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a b s t r a c t

Quantifying and analyzing excess mortality in crises such as the ongoing COVID-19 pandemic is crucial
for policymakers. Traditional measures fail to take into account differences in the level, long-term
secular trends, and seasonal patterns in all-cause mortality across countries and regions. This paper
develops and empirically investigates the forecasting performance of a novel, flexible and dynamic
ensemble learning with a model selection strategy (DELMS) for the seasonal time series forecasting of
monthly respiratory disease death data across a pool of 61 heterogeneous countries. The strategy is
based on a Bayesian model averaging (BMA) of heterogeneous time series methods involving both the
selection of the subset of best forecasters (model confidence set), the identification of the best holdout
period for each contributed model, and the determination of optimal weights using out-of-sample
predictive accuracy. A model selection strategy is also developed to remove the outlier models and to
combine the models with reasonable accuracy in the ensemble. The empirical outcomes of this large
set of experiments show that the accuracy of the BMA approach is significantly improved with DELMS
when selecting a flexible and dynamic holdout period and removing the outlier models. Additionally,
the forecasts of respiratory disease deaths for each country are highly accurate and exhibit a high
correlation (94%) with COVID-19 deaths in 2020.
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. Introduction

In the time series forecasting literature, two techniques com-
ete: forecast model selection [1] and forecast model combina-
ion [2]. The traditional approach to forecasting seasonal and
on-seasonal time series is to select a single best model from
pool of candidate models based on certain criteria or em-
loying a given technique [3], potentially neglecting model risk.
he ensemble prediction method is widely considered a promis-
ng strategy and it has been used with considerable success in
esearch and industry thanks to the availability of a wide vari-
ty of individual models. Since Bates and Granger’s [4] seminal
tudy, a growing number of linear and non-linear univariate and
ultivariate times series methods [5,6] and statistical machine

earning techniques [7–9] have been proposed to increase short-
nd long-term predictive accuracy in relation to a wide range
f problems, including stochastic population – mortality, fertility,
nd net migration – forecasting [10], epidemiological and excess
ortality forecasting [11], meteorology [5], and finance [12,13],
mong others. Indeed, several comprehensive theoretical and
mpirical studies have confirmed the superior predictive perfor-
ance of ensemble methods exploiting a variety of approaches,

ncluding stacking and blending to improve predictions, bagging
o decrease variance, boosting to decrease bias [14,15] and the
ayesian model averaging (BMA) [16–18]. When adopting this
mpirical strategy, choices have to be made as to which models
o include in the combined pool and as regards the contribution
weight) of each model to the final prediction. Here, a signifi-
ant body of literature has examined optimal model combination
eights [19,20], by focusing on the selection of optimal combina-
ion schemes and weights [21,22], assigning equal weights to the
et of superior models [23], or selecting a subset of best models
rom among the set of candidates (model confidence set) using
dynamic trimming scheme and considering the model’s out-of-
ample forecasting performance in the validation period [24,25].
imilarly, to cope with concept drift, memory, change detec-
ion, learning, and loss estimation, adaptive algorithms have been
roposed [26].
However, experiments are usually conducted with a holdout

et so as to pick pools of models manually that perform best for
given series type [27]. This is often motivated by a lack of com-
utational power, as well as by limitations of time for checking
nd allocating one specific holdout from a holdout set to each
ndividual model, and preferring, therefore, to consider a fixed
oldout for all models and, by so doing, facilitating their combina-
ion in an ensemble model. In fact, different holdouts for different
odels results in different lengths for each model, which means

he combination of these models of different lengths becomes
challenge. However, ignoring the different holdouts for each
odel reduces adaptability and undermines their generalization.
This paper proposes a dynamic ensemble learning strategy

DELMS) in different layers for panel time series that not only
vercomes the limitations of single-model based methods, but
lso addresses those of new ensemble models with fixed holdout
ets and fixed thresholds for model selection. The strategy com-
ines twelve models, including the models suggested by the M4
ompetition [28] as benchmarks and standards for comparative
urposes. We also consider model candidates to ensure sufficient
iversification of statistical models, specifically SARIMA, and DNN
odels, including multi-layer perceptron (MLP) to yield more

obustly accurate forecasts. We then consider different holdouts
nd different time series lengths in one layer, and other layers in
rder to select the best models for each series. In this way DELMS
s able to generate effective and robust forecasts, separate the
attern from the noise, and overcome overfitting problems. The
trategy is based on a Bayesian model averaging (BMA) to com-

ine the heterogeneous models with the lowest error measure

2

to generate an ensemble. It applies the selection of the subset
of best forecasters (model confidence set) to be included in the
forecast combination, the identification of the best holdout period
for each contributed model, and the determination of optimal
weights using out-of-sample predictive accuracy. A model selec-
tion strategy is also developed to remove the outlier models and
to combine the models with reasonable accuracy in the ensemble.
In short, the ensemble learning procedure proposed (DELMS)
involves: (i) setting the different holdouts to be checked for each
contributed model; (ii) choosing the best holdout for each model
based on out-of-sample forecasting accuracy; (iii) selecting the
subset of best forecasters (model confidence set), using a variable
trimming scheme in which a multiple of the forecasting accuracy
metric range obtained across all candidate models is used as
the threshold for model exclusion; (iv) determining the poste-
rior probabilities (weights) of each model, using the normalized
exponential (Softmax) function; and, finally, (v) obtaining ensem-
ble forecasts based on the law of total probability, considering
the model confidence set and the corresponding model weights.
Unlike previous approaches that have focused on either selecting
optimal combination schemes and weights or equally weighting
a subset of best forecasters, our novelty ensemble procedure
involves identifying the best holdout period for each model, se-
lecting the best forecasting models and determining the optimal
weights based on the out-of-sample forecasting performance for
each dataset.

To demonstrate empirically the robustness of our approach,
we use monthly respiratory disease death data for 61 heteroge-
neous countries to estimate excess mortality during the COVID-19
pandemic. Excess mortality is the number of deaths attributable
to all causes above and beyond mortality predictions under nor-
mal (baseline) circumstances for a given period in a population.
Clearly, quantifying and analyzing excess mortality attributable to
the coronavirus 2 (SARS-CoV-2) pandemic is of great relevance for
policymakers, public health officials and epidemiologists [29,30]
and, in this sense, any improvement in such forecasts are to be
welcomed. Excess mortality is typically measured by national
or supranational statistical agencies using the absolute, relative
(P-score) or standardized (Z-score) number of ‘‘excess’’ deaths,
where the benchmark is often computed quite naïvely, by using,
for instance, the simple average of the previous year’s deaths.
The EuroMOMO project (https://www.euromomo.eu) is a notable
example of this, with baseline mortality modeled using a gener-
alized linear model corrected for over dispersion assuming that
the number of deaths follows a Poisson distribution. However,
this approach does not account for differences in the level, long-
term secular trends, and seasonal patterns in all-cause mortality
across countries and regions. Additionally, empirical studies show
that it is hard to find a single, widely accepted forecasting method
(if, indeed, one exists) that performs consistently well across all
datasets and time horizons [31]. Besides, data quality is another
concern, being responsible for biased and inconsistent parameter
estimates and leading to flawed conclusions [32]. This is a matter
of untold concern for forecasters of ensemble learning predictive
models when seeking to predict, for example, numbers of deaths
or when an economy should be re-opened [33,34], among others.
Moreover, it makes excess mortality a highly appropriate case
for comparing the experiences of different countries or regions,
where either the degree of misdiagnosis/underreporting or the
problems of data quality may differ [35]. Our hypothesis is that
the approach proposed herein leads to a decrease in the individ-
ual error of ensemble members compared to that provided by
normal model selection with equal holdouts for selected mod-
els and without overly decreasing the diversity between them.
We examine the run times, accuracy, level of contribution, and

error metric of the ensemble techniques proposed and compare

https://www.euromomo.eu
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Fig. 1. Graphical overview of the dynamic ensemble learning strategy.
Fig. 2. Proposed ensemble learning strategy.
hem with those of the well-known ensemble model without
ynamic holdouts and model selection, and the individual fore-
asting models. This article presents a suitable ensemble time
eries with improved predictive accuracy and it is our belief that
t helps demonstrate which time series techniques contribute
ore to ensembles.
The remaining sections of the paper are organized as follows.

n Section 2, we describe the materials, methods, and related
orks considered in undertaking this study. Section 3 outlines an
xtensive set of experiments on respiratory disease deaths in 61
ountries and the results. The main discussion and conclusions
re reported and discussed in Section 4. Finally, future research
roposals are presented in Section 5.
3

2. Materials and methods

Here, we propose a meta-learning approach for adapting the
ensemble to the best combination of forecasting models. The
candidate models are extracted from different layers with the
best holdout for each contributed model and each panel member.

