 and TP53, the survival rate of the MUC16 mutant
PRGscore group was noticeably poorer than that of wild type
(P = 0.027, Fig. 5e), while the survival rate of the PRGscore group
of the TP53 wild type was lower (P = 0.028, Fig. 5f). This also
showed that the predictive ability of PRGscore was not interfered
by gene mutations. Regardless of whether mutations occur or
not, the high PRGscore group always showed poor overall survival
(Fig. 5e and f). The above results proved that PRGscore can be
regarded as a predictor independent of tumor mutations. These
results will offer novel perspectives on the mechanisms of tumor
somatic mutation and pyroptosis in the TMB, and indirectly con-
firm the value of PRGscore in predicting the outcome of
immunotherapy.
3.6. The role of pyroptosis pattern in the chemotherapy and
immunotherapy treatment of OC

Currently, bleomycin plus etoposide plus cisplatin (BEP), pacli-
taxel plus platinum, and vinblastine, etc. are generally used as
chemotherapy drugs for OC [49,50,51]. To this end, we explored
whether the modified characteristics of pyroptosis can predict
the patients’ response to these chemotherapeutic drugs. As can
be seen from Fig. 6a, high PRGscore group exhibited significant
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lower therapeutic sensitivity to the three drugs bleomycin, vin-
blastine and gemcitabine (P � 0.0011), while they were more sen-
sitive to etoposide (P = 0.034). For cisplatin and paclitaxel, no
statistical differences in drug sensitivity were observed between
two groups (Fig. S7c). These conclusions were sufficient to show
that PRGscore helped predict the patient’s response to
chemotherapy.

Then, we focused our analysis on the expression levels of
immune checkpoints in high and low PRGscore subgroups and
the correlation among them. Fig. 6b revealed that all immune
checkpoint expression was much greater in low group versus high
subgroup (P < 0.001) and that the immune checkpoints showed a
highly significant negative correlation with PRGscore (P < 0.001,
Fig. 6c). The immune checkpoint expression of health control group
which marked as normal in Fig. 6b was different with OC patient
groups. We also studied the expression of a number of immune
molecules in PRGscore subgroups, such as TNF, IFNG, CD8A and
CXCL9. Except for TBX2, other genes showing greater expression
in low PRGscore group (Fig. 6d) might be vital in the higher surviv-
ability of low PRGscore group (Fig. 4c).

Subsequently, we used IPS scores to analyze the responsiveness
of different subgroups to immunotherapy. IPS score is a determi-
nant of tumor immunogenicity and can be used as an excellent
predictor of anti-PD-1/CTLA-4 antibody response [42] which can
separately evaluate the possibilities of patients receiving different
ICIs treatments. From Fig. 6e, it can be seen that the score of the



Fig. 4. Establishment of pyroptosis signaturesa Alluvial plot of the changes of PRclusters, gene cluster, PRGscore and survival status. b Distinctions in PRGscore among three
PRclusters and four PRG gene cluster. The Kruskal Wallis test was applied to compare the statistical difference between the clusters (P < 0.001). c Survival analyses for low and
high PRGscore patient groups in OC cohort. d The abundance of each infiltrating cell in PRGscore groups. e Correlations between PRGscore and immune cells. f The box plot
showed difference in TME score between PRGscore subgroups. g Enrichment plots indicates that immune related pathway enriched in the low PRGscore subgroup.
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low PRGscore group increased significantly (P � 0.0043). This indi-
cated that the low PRGscore group showed higher IPS and
appeared to have more immunogenic phenotypes. These results
above implied that the quantification of pyroptosis may be applied
as a hopeful and stable factor for the evaluation of chemotherapy
response and immunotherapy.
3.7. Validation of PRGscore performance in predicting prognosis and
immunotherapy response

New TCGA-UCEC and TCGA-CESC pyroptosis models and calcu-
lation of PRGscore utilizing the PCA analysis data of 67 genes
acquired from the earlier analysis. Fig. 7a and b show the prognos-
tic efficacy of PRGscore in predicting overall survival and disease-
free survival (DFS) of CESC and UCEC, respectively. In CESC, low
PRGscore likely caused favorable prognosis, which was in line with
OC results. However, in UCSC, PRGscore cannot accurately predict
patient survival. This indicated that pyroptosis was also likely to
be involved in CESC development.
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In addition, we further validated the relationship between
PRGscore and immunotherapy efficacy using the imvigor210-
BLCA cohort. First, as above, we calculated PRGscore in the imvig-
or210 cohort and divided the sample into high and low PRGscore
group. Fig. 7c showed that the prognosis was significantly different
among two groups, with low PRGscore group patients having a bet-
ter prognosis. This also provided initial indications that low
PRGscore patients who received immunotherapy had better out-
comes than those with high PRGscore. Next, we analyzed the rela-
tionship between PRGscore and IC and TC immune types (Fig. 7d, e,
f). At last, we analyzed the relationship between PRGscore, IC and
TC immune types. We found that PRGscore was higher in IC0 than
in IC1 and IC2, and PRGscore was higher in TC2 than in the other
two groups, and PRGscore was higher in immune-desert type than
in immune-inflamed and immune-excluded types (P < 0.001).
These findings again suggested that PRGscore could be applied to
predicting immunotherapy efficacy.



