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Simple Summary: The development of uveal melanoma is a multifactorial and multi-step process, in
which specific and recurrent mutations arise early. Among the recurrently mutated genes, GNAQ and
GNA11 are involved in the process of carcinogenesis and are mutated in 80–90% of these tumours.
Historically, there has been speculation as to whether these two genes are involved in the progression
of primary uveal melanoma to metastatic disease, in addition to the oncogenic process itself. For this
reason, both genes have been the subject of multiple research studies. Additionally, due to their high
mutation rate in uveal melanoma, these genes and the downstream signaling pathways in which they
are involved have been postulated as interesting therapeutic targets. This review aims to provide
a current comprehensive view of what we know about GNAQ and GNA11 genes on oncogenesis,
prognosis and therapeutic opportunities in uveal melanoma.

Abstract: The GNAQ and GNA11 genes are mutated in almost 80–90% of uveal melanomas in a
mutually exclusive pattern. These genes encode the alpha subunits of the heterotrimeric G proteins,
Gq and G11; thus, mutations of these genes result in the activation of several important signaling
pathways, including phospholipase C, and activation of the transcription factor YAP. It is well known
that both of them act as driver genes in the oncogenic process and it has been assumed that they do
not play a role in the prognosis of these tumours. However, it has been hypothesised that mutations
in these genes could give rise to molecularly and clinically distinct types of uveal melanomas. It has
also been questioned whether the type and location of mutation in the GNAQ and GNA11 genes
may affect the progression of these tumours. All of these questions, except for their implications in
carcinogenesis, remain controversial. Uveal melanoma has a distinctive genetic profile, and specific
recurrent mutations, which make it a potential candidate for treatment with targeted therapy. Given
that the most frequent mutations are those observed in the GNAQ and GNA11 genes, and that both
genes are involved in oncogenesis, these molecules, as well as the downstream signalling pathways in
which they are involved, have been proposed as promising potential therapeutic targets. Therefore, in
this review, special attention is paid to the current data related to the possible prognostic implications
of both genes from different perspectives, as well as the therapeutic options targeting them.
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1. Introduction

Uveal melanoma (UM) is the most common intraocular malignancy in adults and the
second most prevalent type of melanoma after cutaneous malignant melanoma (CMM) [1,2].
This malignancy is associated with relatively high mortality secondary to metastasis, de-
spite the good local disease control. Metastasis occurs in approximately 50% of UM patients,
mostly to the liver [1,3,4]. Pathophysiologically, UM has a common embryologic origin
with CMM; however, both tumours show different epidemiologic, molecular and biological
features. Deeper sequencing studies of tumour specimens from UM have revealed the
existence of large genetic differences between both neoplasms. Intriguingly, UM shows
a significantly lower mutational rate than CMM and most other types of solid malignan-
cies. Actually, UM lacks mutations in BRAF or NRAS oncogenes, which are typically
mutated in CMM [5–8]. Instead, this neoplasm shows its own tumour-specific chromoso-
mal aberrations and mutated genes that exhibit recurrent variants, constituting mutational
hotspots [5]. In fact, it shows two sets of mutations that occur at different frequencies that
should be considered as driver mutations; one group of mutations corresponds to those
that promote the oncogenic process, and the other group is correlated with the prognosis of
the disease [6].

The genetic analysis of tumoral samples in UM is crucial for metastatic risk prediction,
as well as for patient management and follow-up. Historically, several histopathological,
clinical and radiological parameters with prognostic value have been considered to evaluate
the risk of metastasis. Nevertheless, the presence of specific somatic cytogenetic and genetic
biomarkers can estimate more accurately the progression to metastatic disease. Among
these specific alterations, cytogenetic studies highlighted that tumours with monosomy 3
(M3) or gain of 8q are associated with poor prognosis. Monosomy 3 is present in nearly
50% of UMs acting as an independent risk factor for metastasis that strongly correlates
with significantly reduced disease-free survival (DFS). This chromosomal aberration has
become the most significant prognostic parameter in UM [9,10]. The frequent coexistence
of 8q gains and M3 is associated with higher metastatic rates than a single aberration and
shows a 5-year mortality rate of 66% in cases of concomitant M3 and 8q gain, 40% in cases
of M3 and 31% in cases with 8q gain [11,12].