Figs. 1 and 2 provide graphical overviews of the materials
and methods employed to develop our proposed strategy. We
use multiple learning processes to improve the predictive per-
formance of the ensemble, which is built using a learning ap-
proach for the candidates addressed in the last layer. In this
section, we discuss these techniques in brief and highlight their
contributions.
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Table 1
Pseudocode of the proposed ensemble strategy.
INPUT panel time series (panel members = countries)

OUTPUT ensemble model

1. StatExplore time series decomposition
2. IMPUTE[missing] = TRUE
3. First_year = 2000 (for most of time series but some of them start later)
4. Last_year = 2016
5. Target_year = 2020
6. Confidence_level = 0.95
7. Holdout_set = {3, 5, 7} and SET Teta = 0.5
8. Ensemble_criteria_for_computing_weights = ‘‘Symmetric Mean Absolute Percentage Error (SMAPE)’’
9. Set.seed()
10. Model_list = { TBATS, ETS, SARIMA, STL, NNAR, SNAIVE, HWA, HWM, MLP, ELM, SSA, RWF}
11. FUNCTION model_weights (error)
12. Pr = error/max(error)
13. exp(-abs(pr))/sum(exp(-abs(pr)))
14. # First loop for selecting country
15. For each panel in list of countries do
16. {
17. SET panel.data = SUBSET dataset(country = panel & Year > First_year & Months=’’Jan-Dec’’
18. SET Year_min = min(Year of panel.data)
19. panel_data = MISSING VALUE IMPUTATION by na_seasplit
20. SET (START of the run-time calculation)
21. # Second loop for selecting holdouts
22. For each holdout in Holdout_set do
23. {
24. IF ( ymax-ho+1 < ymin+3 ) { break }
25. ELSE
26. SET train_dataset WINDOW (START = Year_min , END = Last_year – holdout)
27. SET test_dataset WINDOW (START = Last_year – holdout + 1)
28. FIT models in Model_list
29. CALCULATE accuracy (model , holdout)
30. IF accuracy (model[holdout]) > last_accuracy (model[holdout – 1]) THEN
31. SET model = model[holdout]
32. ELSE
33. SET model = model[holdout -1]
34. }
35. CALCULATE error(ALL models), min_error(ALL models), max_error(ALL models)
36. CALCULATE id_error = Teta × (min_error + max_error)
37. FOR model in Model_list
38. {
39. IF (error_model > id_error) THEN
40. PRINT (‘‘Model is excluded!’’)
41. ELSE
42. ADD model into selected_model_list
43. }
44. # The proposed model ensemble (DELMS)
45. IF selected_model_list = NULL {next country}
46. ELSE
47. {
48. CALCULATE model_weights for ensemble
49. SET First_year based on the model with min_holdouts
50. SET First_month based on the model with min_holdouts
51. CALCULATE ENS as Ensemble Model
52. SET (END of the run-time calculation)
53. }
54. # The outputs
55. PRINT GRAPHS
56. SAVE OUTPUTS
57. }
2.1. Layered learning and the ensemble learning strategy

The layered learning approach as applied to time series data
onsists of breaking a forecasting problem down into simpler
ubtasks that occupy different layers. Each layer addresses a
ifferent predictive task and the output of one layer can be used
s input for the next layer [36]. In this study, the first task is to
btain a direct mapping of the time series for different countries,
ombining the intractable time series algorithms and predicting
he ensemble model as the final output. This means the first layer
ask is to find the best holdout for each panel member and for
ach time series algorithm. This facilitates the second layer task
f model selection, which in turn facilitates the identification of
he model confidence set of best forecasters in the last layer [37].
4

It is useful to maximize forecasting accuracy in panel time series
– a target that is achieved dynamically – and to adapt the model’s
learning process to possible unexpected shocks.

Along with the layered learning approach, our ensemble
method runs multiple learning algorithms to employ adaptive
heuristics that combine forecasters. As a result, we obtain a better
predictive performance than might be obtained from any of the
constituent learning algorithms. Our strategy comprises several
selected models (see Table 1 — line 10), with the best perfor-
mance being based on minimum error measures. Each model
considers different holdouts to solve the problem at hand and
selects the best holdout in each case. This leads to a more robust
overall performance of the ensemble as it increases the diversity
of the holdouts; however, the time series length differs according
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o the different holdouts. As such, it could constitute a problem
or the ensemble layer, were we to merge the models of different
engths. Thus, we need to force all the models selected to be of
qual length, so that eventually the length of the ensemble is
qual to the minimum length time series in our time series set.
lthough this windowing strategy provides each forecaster’s best
rediction and, therefore, the ensemble’s best performance, it is
lear that to obtain the best results, the length of all the time
eries should be sufficiently large and almost the same.
Following Ashofteh and Bravo (2021), let each candidate model

e denoted by Ml, l = 1, . . . , L representing a set of probabil-
ty distributions in which the ‘‘true’’ data-generating process is
ssumed to be included, comprehending the likelihood function
(y|θl,Ml) of the observed data y in terms of model-specific

parameters θl and a set of prior probability densities for these
parameters p (θl|Ml). Consider a quantity of interest ∆ present
in all models, such as the future observation of y. The marginal
posterior distribution across all models is

p(∆|y) =

L∑
l=1

p (∆|y,Ml) p (Ml|y) (1)

where p (∆|y,Ml) denotes the forecast PDF based on model Ml,
and p (Ml|y) is the posterior probability of the model Ml given
the observed data with

∑L
l=1 p (Ml|y) = 1. The weight assigned

to each model Ml is given by its posterior probability

p (Ml|y) =
p (y|Ml) p (Ml)∑L
l=1 p (y|Ml) p (Ml)

. (2)

The workflow of our proposed method is presented in Fig. 2.
To identify the model confidence set and compute model weights,
we first set the different holdouts to be checked for each con-
tributed model in each dataset. Let H = {h1, h2, . . . , hk} represent
he set of holdout periods to be considered in the estimation
rocedure (see Fig. 2. Layer L1). The second step involves selecting
he best holdout for each candidate model based on the out-of-
ample forecasting accuracy measure (see Fig. 2. Layer L2). We
se the symmetric mean absolute percentage error (SMAPE) as
ur measure of forecasting accuracy (see Table 1 — line 8).1
To select the best holdout for each model, we tested the

ifferent holdout values from three to ten years — considering
he holdout set (H = {3, 5, 7} years2) (see Table 1 — line 7)
as representative of the short-, medium-, and long-term — and
compared the SMAPE values at each iteration, retaining the model
with the lowest SMAPE as the candidate for the model confidence
set selection step. This provides the strategy with an opportunity
to cover different parts of the data space and to handle different
dynamic regimes in different candidate time series. Addition-
ally, it ensures the final ensemble model is able to manage the
limitations of each in the others.

Third (see Fig. 2. Layer L3), the subset of best forecasters is
selected using the best holdout period (see Table 1 — lines 21–34)
and a variable trimming scheme in which a multiple θ (pre-set at
0.5) of the distance between the maximum and minimum values

1 We avoid using the AIC and the BIC because the candidate models are in
ifferent model classes, and the likelihood is computed differently. For selected
odels in the same class, the BIC is useful and is used automatically by

he algorithm to select, for instance, a SARIMA model among the candidate
ARIMA models. Another problem associated with the error term in ensemble
odeling can be avoided by using accuracy measures whose formula contains
logarithm, such as MSLE, RMSLE, and SLE. Based on the work conducted here,

he program would be interrupted because some of the algorithms potentially
resent negative values in these measures.
2 The results for the other holdout periods are consistent with those reported

n this paper.
 H

5

of the forecasting error metric is used as the threshold for model
exclusion, i.e., using

Γg = θ ×

(
max

{
SMAPEg,l

}
l=1,...,L + min

{
SMAPEg,l

}
l=1,...,L

)
. (3)

where SMAPEg,l is the SMAPE value for model l in the panel
member (country) g (see Table 1 — lines 35–36). For each panel
member, if the error of a candidate model is greater than the Γg
indicator, (i.e., SMAPEg,l > Γg ) the model is excluded from the
model confidence set and from the ensemble forecast computa-
tion (Table 1 — lines 37–43), i.e., it is assigned zero weight in
(1).