Fig. 5. The relationships between the PRGscore and Somatic Variantsa Mutation frequencies of PRGs in 131 and 107 patients with high and low PRGscore, respectively, from
the TCGA cohort. b TMB difference in PRGscore subgroups. P = 0.022. c Kaplan-Meier curves for TMB groups, P = 0.016. d Kaplan-Meier curves for patients stratified by both
TMB and PRGscores, P = 0.015. e Kaplan-Meier curves for patients stratified by both MUC16 and PRGscores, P = 0.027. f Kaplan-Meier curves for patients stratified by both
TP53 and PRGscores, P = 0.028.
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4. Discussion

Pyroptosis, an important immune response of the organism, is
essential in combating infectious and pathogenic danger signals.
It is broadly involved in the oncogenesis and progression of
tumors, infection, metabolic diseases, neurological related disor-
ders and atherosclerotic diseases [21,52,53]. Most of the previous
studies focused on a single regulatory factor [54,55], so there is still
a lack of a thorough knowledge of TME infiltration features medi-
ated by multiple pyroptosis genes. Recently, studies have shown
that pyroptosis can accurately predict the prognosis of OC [28].
In this work, we emphasized the contribution of pyroptosis in cell
infiltration to improve the comprehension of anti-tumor immune,
and tried to propose nichetargeting treatment options.
5448
Based on 30 PRGs, we identified three different pyroptosis mod-
ification clusters which had different characteristics of TME cell
infiltration. Combined with immune cell infiltration spectrum,
we notice that cluster C is in consist with the immune-inflamed
phenotype, which is marked by immune activation and massive
immune cell infiltration. Cluster A belongs to immune-excluded
type, which is marked by matrix activation and weakened immune
infiltration. Although there is also massive immune cell infiltration
in this type, most cells are in stroma surrounding the tumor cell
nest, rather than penetrating parenchyma. This restricts immune
cells from entering the tumor to be effective. The cluster B belongs
to the immune-desert type which is correlated with immune resis-
tance and absence of T cell activation [14]. The immune infection
level of the healthy control group is significantly different from
that of the case groups, which indicates that the patter is truly



Fig. 6. Pyroptosis modification patterns in the therapy of OCa Box diagram indicating the sensitivity of patients to chemotherapy drugs,like bleomycin, vinblastine,
gemcitabine and etoposide. b Different expression of CTLA-4, PD1, PD-L1 and PD-L2 among PRGscore subgroups together with normal group. c The correlations between
PRGscore and immune checkpoints. d Immune-relevant genes expressed in PRGscore subgroups. e The difference of IPS between different PRGscore subgroups.
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Fig. 7. Validation of prognostic performance of PRGscore in UCEC and CESCa Kaplan-Meier curves predict the overall survival rate of PRGcsore in CESC and UCEC patients. b
Kaplan-Meier curves predict Disease Free Survival rate of PRGcsore in CESC and UCEC patients. c Kaplan–Meier plot of overall survival by PRGscore groups for patients in the
IMvigor210 cohort. (d-e) The difference of PRGscore among PD-L1 expression of different IC (d) and TC (e) in the IMvigor210 cohort. Tumor tissue samples were scored
through immunohistochemistry (IHC) for PDL1 expression on tumor-infiltrating immune cells (IC), which included macrophages, dendritic cells and lymphocytes. Specimens
were scored as IHC IC0, IC1, IC2, or IC3 if < 1 %, �1% but < 5 %, �5% but < 10 %, or � 10 % of IC were PD-L1 positive, respectively. An exploratory analysis of PD-L1 expression on
tumor cells (TC) was conducted. Specimens were scored as IHC TC0, TC1, TC2, or TC3 if < 1 %, �1% but < 5 %, �5% but < 50 %, or � 50 % of TC were PD-L1 positive, respectively. f
Difference of PRGcsore among three immune subtypes.
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working for patients but different from health controls. When
combined with the characteristics of immune cell infiltration it
not only proved the effectiveness of the immunophenotypic classi-
fication of pyroptosis modification patterns, but also helped to
improve the future application of precise focusing and personal-
ized treatment for OC. In addition, in this study, the genes that dif-
fer in the mRNA transcriptome among different pyroptosis
modification patterns were considered to be characteristic pyrop-
tosis related genes. Four gene clusters were identified based on dif-
ferentially expressed genes which were related to matrix and
immune activation. This illustrated the vital influence of pyroptosis
modification on constructing a diverse TME landscape. An integra-
tive analysis of the pattern of pyroptosis modifications could con-
tribute to a further understanding of the characteristics of TME cell
infiltration.