Another recurrent genetic alteration that is strongly associated with a bad progno-
sis is the inactivation BAP1 gene (encoding BRCA1-associated protein 1 and located in
chromosome 3). The biallelic inactivation of this gene occurs in approximately 50% of
primary UMs, combining M3 and a deleterious somatic mutation in the second BAP1 allele.
BAP1-inactivated UMs are at a high risk of metastasis [13].

In addition to those genetic alterations with strongly prognostic values, UM frequently
exhibit other chromosomal aberrations and somatic mutations. Indeed, the most common
detected somatic mutations in UM are located in the guanosine nucleotide-binding protein
Q gene (GNAQ) and its paralogue guanosine nucleotide-binding protein alpha-11 gene
(GNA11). Those two genes are mutated in nearly 90% of these tumours in a generally
mutually exclusive pattern [6,8,14–16]. GNAQ and GNA11 genes encode protein members
of the q class of G-protein alpha subunits involved in mediating signals between G-protein
coupled receptors (GPCRs) and downstream effectors [17]. Both genes have mainly been
considered as driver genes in carcinogenesis, as they lead to constitutive activation of
GPCR signalling. Mutations in GNAQ and GNA11 genes arise early in UM and are even
present at the very early stages corresponding to benign melanocytic lesions [16–19]. In
contrast, they are reportedly not associated with overall survival (OS) in UM patients [20].
Notwithstanding, mutations in GNA11 were found more frequently than GNAQ mutations
in patient cohorts with metastatic UM (MUM) [21,22].

Since the role of GNAQ and GNA11 genes in UM was discovered, there has been
speculation as to whether or not they might be involved in the genetic prognosis of the
disease. Additionally, due to their high mutational rate in UM, both genes have also been
the subject of therapeutic studies as they act as the switch of the MAPK/ERK signalling
pathway, which is constitutively active in these tumours. Currently, important efforts
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are being addressed to develop effective therapies to prevent metastatic disease, which is
actually the principal determinant factor of a patient’s survival. Therefore, the inactivation
of GNAQ/GNA11 mutants has been proposed as a potential strategy to treat UM, leading
to a rapid expansion of clinical trials [23–26].

In this review, we present and update the recent discoveries and studies about the role
of GNAQ and GNA11 mutated genes in the disease oncogenesis, prognosis as well as target
therapeutic options for UM.

2. Mutational Hotspots and Other Less Recurrent Described Mutations in GNAQ and
GNA11 Genes

The GNAQ and GNA11 genes are located on chromosomes 9q21.2 and 19p13.3, re-
spectively. They are paralogous genes with a sequence homology of approximately 90%
and have a coding region comprising seven exons. The proteins encoded by these genes
have similar molecular weights (42,142 and 42,123 Da, respectively), and consist of 359
amino acids that comprise the αq and α11 nucleotide-binding subunits of heterotrimeric G
proteins [27].

The frequency of GNAQ/GNA11 mutations is approximately 80–90% of the UM
cases [18,20,21]. In the scientific literature, the frequencies of GNAQ mutations have
been reported to range from 24.2 to 53.3% and those of GNA11 mutations from 24.2 to
60% [20,28–31]. In previous studies, non-Caucasian populations have shown reduced
mutation frequencies in these two genes, but more recent studies have shown that mutations
in this population may be closer to the frequencies previously mentioned [32,33]. This
could indicate that ethnic and demographic variables could play important roles that are
yet to be elucidated.

The pioneering sequencing studies of GNAQ and GNA11 in UM showed an exclusive
pattern of somatic mutations in both genes [17]. Subsequent studies have described iso-
lated cases of mutations affecting these genes simultaneously [28]. Mutational hotspots
in both genes have already been described in the literature, characterised by the presence
of activating missense variants that exclusively affect exons 4 and 5, and more specifi-
cally, the arginine 183 (R183) and glutamine 209 (Q209) codons. The majority of GNA11
mutations in codon 209 leads to glutamine to leucine (p.Q209L) and proline (p.Q209P)
substitutions [20,29,32,34]. These mutations occur from one-base substitutions at codon
209 (CAG), with the most common substitutions of A > T (94.5%) and A > C (2.7%) [19].
Contrastingly, in the GNAQ gene, a one-base change at codon 209 (CAA) can predict the
substitution of glutamine by leucine (A > T, p.Q209L) and proline (A > C, p.Q209P), in
most cases [17,28]. In exon 5, other mutations, including p.Q209M, p.Q209H, p.Q209I,
p.F228L, and p.M203V in GNAQ and p.Q209Y, p.E234K, p.E221D in GNA11, have also been
described [28,30] (Table 1).
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Table 1. Summary table of the different mutations described for GNAQ and GNA11 genes in uveal
melanoma. Chr: chromosomes.