Depending on the distribution of the SMAPE values, the num-
ber of models excluded from the model confidence set will vary.
From a frequentist point of view, building up a model confidence
set is a way of summarizing the relative forecasting performances
of the entire set of candidate models and identifying the set
of statistically best forecasters. The advantage of this statistic
defined in (3) is its simplicity, ease of application, and interop-
erability. Moreover, it falls somewhere between the time series’
close and extremely distant models. In this case, the distant fore-
casting models are removed from the ensemble, which is ideal for
avoiding overfitting and controlling the redundancy in the output
of the ensemble model. Our intuition is that the models with a
minimum error are closest to the actual data generating process.
Yet, comparing the error measure with the mean of the errors
removes only those models that are extremely distant from the
other candidate models. This upholds the diversity of the selected
models and avoids the overfitting problem.

Fourth, the posterior probabilities of the best forecaster model
(model weights) are computed using the normalized exponential
(Softmax) function

p (Ml|y) =
exp (− |ξl|)∑L
l=1 exp (− |ξl|)

, l = 1, . . . , L (4)

with ξl = Sl/max {Sl}l=1,...,L and Sl : = SMAPEg,l. The Softmax
function is a generalization of the logistic function that is often
employed in classification and forecasting exercises using tradi-
tional machine learning and deep learning methods as a combiner
or activation function [38]. The function assigns larger weights
to models with smaller forecasting errors, with the weights de-
caying exponentially the larger the error (see Table 1 — lines
11–13). Fifth, the BMA forecasts are obtained based on the law
of total probability (1) considering the model confidence set and
the corresponding model weights (4). The sampling distribution
of the ensemble forecast of the quantity of interest is a mixture of
the individual model sampling distributions (see Table 1 — lines
44–53).

The pseudocode of the proposed methodology is listed in
Table 1.

In the interest of reproducible science, the dataset and all
methods are publicly available [39].

2.2. The learning algorithms

This section summarizes the characteristics of the individual
candidate learning algorithms (times series methods) used in
this study3 (see Table 1 — line 10). We selected our models by
reviewing the six top-performing hybrid or combination models
in the M4 Competition, but taking into consideration our research
limitations derived from the length of time series and the com-
putational power required to build the ensemble model for a
61-member time series from 2000 to 2016 with 12 individual
models and three holdouts.

3 For a detailed presentation and discussion of the methods see, for instance,
yndman and Athanasopoulos [40].
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The seasonal trend decomposition using Loess (STL) allows us
to decompose a time series into its trend and seasonal compo-
nents. Based on the Loess smoother, it offers a simple, versatile,
and robust method for decomposing a time series and estimating
nonlinear relationships [41]. The models need to be robust to
the outliers detected in the multiple panel members’ (countries)
datasets. In specifying the STL, we use a robust decomposition
so that sporadic abnormal observations do not affect the esti-
mates of the trend-cycle and seasonal components. The time
series are tested for autocorrelation using the Ljung–Box test,
considering the null hypothesis that the model exhibits appro-
priate goodness-of-fit. The method does not handle the calendar
variation automatically, and it only provides facilities for additive
decompositions, which could be considered a limitation of this
approach. We use the two parameters t.window and s.window to
ontrol the speed at which the trend-cycle and seasonal compo-
ents can change. Smaller values allow for more rapid changes,
hich we need especially for some time series with strong turn-

ng points. As a result, the number six was chosen for s.window
nd t.window based on the results of the residual checks and the
jung–Box test statistics.
The seasonal naive (SNAIVE) method sets the forecast to be

qual to the last observed value from the same season of the
ear (i.e., the same month of the previous year) [42]. It is a useful
enchmark for other forecasting methods and, here, it was found
o be helpful in showing the recent time series trend and for
djusting the ensemble model for the trend component.
Similarly, the SARIMA and random walk forecasts (RWF) – as

SARIMA(0,0,0)(0,1,0)m model, in which m is the seasonal period
were used as state-of-the-art methods to memorize repeating
onthly patterns. However, many SARIMA models have no ex-
onential smoothing counterparts [43], and the robust univariate
orecasting models, such as Holt–Winters’ multiplicative method
HWM) and the exponential smoothing state space model (ETS),
an be considered a good complement to SARIMA models in our
inal ensemble. All ETS models are non-stationary, while some
ARIMA models are stationary [44]. ETS follows the last trend
f the time series and it is appropriate for the ensemble model
or empowering the trend parameter in the final predictions. ETS
oint forecasts are equal to the medians of the forecast distri-
utions. For models with only additive components, the forecast
istributions are normal, so the medians and means are equal. For
ultiplicative errors, or multiplicative seasonality, which perform
imilarly in most of the time series analyzed in this study, the
oint ETS forecasts are not equal to the means of the forecast dis-
ributions. In these cases, SARIMA is a better choice. On the other
and, ETS is a non-linear exponential smoothing model with no
quivalent SARIMA counterpart. Therefore, we propose that the
TS model be selected automatically and the type of trend and
easonal component be additive with the restriction of finite
ariance. The bootstrapping method for resampled errors was
mployed rather than distributed errors and simulation was used
ather than algebraic formulas for calculating prediction intervals.
he other options for the ETS model are shown in Table 2. The
BATS – that is, (T)rigonometric terms for seasonality, (B)ox–Cox
ransformations for heterogeneity, (A)RMA errors for short-term
ynamics, (T)rend, and (S)easonal – are also used to adopt the
nsemble model with multiple seasonality of some time series.
In the case of the neural network time series algorithms,

he extreme learning machines (ELM) were used with the lasso
enalty. ELM theory assumes that the randomness in the de-
ermination of coefficients of neural network predictors (input
eights) can feed the learning models with no iterative tuning

or a given distribution as is the case in gradient-based learning
lgorithms. The model entails randomly defined hidden nodes

nd input weights without any optimization, so that only output 2

6

weights need to be calibrated during the training of the ELM [45].
In the hyperparameter calibration of the ELM, we consider the
maximum 500 hidden layers for 200 networks to be trained and
summarized in the ELM’s final ensemble forecast model.

The neural network autoregression (NNAR) refers to single
hidden layer networks using the lagged values of the time series
as inputs and automatic selection of parameters and lags accord-
ing to the Akaike information criterion (AIC) [46]. In the NNAR
model specification, we considered the last observed values from
the same season as the inputs to capture the seasonality patterns
and to use a size equal to one, because we have one attribute
without a regressor, and by way of improvement, we used 100
networks to fit the different random starting weights and then
averaged them out to produce the forecasts. Additionally, we
considered the multilayer perceptron (MLP) as a kind of NNAR
model. This is more complicated and advanced than the NNAR,
having three components in the form of NNAR(p,P,k), in which p
denotes the number of lagged values that are used as inputs and
which is usually chosen based on an information criterion, like
AIC, P denotes the number of seasonal lags, and k denotes the
umber of hidden nodes.
Finally, singular spectrum analysis (SSA) was used as one of

he high-quality modeling approaches. The calibration of the SSA
s an important, but not easy task, in a standalone modeling ap-
roach [47]. It depends upon two basic parameters: the window
ength and the number of eigentriples used for reconstruction.
he choice of improper values for these parameters yields in-
omplete reconstruction, and the forecasting results might be
isleading. In this study, we set window length equal to 12
nd eigentriples equal to NULL. Table 2 summarizes the hyper-
arameters of the algorithms used in this study.
The model fitting, forecasting, and simulation procedures were

mplemented using R statistical software considering libraries
uch as the TSA, Metrics, nnfor, tsfknn, Rssa, rpatrec, and forecast
see, e.g., [48]).