In view of the individual differences in pyroptosis modification,
we applied a score system to evaluated pyroptosis modification
condition of OC patients, called PRGscore. PRG cluster B showed
the highest PRGscore and the worst clinical result, while PRG clus-
ter C showed the opposite results. The results have also been
proved in the pyroptosis gene cluster. This indicates that PRGscore
is a reliable predictor for OC, and can be employed to evaluate
tumor pyroptosis modification conditions.

Although immune checkpoint inhibitors have greatly improved
the treatment and prognostic characteristics of many cancers, OC
included [11], there are distinction in the effect of immunotherapy
on patients. Therefore, looking for predictors that forecasting the
outcome of immunotherapy has clinical significance. We confirm
PRGscore predictive value in anti-PD-1/CTLA-4 immunotherapy
cohorts, and found that patients with low PRGscore were more
likely to receive ICI treatment. In addition, previous findings indi-
cated that the existence of massive CD8 + T cell infiltrates and
non-synonymous mutations promote response to anti-PD-1 ther-
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apy. We found a much higher degree of CD8 + T cell infiltration
and TMB in low PRGscore group compared to high group, which
also explained the good treatment effect of the low PRGscore
group. Therefore, we proved that the pyroptosis modification mode
played an important role in shaping different immune TME land-
scapes, which means that pyroptosis modification will affect the
ICI treatment effect.

Chemotherapy is one of the primary treatments for OC [56]. The
IC50 values of several commonly used chemotherapeutic drugs
were measured and compared between the high- and low-risk
subgroup, displaying that low PRGscore group exhibited significant
therapeutic sensitivity to the three drugs bleomycin, vinblastine
and gemcitabine, while patients in the high PRGscore group were
more sensitive to etoposide. Therefore, the risk score could also
be used to predict the effect of chemotherapeutic drugs on OC
patients. Meanwhile, patients with high PRGscore had poor prog-
nosis and poorImmunotherapeutic response. Combined therapy
might be an effective treatment for OV patients, which needs fur-
ther discussion. Doctors can choose the more effective treatment
of every patient according to the PRGscore.

PRGscore was obtained by weighting some genes, a large part of
which are immune checkpoints. The gene transcription level of
IDO1 is closely related to T cell infiltration, and studies have shown
that IDO1 expression is associated with poor prognosis in OC
patients [57]. In addition to acting as a checkpoint of anti-cancer
immunity, CD274 can be degraded through proteasome or lyso-
some through multiple pathways to enhanc the immunotherapeu-
tic effect of cancer [58]. HAVCR2 is a key checkpoint molecule that
regulates the inflammatory response which can induce T cell fail-
ure [59,60]. PDCD1 encodes cell surface facial mask proteins from
the immunoglobulin superfamily, and its expression is related to a
large number of tumor infiltrating lymphocytes in various tumors
[61].CTLA4 is a target for monoclonal antibody-based drugs that
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enhance anticancer immunity [62]. LAG3 is also an immunothera-
peutic target, [63] it can inhibits the activation of its host cells and
generally promotes inhibitory immune response [64]. CD8a + is
mainly expressed on effector T cells. Previous studies have shown
that drugs targeting immune populations may have pleiotropic
effects on T cell dynamics and induce immune cells to enter tumors
[65]. CXCL9, CXCL10 are involved in regulating immune cell migra-
tion, differentiation and activation, leading to tumor suppression
[66]. IFNGmediates immune checkpoint expression, and interferon
c encoded by IFNG gene is one of the common cytokines known to
affect immune related diseases [67]. TNF controls the development
of the immune system, cell survival signaling pathways, prolifera-
tion, and regulates metabolic processes [68]. GZMA and GZMB
belong to cytotoxic genes, and play important roles in cell death,
cytokine processing and inflammation [69,70]. As a clear marker
of the killing ability of immune cells, PRF1 is involved in the estab-
lishment of immune homeostasis, the elimination of pathogens
and the monitoring of tumors [71]. BX2 is an anti-aging T-box fam-
ily transcriptional repressor that has been implicated in embryonic
development and cancer [72].

In clinical applications, PRGscore can be applied to evaluate
individual patients’ pyroptosis modification patterns and corre-
sponding immune cell infiltration characteristics to promote the
determination of immunophenotypes and direct effective medica-
tions. In addition, PRGscore can predict the effectiveness of adju-
vant chemotherapy and immunotherapy. Therefore, we are here
to provide clinicians with new ideas for immuno-oncology and
OC individualized immunotherapy. However, our research has
some limitations. Owing to the restricted availability of clinical
annotation in public datasets, the clinical pathology variables
detected in this work were not complete. When the PRGscore fea-
ture is used as a prognostic biomarker, there may be potential
biases. Further clinical trials will be performed in future work to
verify the outcomes.

5. Conclusion

In summary, this work examined the modifying effects of
pyroptosis modification in the OC immune microenvironment
and cell infiltration. Evaluating the modification pattern of pyrop-
tosis in a single OC patient can help us fully understand the tumor
immune condition and offer more effective treatments for OC
patients.
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