Gene Chr Mutations Exon Involved Percentage of UM with
Mutations

GNAQ 9q21.2

p.(Thr96Ser)
p.(Pro170Ser)
p.(Gln176Arg)
p.(Arg183Cys)
p.(Arg183His)
p.(Ile189Thr)

p.(Pro193Leu)

4

24.2–53.3%
[17,28,30–33]p.(Met203Val)

p.(Gln209Leu)
p.(Gln209Pro)
p.(Gln209Met)
p.(Gln209His)
p.(Gln209Ile)

p.(Phe228Leu)
p.(Val344Met)

5

GNA11

Chr Mutations Exon involved

19p13.3

p.(Gly48Leu) 2

24.2–60%
[19,28,30–33,35]

p.(Arg166His)
p.(Arg183Cys)
p.(Arg183His)

4

p.(Gln209Leu)
p.(Gln209Pro)
p.(Gln209Tyr)
p.(Glu221Asp)
p.(Glu234Lys)

5

p.(Arg338His) 7

Overall, the frequency of mutations in the exon 4 of GNAQ and GNA11 genes is lower.
In GNA11, most mutations are caused by C > T transitions at codon 183 (CGC), and CC
> TT transitions at codons 182-183, which predict the replacement of arginine to cysteine
(p.R183C) or histidine (p.R183H). Likewise, the few mutations reported to affect the codon
183 of GNAQ (CGA) are caused exclusively by G > A transitions [19]. Other mutations
affecting the exon 4 of GNAQ are p.P170S, p.I189T, p.Q176R, and p.P193L, which achieve
an overall frequency of 8.9% in some series [28] (Table 1).

Mutations affecting the codon p.Q209 trigger a complete loss of the GTPase activity,
resulting in prolonged constitutive activation of GNAQ and GNA11, thereby generating
permanent downstream signalling. In contrast, mutations that affect the p.R183 residue
generate a more tenuous activation due to a partial loss of the GTPase activity [19].

2.1. G Protein-Coupled Receptors

G protein-coupled receptors (GPCRs) comprise the largest family of cell surface recep-
tors encoded by the human genome. While cancer-related mutations in GPCR signalling
are less common than those in receptor tyrosine kinases, comprehensive sequencing of
the human cancer genome has revealed that roughly 20% of human cancer mutations are
associated with altered GPCR signalling [34]. GPCRs have seven transmembrane α-helical
segments spanning the plasma membrane, with an extracellular N-terminus and intracellu-
lar C-terminus. Upon the binding of the ligand to the extracellular domain, the receptor
undergoes a conformational change that is transmitted to its cytosolic region. This activates
a trimeric GTP-binding protein or G protein. The G protein is made up of three subunits
(alpha, beta, and gamma), and both the alpha and gamma subunits contain covalently
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bonded lipid tails that serve as anchors for the G protein to the plasma membrane. When
no signal is present, the alpha subunit is linked to GDP, rendering the G protein inactive.
When activated, the alpha subunit undergoes a conformational shift, causing GDP to detach
and GTP, which is plentiful in the cytosol, to quickly bind to GDP. When GTP binds to the
G protein, it undergoes a conformational shift, activating both the alpha and beta gamma
complexes. The activated alpha subunit dissociates from the active beta-gamma complex,
and the activated target proteins communicate with additional cascade components [36].

Following activation, proteins belonging to the family of regulators of G protein sig-
nalling accelerate the G subunit’s intrinsic GTPase activity, reverting the G protein to an
inactive GDP-bound state and so promoting the formation of the inactive heterotrimeric pro-
tein complex. The p.R183 and p.Q209 mutations are located in the Gq/11 proteins’ switch
I and II domains, respectively. These mutations transform G proteins to a constitutively
active state by decreasing their GTPase activity [37].