. Empirical experiments

.1. Data selection and cleansing

We use cause-of-death data from the World Health Organi-
ation’s (WHO) mortality database [50] to empirically demon-
trate the forecasting capacity of the methodology proposed. The
atabase collects cause-of-death statistics from country civil reg-
stration systems and estimates from the United Nations Popula-
ion Division for countries that do not regularly report population
ata. We use an Excel file4 of this database to evaluate the data

quality of each country and a CSV file that includes the death
time series of each country by gender. The first of these files
identifies the quality of data for each country, using five color
categories — green, dark yellow, light yellow, dark red and light
red. Countries classified as green have multiple years of national
death registration data with high completeness and quality of
cause-of-death assignment. Estimates for these countries may
be compared and time series may be used for priority setting
and policy evaluation. However, this dataset only includes data
for 2000, 2010, 2015, and 2016 and it is not complete for the
time series. As a result, we used this dataset only to identify
the countries reporting high-quality data to the WHO and ranked
them according to their data quality. In line with the metadata
of the dataset, the criteria used to rank the countries by data
quality are shown in Table 3, coinciding, that is, with the WHO
descriptors.

4 https://www.who.int/healthinfo/global_burden_disease/GHE2016_Deaths_
016-country.xls?ua=1

https://www.who.int/healthinfo/global_burden_disease/GHE2016_Deaths_2016-country.xls?ua=1
https://www.who.int/healthinfo/global_burden_disease/GHE2016_Deaths_2016-country.xls?ua=1
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Table 2
Algorithms and hyperparameter choices.
ID Algorithm Parameters Value

ETS Exponential smoothing state space model Model
Box–Cox tran.
Multiplicative trend
restricted for the
models with infinite
variance

{ETS, TBATS}a
ZZA
TRUE
TRUE

SARIMA Seasonal auto-regressive integrated moving
average model

Auto ‘‘auto’’

STL Seasonal trend decomposition using Loess lambda
t.window
s.window
biasadj

‘‘auto’’
6
6
TRUE

NNAR Neural network model to a time series P
size
decay
lambda
repeats
MaxNWts

2
1
0.001
Auto
100
2000

SNAIVE Seasonal naïve drift
lambda
level
biasadj

F
0
clevel
TRUE

HWM Holt-Winters’ multiplicative method Seasonal
Level

Multiplicative
Clevel

HWA Holt-Winters’ additive method Seasonal
Level

Additive
Clevel

MLP Multilayer perceptron for time series Comb
hd.auto.type
hd.max

Mode
Valid
5

ELM Extreme learning machines type
hd
comb
reps
difforder

Lasso
500
mean
200
NULL

SSA Singular spectrum analysis Kind
svd.method
L
neig force.decompose
mask

1d-ssa
Auto
12
NULL
TRUE
NULL

RWF Random walk forecasts Drift
Lambda
Level
biasadj

F
‘‘auto’’
clevel
TRUE

aThe ETS method with automatic and ZZA parameter setting from the forecast statistical software R package [48],
and the TBATS method, which includes Box–Cox transformation, ARMA errors, trend and seasonal components [49].
Table 3
Respiratory disease death data: Criteria used to rank countries by data quality.
Rank Evaluation Description by World Health Organization

1 Excellent quality These countries may be compared, and time series may be used for priority setting and
policy evaluation.

2 Moderate quality Data have low completeness and/or issues with cause-of-death assignment, which likely affect
estimated deaths by cause and time trends. Comparisons between countries should be
interpreted with caution.

3 Low quality Data have severe quality issues. Comparisons between countries should be interpreted with
caution.

4 Unacceptable Death registration data are unavailable or unusable due to quality issues. Estimates may be
used for priority setting; however, they are not likely to be informative for policy evaluation
or comparisons between countries.

5 Ignorable Data should be ignored.
We considered only those countries with a data quality cor-
esponding to the first three categories and eliminated various
slands due to a lack of data (e.g., Åland Islands). We also cleaned
he dataset by removing the total column and various rows with
nknown month data and/or zero deaths. Some countries re-
orted total deaths for three months in a row during certain
ears. In such instances, we assumed a uniform distribution of
eaths across the quarter and allocated the corresponding value
o each month. We filtered the datasets for respiratory diseases
7

and considered the death variable as a univariate time series with
monthly sampling frequency.

Table 4 shows the WHO codes classified as respiratory infec-
tions. To compute the number of deaths attributable to respira-
tory diseases, we aggregated codes 380 and 410 or, equivalently,
codes 390, 400, and 410. We also corrected the names of some
of the countries (Appendix A). In this way we were able to
calculate the proportion of deaths attributable to respiratory dis-
eases. To estimate the number of monthly deaths caused by
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Table 4
Metadata of the code of the disease categorized as a respiratory disease.
Source: World Health Organization, 2018.
Code Description by World Health Organization

380 Respiratory infections (This code is the aggregate of 390 and 400)
390 Lower respiratory infections
400 Upper respiratory infections
410 Otitis media: Acute otitis media (AOM) is a common complication of

upper respiratory tract infection whose pathogenesis involves both
viruses and bacteria.

respiratory diseases, we multiplied the annual proportion by the
total number of forecasted deaths each month. We used the
fraction of annual deaths from respiratory diseases over the total
number of deaths as a proportion of deaths in each month.

This procedure provided us with a dataset with more than
welve thousand observations in a pool of a 61-member panel
ime series (countries) from 2000 to 2016 [39] (see Table 1 —
ines 3–4). These panel time series cover possible situations of
tationarity, non-stationarity, increasing trends, seasonality, and
tructural breaks so as to undertake a comprehensive evalua-
ion of the improvement in accuracy of candidate and ensemble
odels in different scenarios.
Given the varying data quality of countries/territories/areas as

egards case detection, definitions, testing strategies, reporting
ractices, and lag times, missing values are expected in the time
eries dataset. To deal with this problem, we tested the Kalman,
easplit and seadec algorithms to impute the missing values. Of
he three, the seasplit algorithm performed best as regards saving
oth the trend and the seasonality for our dataset (see Table 1
line 19). We only imputed missing values within the time

eries, but not at the beginning of the time series with a start
ate after 2000. As a result, rather than changing the first year
f the time series to our base year 2000, we used the latest year
vailable (see Table 1 — line 17–18). To avoid the error caused by
ombining time series of different lengths in an ensemble model,
e adapted the R code to handle different start years. The same
roblem arises as a result of the procedure adopted to select the
est holdout for each model, which may ultimately lead to model
ombinations considering forecasts based on different holdouts,
.e., different time series lengths.

Finally, for comparing the superiority of the proposed DELMS
odel, 7137 time series models were explored. They obtained

rom 12 time series models plus an ensemble, 3 scenarios, and
holdouts for 61 countries.

.2. Results

.2.1. Forecasting accuracy comparison
The predictive accuracy metrics obtained for the three alterna-

ive holdout periods under investigation, using three alternative
acktesting procedures, are reported in Table 5. In the case of the
irst approach – the ‘‘Fixed holdout’’ – we used a fixed holdout pe-
iod equal to 3, 5, and 7 years to derive the composite (ensemble)
odel.
The results in the first columns show that some models exhibit

etter performance than that of the ensemble models with fixed
oldouts. For instance, the average error of the TBATS model
cross two holdout periods is smaller than that of the BMA (see
able 5, Column (1)).
The second approach – the ‘‘Fixed holdout with model selec-

ion’’ – uses a multiple of the SMAPE values across all methods
o evaluate the distance of each model to the others as detailed
bove in the pseudocode (Table 1). The models with SMAPE
alues higher than that of the introduced indicator are considered
oor forecasters and eliminated from the ensemble forecast.
8

Table 5 presents the results aggregated across all countries,
with individual country results available as supplementary ma-
terial in a Mendeley dataset [39]. The results in Table 5 show
that the accuracy of the BMA approach improves in robustness
when pursuing the selection approach for each holdout, with
the composite model now ranking first among all the methods
tested. With a fixed holdout of 3 for all models, which is the
classical approach, the BMA has a SMAPE value of 0.112. For
the same holdout, but with model selection, this SMAPE value
improves (0.103). In the third approach – ‘‘model selection plus
dynamic holdouts’’ – that is, a combination of approaches one
and two – the percentage error improves again (0.102). This
approach combines the best forecasting models fitted using each
model’s optimal holdout selection. As a result, the accuracy of the
ensemble is improved, leaving the individual learning algorithms
at a reasonable distance.