2.2. Mitogen-Activated Protein Kinase

Primary and metastatic UMs showed that high levels of phosphorylated MEK and
ERK proteins occur in the absence of BRAF mutations [38]. It is well established that
mutant GNAQ and GNA11 proteins activate phospholipase C (PLC), which converts phos-
phatidylinositol diphosphate to inositol triphosphate and diacylglycerol (DAG) [39]. Then,
inositol triphosphate and DAG send out signalling messengers, including calcium and
protein kinase C (PKC). PKC phosphorylation initiates the MAPK pathway by sequentially
phosphorylating Raf, MEK1, MEK2, and ERK [40]. These proteins converge to form mul-
tiple transcription factors (TFs) that regulate cell proliferation and apoptosis. However,
Mouti et al. demonstrated that MAPK activation has only a minor impact on the carcino-
genic potential of GNAQ mutations [41]. Subsequent studies have shown that primary
UM tumours have heterogeneity in MAPK activation when the GNAQ/11 mutation is
present [42].

2.3. Protein Kinase C

In vitro analysis using protein kinase C (PKC) inhibitors of various specificities support
the concept that the mutant GNAQ protein increases UM proliferation through PKC
activation. Wu et al. discovered that enzastaurin, which is a potent PKCβ inhibitor [43],
induces G1 growth arrest and apoptosis in mutant GNAQ cell lines at considerably higher
rates than in wild-type GNAQ and GNA11 cell lines [44]. This effect is mediated by the
reduced activation of the MAPK pathway, with a decrease in phosphorylated ERK and
cyclin D1 levels. PKC inhibitors, sotrastaurin (AEB071) and bisindolylmaleimide I (BIM),
have also been shown to have substantial anticancer action against UM cells containing
GNAQ mutations. This fact indicates that PKC signalling is crucial in mediating the
oncogenic effects of mutant Gq in UM [34,45]. Interestingly, the authors also found that
inhibition of PKC, or its removal by shRNA, leads to a reduction in NF-κB signalling [45].
This evidence proposes an alternative method of cell proliferation independent of the
MAPK pathway involving PKC activation.

2.4. Phosphatidylinositol-3 Kinase/Akt

In vitro investigations of the GNAQ mutant in UM cell lines demonstrated that the
suppression of PI3K-alpha and P13K-beta had little effect on proliferation, indicating that
PI3K is not the primary growth promoting factor [36]. However, when MEK inhibition
was assayed, a rebound rise of PI3K/Akt was found, which implies that this pathway
contributes to growth maintenance in the presence of MAPK inhibition [36].

2.5. YAP and Its Upstream Triggers

The Hippo-YAP pathway is a regulator of cell contact inhibition, proliferation and
death [37]. Yu et al. investigated UM cell lines and patient tissue samples to determine
whether mutations in GNAQ and GNA11 lead to YAP/TAZ activation under physiological
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conditions. In vitro cell lines and human samples with GNAQ or GNA11 p.Q209 mutations
showed higher amounts of YAP dephosphorylation and nuclear localisation in comparison
to cell lines with wild-type GNAQ and GNA11, confirming these findings [46]. Moreover,
the deletion of YAP using shRNA decreased tumorigenesis when the GNAQ-mutant cells
were injected into nude mice [46].

A parallel investigation by Feng et al. further defined the molecular mechanism of
YAP activation using a GNAQ-p.Q209 mutant model [47]. Other recent studies have shown
the importance of this signalling pathway in the initiation and progression of UM [48].
GNAQ signalling led to YAP activation through a guanine nucleotide exchange factor,
Trio, and its downstream GTPases Rho and Rac. Rho and Rac are well-known regulators
of actin cytoskeleton [49]. Dynamic regulation of YAP has been shown by its connection
with cytoskeleton-associated proteins, which sequesters YAP in the cytoplasm [47]. Actin
polymerisation mediated by Rho/Rac may then sequester angiomotin, allowing YAP to
relocate to the nucleus [37].

3. Prognostic Value of GNAQ and GNA11 Mutated Genes in Primary Uveal Melanoma

Prognostication of UM patients can be achieved by analysing the mutational tumour
status. Since the initial UM sequencing studies, there has been controversy about the
possible involvement of the GNAQ and GNA11 genes in the prognosis of these tumours.
Firstly, it was suggested that several lines of evidence indicate that GNA11 mutations
may have a stronger effect on melanocytes than those mutations in GNAQ [50]. The first
level of evidence was based on the statement that there were significantly more GNA11
p.Q209 than GNAQ p.Q209 mutations in UM metastases. These mutations were also
more common in locally advanced primary tumours, specifically in those originating from
ciliochoroidal region, which is per se a prognostically adverse feature [19]. This observation
was also initially supported by studies in mice, where the Gna11 DsK7 mutation was
observed to be more tumorigenic than the Gnaq DsK1 mutation regarding melanocyte
growth stimulation [51].

Several years later, Van Raamsdonk et al. also speculated that the differences observed
in mice may be a functional consequence of the different mutations rather than a real
difference in function between GNA11 and GNAQ proteins. In contrast, these authors
observed no significant differences in survival among those patients with GNAQ mutations
and those with GNA11 mutations in their study, even though they observed a trend toward
increased survival among patients with tumours carrying a GNA11 mutations [19], which
contradicted the evidence described so far.

One year prior to this, Bauer et al. described that mutations in GNAQ were not suitable
to predict DFS in patients with UM [21]. This was also in agreement with Onken et al. who
indicated that GNAQ mutations have been shown to have similar frequencies at different
clinical stages of UM progression, and to be independent of chromosomal aberrations,
acting as an early oncogenic event [16].

In 2013, Koopmans et al. published that GNAQ and GNA11 genes are not associated
with patient outcome to an equal extent. They studied samples from 92 ciliary body and
choroidal melanomas and correlated the mutational status of both two genes with DFS
and other parameters. The authors concluded that the univariate analysis of patients with
tumours harbouring mutations in GNAQ or GNA11 genes was not significantly lower than
in wild-type tumours. They also examined whether mutations in these genes affected
the prognosis of patients with M3 tumours by using a survival analysis for changes in
chromosome 3 stratified for GNAQ and GNA11 mutations. Again, no significant effect
on the DFS in tumours with M3 and the presence of mutations in GNAQ or GNA11 was
observed [20].

Subsequently, numerous sequencing studies on UM tumour samples have been pub-
lished. The results were always diverse and controversial, since although both genes
showed some correlation with other prognostic features or different trends in relation to
OS, no specific and reproducible pattern was ever observed among the different cohorts of
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the patients studied (Table 2). In 2014 Griewank et al. reported a predominance of GNA11
mutations in MUM, and a poorer disease-specific survival of GNA11-mutant tumours in a
cohort of 30 UM patients with metastasis [22].

Table 2. Review of the mutation ratio of GNAQ and GNA11 genes in the current published UM
sequencing studies and the putative prognostic implication of those genes in the disease.

Mutation Rate Relation with Metastasis

Published Study GNAQ (%) GNA11 (%)

Van Raamsdonk et al. (2009) [17] 46 - -

Bauer et al. (2009) [21] No relation between GNAQ-exon 5 mutations
and DFS in UM (log-rank; p-value = 0.273).

Van Raamsdonk et al. (2010) [19] 48 34
Inverse relationship for GNA11 p.Q209
mutations with metastatic lesions (no

statistical data).

Pópulo et al. (2011) [29] 36 - No associations between the GNAQ mutations
and prognostic parameters.

Daniels et al. (2012) [52] 47 44 -

Furney et al. (2013) [53] 25 58 -

Harbour et al. (2013) [54] 42 52 -

Koopmans et al. (2013) [20] 50 43
No relation between patient survival in UM

and mutations in GNAQ and GNA11 (log-rank
p-value = 0.466).

Martin et al. (2013) [55] 45 40 -

Dono et al. (2014) [56] 42 33

GNAQ is inversely associated with M3
monosomy and metastasis. Mutations in

GNA11 are related with a more aggressive
tumour phenotype (no statistical data).

Ewens et al. (2014) [57] 46 35

GNA11 mutations are positively associated
with metastatic status after UM treatment

(odds ratio 2.5, 95% confidence interval
1.1–5.5).

Xiaolin Xu et al. (2014) [33] 18 20
Metastasis-free survival is not significantly

associated with GNAQ/11 mutations (p-value
= 0.94).

Johansson et al. (2015) [5] 29 50 -

Decatur et al. (2016) [58] 44 44 GNAQ and GNA11 are not associated with
prognosis.