Fig. 3 summarizes the above empirical results. It is apparent
that the ensemble model with the new layered learning approach
(DELMS) exhibits greater predictive accuracy than either of the
two single forecasting methods used and either of the ensem-
ble strategies with fixed holdouts and with fixed holdouts and
model selection. It shows that the approach proposed improves
the predictive performance at each step of the learning process
illustrated in Fig. 2.

Finally, the Wilcoxon signed-rank test was performed to de-
termine the significance of the superiority of the proposed model
(DELMS). This test was used to determine the significance of the
forecasting errors in the forecasts of the central trend made by
two forecasting models with the same number of data [51]. Let
ei be the forecasting errors in the ith forecast value (i.e. countries)
generated by two forecasting models (DELMS and BMA(holdout=3)
(Appendix C).

sum of ranks =

⎧⎨⎩
r+

; if ei > 0
Eliminate ; if ei = 0
r−

; if ei < 0
(5)

where r+ and r− represent the sum of ranks. For ei = 0, we
eliminate the comparison. The statistic W is defined as in Eq. (6):

W = min{r+, r−
} (6)

Table 6 presents the results of this statistical non-parametric
test, by the one-tail-test at a significance level of α = 0.05.

The proposed DELMS model significantly outperforms the
MA(ho=3), which is the ensemble model with the best perfor-
ance among all ensembles with fixed holdouts (Table 5). The
roposed DELMS model is significantly superior to other BMAs
ith respect to forecasting (P-value = 0.015).

.2.2. Models excluded from the selection procedure
Table 7 reports the distribution of the models excluded from

he selection procedure and ranks them according to their con-
ribution to the composite model. A vertical comparison of the
esults offers insights into the contribution of each model to the
nsemble, while a horizontal comparison enables us to assess the
ate of contribution across different holdout periods.

The results show, first, that all models are excluded several
imes from the BMA model space as a result of the procedure
o select the model confidence set, highlighting that the set of
est-performing forecasters differs across the countries, i.e., their
redictive accuracy is population- and period-specific. This is
nsurprising and can be explained by the differential patterns ob-
erved in the respiratory disease data. The variability in the mod-
ls’ out-of-sample forecasting accuracy also reveals their ability
o capture diverse features of mortality data. Second, the re-
ults suggest that combining models is a way to leverage their
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Table 5
Ranking of the models and ensembles according to the accuracy measure.
Source: Authors’ own.

(1) Fixed holdout column for the first row (BMA) shows the SMAPE for the Bayesian model averaging approach with fixed holdout.
Rest of rows show individual models. (2) and (3) represent the methods proposed herein.
Fig. 3. Comparing the accuracy of the models.
Table 6
Results of Wilcoxon signed rank test.
Compared models Wilcoxon signed-rank statistic P-value (α = 0.05)

DELMS versus BMA(ho = 3) w = 512 0.01548**

** implies the p-value is lower than α.
strengths and minimize their weaknesses. The results capturing
the contribution of single forecasters to the composite model
show that the best contributor – the ETS model – has an exclusion
rate substantially smaller than that of the worst forecaster, the
RWF model. Moreover, the results suggest that increasing the
holdout has a slightly positive effect on some models (the case of
9

ETS, SNAIVE, NNAR, MLP, and RWF), a negative effect on others
(the case of SARIMA, HWA, ELM, and SSA), and a neutral effect
on others (the case of TBATS, STL and HWM). This variation in
the contribution rates from the best to the worst model and from
the lowest to the highest holdout period suggests a potentially
positive effect on the final forecasting accuracy of the ensemble
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Table 7
Rate of contribution of each model in the DELMS.
Source: Authors’ own.
Models Exclusion frequency of the models

from the selection layer for each holdout Rank

ho = 3 ho = 5 ho = 7 Ave.

Freq. Prop. (%) Freq. Prop. (%) Freq. Prop. (%) Freq. Prop. (%)

ETS 10 4.61 8 3.56 8 4.30 9 4.31 1
TBATS 12 5.53 13 5.78 9 4.84 11 5.26 2
STL 13 5.99 11 4.89 11 5.91 12 5.74 3
SARIMA 13 5.99 13 5.78 14 7.53 13 6.22 4
SNAIVE 18 8.29 13 5.78 14 7.53 15 7.18 5
HWA 13 5.99 19 8.44 17 9.14 16 7.66 6
HWM 19 8.76 17 7.56 17 9.14 18 8.61 7
NNAR 23 10.60 21 9.33 13 6.99 19 9.09 8
MLP 22 10.14 24 10.67 14 7.53 20 9.57 9
ELM 17 7.83 28 12.44 18 9.68 21 10.05 10
SSA 27 12.44 21 9.33 18 9.68 22 10.53 11
RWF 30 13.82 37 16.44 33 17.74 33 15.79 12
Table 8
Exclusion frequency of the models for the ensemble with dynamic holdouts.
Source: Authors’ own.

TBATS STL ETS HWA SARIMA SNAIVE HWM ELM MLP SSA NNAR RWF

Frequency 13 15 17 17 18 19 19 21 23 25 29 37
Proportion (%) 5 6 7 7 7 8 8 8 9 10 11 14
Rank 1 2 3 4 5 6 7 8 9 10 11 12
model by selecting both the best holdout for each model and the
best forecasters in the model confidence set finally used to make
the forecast.

Table 8 presents the contribution ranks, the exclusion fre-
uency, and the proportion of the selected models with the best
oldout for the DELMS. The results show that the contribution
f single learners to the ensemble changes when compared with
hat obtained with model selection only (Table 7), highlighting
gain the importance of combining model selection with holdout
eriod calibration.
Fig. 4 reports the BMA model confidence set (vertical axis) and

orresponding posterior probability (horizontal axis) for selected
ountries.
As we used the SMAPE criterion to select the set of models

nd respective weights, a given weight of zero indicates excluding
hat individual model from the BMA forecast combination. We
an observe that the model’s contribution to the ensemble varies
cross countries and the ensemble model consistently performs
ell in all countries.

.2.3. Algorithmic efficiency analysis
We analyze the algorithmic efficiency of each method – i.e., the

mount of computational resources used by the algorithm – by
easuring the time spent in fitting the ensemble model with each
pproach and using it to predict the maximum likely run-time of
new given time series (Table 9). The CPU used here is the Intel
ore i7-7500U Processor @ 2.70 and 2.90 GHz with 16.0 GB RAM.
he modeling, training, tuning, and testing are programmed in
4.1.2. The method proposed fits the models considering three
oldout periods in order to select the best holdout for each model.
Our expectation is that the method drives the run-time at least

hree times more than the two other approaches, which is ex-
ected given that the underlying model is a multi-step forecasting
ethod. However, if we consider the average run-time and the
ean confidence intervals for the three approaches, we see that

hey do not differ greatly, which indicates that our proposed
ethod is efficient in terms of computation time.
10
3.2.4. Excess mortality analysis
The proposed ensemble learning for panel time series with

strategy selection and dynamic holdouts (as discussed in Sec-
tion 2 and here, above, in Section 3) was used to forecast the
number of deaths caused by different kinds of respiratory disease
for a subset of 61 countries in 2020 (see Table 1 — line 5).
Additionally, COVID-19 deaths were extracted for the same year
from the COVID-19 Weekly Epidemiological Update published by
the World Health Organization (WHO) with data as received from
national authorities, as of 3 January 2021, which provides full
coverage for the period of 2020 [52].