Moore et al. (2016) [59] 43 49 -

Royer-Bertrand et al. (2016) [60] 58 42 -

Yavuzyigitoglu et al. (2016) [61] 49 45 -

Robertson et al. (2017) [62] 50 45 -

Kajersti et al. (2017) [63] 40 36
Mutations in GNAQ are inversely associated
with progression to metastasis (log-rank test;

p-value = 0.09).

Psinakis et al. (2017) [31] 18 24 No correlation between mutation status and
metastasis or OS time of patients.

Staby et al. (2018) [63] 41 35
GNA11 mutations are more frequent in the

metastatic group (not statistically
significative).

Kennedy et al. (2018) [64] 32 53 Suggestion of a bias towards GNA11 p.Q209L
mutations in metastasis.

Smit et al. (2018) [65] 42 44 -

Ominato et al. (2018) [32] 26 31 -
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Table 2. Cont.

Mutation Rate Relation with Metastasis

Afshar et al. (2019) [66] 58 42
No statistically significant association between
M3 and mutations in GNAQ (p-value = 0.200)

and GNA11 (p-value = 0.200).

Piaggio et al. (2019) [67] 48 46 -

Schneider et al. (2019) [28] 20 44

Significant prolonged OS in UM with GNAQ
exon 5 wildtype vs. mutated GNAQ exon
5-UM (p-value = 0.018) (not confirmed by

multivariate analysis).

Thornton et al. (2020) [68] 53 39

Silva et al. (2021) [30] 52 35
No correlation between mutations and

metastasis or OS time (GNAQ log-rank p-value
= 0.88; GNA11 Log-rank p-value = 0.51).

Isaacson et al. (2022) [69] 44 52
Time to first metastasis (GNA11 vs. GNAQ;

77.8 vs. 43.1 months). OS (GNA11 vs. GNAQ;
79.8 vs. 33.7 months).

Piaggio et al. (2022) [70] 51.14 48.86 GNA11 mutated UM has worse prognosis (HR
= 1.97 (95%CI 1.12–3.46), p = 0.02).

Later, Decatur et al. found that GNAQ mutations were associated with the absence
of ciliary body involvement and greater largest basal diameter; both of these are defined
as bad-prognosis characteristics. On the other hand, GNA11 mutations were not associ-
ated with any of the analysed clinicopathologic features with prognostic value [58]. In
the same year, Xiani Xu et al. evaluated the proportion of GNAQ/GNA11 mutations in
Chinese patients affected by UM, finding that metastasis-free survival was not significantly
associated with the GNAQ/11 mutations in the Kaplan–Meier analysis (p-value = 0.94).
Those results indicated that GNAQ and GNA11 mutations were not significantly associated
with metastasis [33].

On the other hand, in 2018, Kennedy et al. described that in a patient cohort com-
posed of 36 patients with primary UM, where 9 patients developed metastasis, 6 of them
harboured GNA11 mutations, 2 harboured GNAQ mutations and only 1 of them had no
mutations in neither of those 2 genes. Once more, regarding these results, the authors
proposed a bias towards GNA11 p.Q209L mutations in metastatic disease [64]. However,
the metastatic status was only available for a subset of the UM cases in this study. Thus,
the authors could not speculate on any potential association with metastasis. Another
work about the prognostic impact of GNAQ and GNA11 mutations was also published by
Staby et al. in 2018, whom found no significant differences in the prevalence of GNAQ and
GNA11 mutations between the patients with or without metastatic disease. Despite this,
these authors found that GNAQ mutations showed a tendency to be inversely associated
with progression to metastatic disease [63].

As it can be observed, no correlation between the presence of mutations in GNAQ and
GNA11 and patient survival could be demonstrated in most of the studies published to
date. This is because, although most of them showed a trend supporting that mutations in
the GNA11 gene are likely to lead to more aggressive disease development, this tendency
has rarely been accompanied by statistically significant results. Nonetheless, very recently,
Piaggio et al. demonstrated, for the first time, that UM with mutated GNA11 has worse
prognosis than those with mutations in GNAQ (HR = 1.97 [95%CI 1.12–3.46], p = 0.02).
They analysed the association between GNAQ and GNA11 mutations with disease-specific
survival, gene expression profiles, and cytogenetic alterations in 219 primary UMs from
three different cohorts (124 from the Department of Ophthalmology, Leiden University
Medical Center, Leiden, the Netherlands, 72 from the Laboratory of Tumor Epigenetics,
Ospedale Policlinico San Martino, Genoa, Italy and 80 from TCGA-UVM). In their study,
these authors concluded that GNA11 mutated UMs have worse prognosis, and it is asso-
ciated with high risk cytogenetic, mutational and molecular tumour characteristics that
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might be determined, at least in part, by differential DNA-methylation. Therefore, to date,
this is the only published study in which statistical results support the existence of an
association between mutations in the GNA11 gene and worse disease prognosis in patients
with UM [70]. Therefore, it could be assumed that the absence of statistically significant
results in the remaining published studies, in which a bias towards the GNA11 gene in
terms of prognosis had been observed, could be due to a reduced number of analysed
samples, or due to the insufficient follow-up time of patients.