Table B.1 (in Appendix B) presents forecasts of the total num-
ber of deaths attributable to respiratory diseases (RD TD), which
is calculated as an aggregation of monthly death forecasts for each
country. The last two columns show the standardized values of
the total number of deaths attributable to respiratory diseases
and COVID-19, respectively, used in calculating the correlation.
The Pearson correlation for all 61 countries is 0.34, which is
statistically significant (P-value = 0.007). As shown in Table 10,
to calculate the correlation for a more limited set, we considered
the European countries, including the United Kingdom, Canada,
and the United States of America.

The selection criteria used were the maturity standards of
their official statistics (SDDS+, SDDS, GDDS), outcomes from of-
ficial statistics corruption models [53], and the quality of death
data according to the WHO ranking discussed in Section 3.1.

Now, the correlation coefficient increased dramatically to 94%
(P-value =0.000), which can be attributed to the higher quality of
the official statistics in these countries. Ashofteh and Bravo (2020)
have shown there to be significant variation in the quality of
the COVID-19 datasets reported worldwide, albeit a recent study
suggests that data science and new technologies can be expected
to play a significant role in improving data quality from national
statistical offices in the future [54].

The comparison of death forecasts attributable to respiratory
diseases and COVID-19 deaths is shown in Figs. 5 and 6. For
most countries, COVID-19 deaths can be said to have ‘‘replaced’’
the respiratory deaths that would have occurred based on ex-
trapolations of past respiratory disease trends. Here, a study of
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Fig. 4. BMA model confidence set and estimated weights per country.
Table 9
Effect of the methodology on run-time and computational efficiency.
Source: Authors’ own.
Models Run-time analysis to obtain ensemble model (in mins)

Fixed holdout Fixed holdout + Model selection Dynamic holdouts + Model selection (DELMS)

ho = 3 ho = 5 ho = 7 Ave. ho = 3 ho = 5 ho = 7 Ave. ho = 3 ho = 5 ho = 7 Ave.

ART 2.97 2.86 2.39 2.74 3.03 2.65 2.41 2.70 3.29 2.96 2.64 2.96
STD 0.72 0.72 0.52 0.65 0.70 0.60 0.54 0.61 0.84 0.71 0.70 0.75
LCL 2.79 2.68 2.26 2.58 2.85 2.50 2.27 2.54 3.08 2.78 2.46 2.77
UCL 3.15 3.04 2.52 2.90 3.21 2.80 2.55 2.85 3.50 3.14 2.82 3.15

Notes: ART: Average run-time, STD: Standard deviation, LCL: Lower confidence limit, UCL: Upper confidence limit.
11
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Table 10
Comparison of number of deaths forecast for respiratory diseases and actual COVID-19 deaths.
Source: Authors’ own.
Row Country (1) Alpha-3 Country No Population (2) RD TD (3) COVID TD (4) Standardized RD TD (5) Standardized COVID TD

1 Austria AUT 40 8955.108 234 6214 −0.392 −0.227
2 Belgium BEL 56 11539.326 1571 19693 −0.172 0.052
3 Bulgaria BGR 100 7000.117 412 7644 −0.363 −0.198
4 Canada CAN 124 37411.038 1766 15679 −0.14 −0.031
5 Denmark DNK 208 5771.877 595 1345 −0.333 −0.328
6 Finland FIN 246 5532.159 53 561 −0.422 −0.344
7 France FRA 250 65129.731 4733 64543 0.347 0.98
8 Germany DEU 276 83517.046 5815 34272 0.524 0.354
9 Greece GRC 300 10473.452 2000 4921 −0.102 −0.254
10 Hungary HUN 348 9684.68 344 9884 −0.374 −0.151
11 Iceland ISL 352 339.037 17 29 −0.428 −0.355
12 Ireland IRL 372 4882.498 316 2252 −0.379 −0.309
13 Italy ITA 380 60550.092 4792 74985 0.356 1.196
14 Netherlands NLD 528 17097.123 1206 11565 −0.232 −0.117
15 Norway NOR 578 5378.859 528 436 −0.344 −0.347
16 Poland POL 616 37887.771 5347 29119 0.448 0.247
17 Portugal PRT 620 10226.178 2097 7045 −0.086 −0.21
18 Romania ROU 642 19364.558 1484 15919 −0.187 −0.026
19 Serbia SRB 688 8772.228 419 3288 −0.362 −0.288
20 Slovakia SVK 703 5457.012 476 2317 −0.352 −0.308
21 Slovenia SVN 705 2078.654 145 2889 −0.407 −0.296
22 Spain ESP 724 46736.782 3042 50442 0.069 0.688
23 Sweden SWE 752 10036.391 665 8727 −0.321 −0.175
24 Switzerland CHE 756 8591.361 428 7049 −0.36 −0.21
25 The UK GBR 826 67530.161 6943 74570 0.71 1.188
26 Ukraine UKR 804 43993.643 1089 18854 −0.252 0.034
27 United States USA 840 329064.917 16554 345253 2.288 6.791

Notes: (1) Abbreviated country code (three letters); (2) Respiratory Diseases Total Deaths; (3) WHO COVID-19 Total Deaths; (4) (Country Respiratory Disease Deaths
— All Countries’ Respiratory Disease Death Average)/All Countries Respiratory Disease Deaths STDEV; (5) (Country WHO COVID-19 Deaths — All Countries’ COVID-19
Death Average)/All countries COVID-19 Deaths STDEV.
j

the factors affecting COVID-19 mortality shows a high correla-
tion between respiratory deaths and COVID-19 deaths, a finding
that is consistent with clinical manifestations and epidemiolog-
ical studies. For example, countries with a high expectancy of
respiratory diseases presented higher excess mortality, that is,
at the macro (country) level. At the individual level, the higher
number of deaths from respiratory diseases could be considered
an indication of the population’s greater susceptibility to COVID-
19 symptoms and a greater risk of death. This comparative study
highlights the fact that the policy effectiveness of different coun-
tries could result in an evaluation bias, without considering their
past experience with respiratory diseases.

Fig. 5 shows that the countries of Europe and North Amer-
ca were sensitive to respiratory diseases and that this boosted
he excess mortality attributable to the COVID-19 pandemic;
owever, Fig. 6 shows that in 2020 some countries dealt bet-
er with COVID-19 than others as regards their vulnerability
o respiratory diseases. Thus, this last figure highlights that in
ountries in which the forecast of respiratory disease deaths
ignificantly exceeds the confirmed COVID-19 deaths (e.g., Japan
nd the Philippines), the management of the pandemic crisis
ucceeded in reducing excess mortality. The results shown in
hese two figures are very much in line with a recent study
ndicating a much lower overall excess-mortality burden due to
OVID-19 in Japan than in Europe and the USA [55]. Here, Yorifuji
t al. [56] suggest that in Japan, the public health regulations
imed at preventing COVID-19 may have incidentally reduced
ortality related to respiratory diseases, such as influenza, and
o decreased net excess mortality.
Additionally, in addressing vulnerability to respiratory dis-

ases, Japan and the Philippines appear to have set a good ex-
mple for the rest of the world in terms of controlling the effects
f respiratory death numbers on the number of COVID-19 deaths.
he similarity of the situations in these two countries seems to
estify to the importance of the agreements struck on their, so-
alled, COVID-19 Response Support. As reported on the website of
 g

12
the Department of Foreign Affairs in the Philippines, the Japanese
Government has been unstinting in its commitment to the Philip-
pines’ recovery efforts, previously pledging over JPY100 billion
assistance in emergency and standby loans and donating 1 million
Japan-manufactured AstraZeneca vaccines.5

Fig. 6 shows a similar situation for the Republic of Korea,
which geographically lies in the same vicinity as these two
countries. The outcome of the comparison of death forecasts
attributable to respiratory diseases and actual COVID-19 deaths
for the Republic of Korea is in line with a recent study estimating
mortality in Korea undertaken by Shin et al. [57], which finds that
mortality in 2020 was similar to the historical trend. This simi-
larity of outcomes reported by these neighboring countries seems
to highlight the importance of international cooperation and the
sharing of resources for the successful control of the effects
of pandemics. Moreover, as these countries are geographically
close to each other, meteorological factors might also have been
influential in their respective outcomes. Clearly, more research is
required.

Finally, in addition to the effect of respiratory deaths on deaths
attributable to the pandemic, international cooperation, optimal
scheduling and the utilization of medical resources, large-scale
virus testing, protecting and managing the healthcare of the
elderly, lockdowns, vaccination, and controlling the borders are
examples of other factors that might result in different out-
comes by country. However, accurate and timely estimations of
respiratory deaths also seem to be an important factor when
undertaking comparisons of multiple countries.

4. Conclusions

We have tested a new ensemble learning technique (DELMS)
for the panel time series forecasting of respiratory diseases and

5 https://dfa.gov.ph/dfa-news/dfa-releasesupdate/29206-philippines-and-
apan-sign-agreements-on-covid-19-response-support-and-on-scholarship-
rants-for-civil-servants

https://dfa.gov.ph/dfa-news/dfa-releasesupdate/29206-philippines-and-japan-sign-agreements-on-covid-19-response-support-and-on-scholarship-grants-for-civil-servants
https://dfa.gov.ph/dfa-news/dfa-releasesupdate/29206-philippines-and-japan-sign-agreements-on-covid-19-response-support-and-on-scholarship-grants-for-civil-servants
https://dfa.gov.ph/dfa-news/dfa-releasesupdate/29206-philippines-and-japan-sign-agreements-on-covid-19-response-support-and-on-scholarship-grants-for-civil-servants
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Fig. 5. Respiratory disease deaths and COVID-19 deaths for Europe and North America in 2020.
Fig. 6. Respiratory diseases deaths and COVID-19 deaths for Each Country in 2020.
e summarized the empirical results obtained when using in-
ividual models, a simple ensemble model, an ensemble with
odel selection, and an ensemble with model selection and dy-
amic holdouts (DELMS). Our goal in so doing was to obtain a
enchmark for evaluating the excess mortality related to COVID-
9 that might serve as a common framework for all countries.
Based on the performance outcomes of the models (Table 5)

nd results of Wilcoxon signed-rank test (Table 6), on average, the
nsemble with model selection and dynamic holdouts (DELMS)
erforms significantly better than the other methods. Our results
rovide clear evidence of the competitiveness of this method in
erms of its predictive performance when compared to the state-
f-the-art approaches and even the ensemble model without the
ynamic holdout and model selection layer.
13
Our analysis of the contribution of each of the candidate
models to the ensemble (Tables 7 and 8) highlights the positive
effect on overall prediction accuracy of selecting the best holdout
for each model and excluding the outlier models from the en-
semble. Moreover, it was evident that some of the state-of-the-art
approaches outperformed the neural network time series models.
A possible explanation for the underperformance of the com-
plex neural network approaches might lie in the non-stationary
elements, for example, the trend component and their pre-set
hyperparameters. However, neural network time series models
have been shown to perform much better when the time series
data are nonlinear and stationary and present sudden changes in
their layering hierarchy [58]. For this reason, they can be expected
to add value to the ensemble in the case of mostly detrended
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ime series. Additionally, recurrent neural networks, such as LSTM
nd GRU, have the potential to outperform time series models
nd their use could be usefully explored for the ensemble in
uture studies with sufficient computation resources or less panel
embers.
The variation in the performance of each model stresses the

eed to improve each of them individually by selecting the best
oldout and, moreover, to determine the best models to con-
ribute to the ensemble without overfitting. The indicator pro-
osed here in Formula (3) removes only those models that are
ery distant from the other models and, by so doing, we are able
o avoid the significant bias in the set of candidate forecasters.
he final ensemble model shows a significant improvement in
verall accuracy when compared with the other ensembles and
ith each individual state-of-the-art approach. The superiority
f the proposed DELMS model was explored by comparing 7137
ime series models obtained from 61 countries, 12 time series
odels plus an ensemble, 3 scenarios, and 3 holdouts.
Here, we have used the new ensemble strategy to forecast the

umber of deaths from respiratory diseases in 2020 for a sample
f 61 countries. The correlation between the standardized values
f deaths from respiratory diseases and those from COVID-19
as positive and statistically significant. Based on this outcome,

t is apparent that we should consider death forecasts from res-
iratory diseases as a covariate for evaluating the management
trategies employed by different countries, be they lockdown
ules or the relaxation of border control regulations. On the basis
f our study, Japan and the Philippines are candidates for further
nvestigation in this regard; indeed, they are more eligible than
ther countries that only record a low death toll. It may well
e that the experience of these countries with high mortality
ttributable to respiratory diseases played a more than relevant
ole in their management of the pandemic.

Indeed, in the case of the COVID-19 pandemic it might be
ore relevant to focus on the death toll rather than on the
umulative number of patients. Given the nature of pandemics,
he challenge usually lies in being able to control its spread;
owever, here the primary concern might be said to have been
ontrolling the severe cases and caring for the patients facing the
reatest likelihood of death. Those countries presenting a high
umber of cases of respiratory disease and which successfully
anaged the pandemic, therefore, could be better targets for

urther studies that compare their health policies and strategies
ith those implemented by countries presenting only a low rate
f mortality.
In short, the study described here represents an initial attempt

t developing a new approach to ensemble forecasting tasks.
he main motivation for this paper was the observation that
he performance of the ensemble model might potentially be
nhanced by selecting the best holdout for each candidate model
nd by choosing the best outcomes based on the dynamics of the
bserved values of the main series. In experiments using the 61-
ember panel time series of respiratory disease deaths recorded
etween 2000 and 2016, the aggregation of selected forecasting
odels employing our approach provides a consistent advantage

n terms of accuracy and leads to better predictive performance.
oreover, our study provides a correction of the total number
f positive cases of COVID-19, in accordance with the expected
umber of deaths attributable to respiratory diseases as identified
y our ensemble model.
Finally, this study has highlighted the pandemic experiences

f Japan and the Philippines, identifying them as candidates for
urther exploration. The two countries present a high degree of
ulnerability to the COVID-19 pandemic; yet, despite this, they
ucceeded in managing it well. Thus, regardless of higher death

olls than those recorded in other countries, their policy response

14
should be examined to extract best practices. Finally, and of
particular interest, is the fact that in most countries COVID deaths
seem to have ‘‘replaced’’ the deaths attributable to respiratory
disease that appear likely to have occurred in the absence of the
pandemic, based, that is, on an extrapolation of past trends of
such deaths.

5. Future research

Future studies could usefully seek the optimization of θ in
ormula (3), that is, investigate the dynamic selection of opti-
um θ to ensure better performance. Additionally, as the usual
eural networks fail to model time series adequately, especially
n the case of incomplete/limited data during the onset of the
pidemic [59], the study of recurrent neural networks, such as
STM and GRU, would constitute an interesting future step if
ecessary computational power is available. This research should
xamine their impact on predictive accuracy, computation time
nd other resources, given the potential of these mechanisms
o outperform ensemble time series models with no more than
reasonable increase in the computation power requirement.

ndeed, the consideration of a non-linear meta-learning approach,
s opposed to a linear approach, and of prediction intervals, as
pposed to a point forecast, could constitute a fruitful next step.
oreover, the use of classification techniques to analyze hetero-
eneous and homogeneous countries could be considered another
ayer following the application of the forecasting methods. As
uch, a clustering analysis might usefully be implemented based
n the notion of excess mortality. Finally, the countries of Japan
nd the Philippines standout, and their policy response should
e subject to an epidemiological examination to determine what
essons might be learned.
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ppendix A

Corrections made to the dataset

• Name of countries:

– CuraÃ§ao is changed to Curaçao;
– Falkland Islands (Malvinas) is changed to Falkland Is-

lands [Islas Malvinas];
– North Macedonia is changed to North Macedonia [FY-

ROM];
– Republic of Korea is changed to Republic of Korea

(South);
– Reunion is changed to Réunion;
– Saint Helena ex. dep. is changed to Saint Helena;
– United Kingdom of Great Britain and Northern Ireland

is changed to The United Kingdom;
– Venezuela (Bolivarian Republic of) is changed to

Venezuela;
– Wallis and Futuna Islands is changed to Wallis and

Futuna;
– Åland Islands was not found in death table. We do not

have data for the proportion of respiratory disease in
this region.

• The following countries report for a period of fewer than
eight years and we did not consider their time series.
Albania; Bahrain; Barbados; Bosnia and Herzegovina; Brazil;
Brunei; Georgia; Panama; Saint Lucia; Seychelles; Tajikistan;
Trinidad and Tobago; Uruguay; Uzbekistan; Mongolia; Saint
Vincent and the Grenadines; Venezuela.

• Turkey has data for fewer than eight years; however, it has
data for the most recent years considered. For this reason, it
could be included in the study.

• Kazakhstan and Russian Federation were removed because
they did not report data for recent years up to 2016.

• Deaths for China were not reported in the UN data. As a
result, China is not in our final dataset.

ppendix B
See Table B.1.
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ppendix C

Paired Samples Wilcoxon Test
ias_BMA_ho3 < −c(−18.17144646, 0.845229748,
0.648753395, −10.52927, 2.640979819,
6.047415139, −10.09648659, −0.319100827, 0.26282477,
0.412075608, 0.873710439, −1.372537678,
0.200553074, −2.301345913, 0.828796298, −0.236458205,
.422081767, −0.034221056, −0.090795426,
4.275662757, −0.064372261, −3.703538265, −8.311840917,
0.008717382, −4.60124742, −0.00465072, 0.009560071,
5.9249704, −22.95882253, 0.386195568, −34.78938463,
4.593744983, −13.21814867,
38.06280128, 147.2735756, 1.551344272, −45.85641334,
0.014675746, −3.921082105, −0.086582781,
1.055021314, 0.243349847, −2.871760309, −5.708225223,
1.948395992, 1.868894907, −0.354732773, 9.097734439,
.570868831, 1.387560297, 2.349852967, 0.650763477,
4.846550659, 5.076776565, 1.447481937)
ias_BMA_delms < −c(−16.46339149, 2.489256218,
.447586255, −8.368886752, 3.609450275,
3.732700619, −7.68550753, 0.193324403, 0.569831253,
0.162919411, 1.09325965, −1.213764392,
0.052303056, 0.530358968, 3.891338424, −0.188220835,
.987774606, −0.022094779, −0.079898738,
0.297984813, −0.058321039, 0.855019376, −3.811265776,
0.005188413, 1.361724355, −0.007053147,
0.001949911, 23.49176553, −12.66403877, 0.346276863,
22.82631969, −4.69635284, 0, −8.707822341, 174.3253852,
.388558066, −2.579278071, −0.281251108, −4.192272506,
0.363675082, 0.168771577,
0.054404215, −3.336746928, −6.398988299, −2.883322348,
.835158324, −1.525576287, 7.692591962, 3.927723027,
0.323862101, 0.543333355, −1.739072039, −7.993404212,
.620743283,−3.318268994)
yData <−

data.frame(group = rep(c("bias_BMA_ho3", "bias_BMA_
elms"), each = 55), weight = c(bias_BMA_ho3, bias_BMA_delms)
result = wilcox.test(weight ∼group, data = myData, paired =

RUE, alternative = "less")

print(result)
Table B.1
Comparison between forecasting deaths for respiratory diseases and actual COVID19 deaths.
Row Country Alpha-3 Country No Population RD TD COVID TD Standardized RD TD Standardized COVID TD

1 Armenia ARM 51 2957.728 83 2850 −0.417 −0.297
2 Australia AUS 36 25203.2 16554 909 2.288 −0.337
3 Austria AUT 40 8955.108 234 6214 −0.392 −0.227
4 Azerbaijan AZE 31 10047.719 294 2703 −0.382 −0.3
5 Bahamas BHS 44 389.486 21 170 −0.427 −0.352
6 Belarus BLR 112 9452.409 205 153 −0.397 −0.353
7 Belgium BEL 56 11539.326 1571 19693 −0.172 0.052
8 Bulgaria BGR 100 7000.117 412 7644 −0.363 −0.198
9 Canada CAN 124 37411.038 1766 15679 −0.14 −0.031
10 Chile CHL 152 18952.035 992 16724 −0.268 −0.01
11 Costa Rica CRI 188 5047.561 170 2185 −0.403 −0.311
12 Croatia HRV 191 4130.299 68 4072 −0.419 −0.272
13 Cuba CUB 192 11333.484 1689 146 −0.153 −0.353
14 Cyprus CYP 196 1198.574 19 129 −0.427 −0.353
15 Czechia CZE 203 10689.213 738 11960 −0.309 −0.108
16 Denmark DNK 208 5771.877 595 1345 −0.333 −0.328
17 Egypt EGY 818 100388.076 4626 7741 0.329 −0.196
18 El Salvador SLV 222 6453.55 452 1351 −0.356 −0.328
19 Estonia EST 233 1325.649 68 244 −0.419 −0.351
20 Finland FIN 246 5532.159 53 561 −0.422 −0.344
21 France FRA 250 65129.731 4733 64543 0.347 0.98
22 Germany DEU 276 83517.046 5815 34272 0.524 0.354

(continued on next page)
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Table B.1 (continued).
Row Country Alpha-3 Country No Population RD TD COVID TD Standardized RD TD Standardized COVID TD

23 Greece GRC 300 10473.452 2000 4921 −0.102 −0.254
24 Guatemala GTM 320 17581.476 1726 4827 −0.147 −0.256
25 Hungary HUN 348 9684.68 344 9884 −0.374 −0.151
26 Iceland ISL 352 339.037 17 29 −0.428 −0.355
27 Ireland IRL 372 4882.498 316 2252 −0.379 −0.309
28 Italy ITA 380 60550.092 4792 74985 0.356 1.196
29 Japan JPN 392 126860.299 39818 3548 6.107 −0.282
30 Kuwait KWT 414 4207.077 291 937 −0.383 −0.337
31 Kyrgyzstan KGZ 417 6415.851 253 1359 −0.389 −0.328
32 Latvia LVA 428 1906.74 103 668 −0.414 −0.342
33 Lithuania LTU 440 2759.631 185 1644 −0.4 −0.322
34 Maldives MDV 462 530.957 5 48 −0.43 −0.355
35 Malta MLT 470 440.377 39 220 −0.424 −0.351
36 Mauritius MUS 480 1269.67 82 10 −0.417 −0.356
37 Mexico MEX 484 127575.529 5956 126507 0.547 2.263
38 Montenegro MNE 499 627.988 12 690 −0.428 −0.342
39 Netherlands NLD 528 17097.123 1206 11565 −0.232 −0.117
40 New Zealand NZL 554 4783.062 232 25 −0.392 −0.355
41 North Macedonia MKD 807 2083.458 36 2522 −0.425 −0.304
42 Norway NOR 578 5378.859 528 436 −0.344 −0.347
43 Philippines PHL 608 108116.622 15580 9253 2.128 −0.164
44 Poland POL 616 37887.771 5347 29119 0.448 0.247
45 Portugal PRT 620 10226.178 2097 7045 −0.086 −0.21
46 Qatar QAT 634 2832.071 12 245 −0.428 −0.351
47 Republic of Korea KOR 410 51225.321 3712 962 0.179 −0.336
48 Rep. of Moldova MDA 498 4043.258 221 3020 −0.394 −0.293
49 Romania ROU 642 19364.558 1484 15919 −0.187 −0.026
50 Serbia SRB 688 8772.228 419 3288 −0.362 −0.288
51 Singapore SGP 702 5804.343 906 29 −0.282 −0.355
52 Slovakia SVK 703 5457.012 476 2317 −0.352 −0.308
53 Slovenia SVN 705 2078.654 145 2889 −0.407 −0.296
54 Spain ESP 724 46736.782 3042 50442 0.069 0.688
55 Suriname SUR 740 581.363 39 123 −0.424 −0.353
56 Sweden SWE 752 10036.391 665 8727 −0.321 −0.175
57 Switzerland CHE 756 8591.361 428 7049 −0.36 −0.21
58 The UK GBR 826 67530.161 6943 74570 0.71 1.188
59 Turkey TUR 792 83429.607 1658 21295 −0.158 0.085
60 Ukraine UKR 804 43993.643 1089 18854 −0.252 0.034
61 US of America USA 840 329064.917 16554 345253 2.288 6.791
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