Possible Relation between GNAQ and GNA11 Genes in Inflammation and HLA Expression in
Uveal Melanoma

In most types of tumours, immunological characteristics, such as inflammation, infil-
trate, and HLA molecules expression, correlate with the prognosis of the disease. In UM, it
has been described that inflammatory phenotype, which is characterised by the presence of
immune cells, such as T lymphocytes, macrophages, and an increased HLA expression, is
closely related to bad prognosis [6,57,58].

In 2019, van Weeghel et al. tried to investigate whether the expression of different types
of HLA molecules in UM is similarly related to M3 or might be related to the GNAQ/GNA11
mutational status, to the specific type of mutation (p.Q209P/p.Q209L), and whether or not
mutations in those two genes are responsible for different degrees of inflammation. As
result, they found no differences in the expression of inflammatory markers, such as HLA
expression, or levels of infiltrating leukocyte, according to the presence of GNAQ/GNA11
mutations. They also found no significant differences between the GNAQ/GNA11 or
p.Q209L/p.Q209P mutations for the survival of patients [71]. These observations support
the idea that GNAQ and GNA11 do not play a direct role in the regulation of inflammation,
and that the type and location of mutations in these genes do not appear to affect the
progression of UM.

4. Prevalence of GNAQ and GNA11 Mutations in Metastatic Uveal Melanoma

Many studies had showed that GNAQ and GNA11 genes exhibit similar mutations
rates in primary UM; however, less is known about the prevalence and significance of
mutations in these genes in MUM. Indeed, most of the published investigations regard-
ing somatic mutations in UM focused on the evaluation of elapsed time from the initial
diagnosis and treatment of the primary UM to the development of metastasis or death.

The pioneering studies on the role of GNAQ and GNA11 in the prognosis of UM had
reported that the distribution of GNA11 and GNAQ mutations differs between primary and
MUM, with a GNA11 to GNAQ ratio of 0.7 in primary UM, and 2.6 in MUM [19]. Griewank
et al., who also developed sequencing studies in MUM, reported that GNA11 mutations
were considerably more frequent than GNAQ mutations in these specimens. Additionally,
they found that patients with GNA11-mutant tumours had poorer disease-specific survival
(60.0 vs. 121.4 months p-value = 0.03) and OS (50.6 vs. 121.4 months p-value = 0.03), than
those with tumours lacking GNA11 mutations. Thus, they proposed that the survival data,
combined with the predominance of GNA11 mutations in metastasis, raises the possibility
that GNA11-mutant tumours may be associated with a higher risk of metastasis and poorer
prognosis than those tumours bearing GNAQ-mutants [22].

Recently, Terai et al. investigated the possible existence of a correlation between
metastasis-to-death in MUM patients with GNAQ and GNA11 mutations, the frequency
of mutations in MUM specimens, and the commonly mutated GNAQ/GNA11 genes in
survival after development of systemic metastasis. They found similar rate frequencies
for both genes in patients, where mutations in GNAQ and GNA11 genes were observed in
44.8% and 47.1% of patients, respectively [35]. This result was consistent with what has
been published for primary UM [17,19]. Furthermore, they identified that the survival of
MUM patients might be predicted according to the differences in the type of mutation
(p.Q209 vs. p.Q209L) rather than the GNAQ and GNA11 genes themselves [35].
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Subsequently, Isaacson et al. reported that in their cohort of patients, the GNA11 to
GNAQ ratio was 1.2. Contrary to other studies, the GNA11-mutated tumours demonstrated
a longer average time to first metastasis (GNA11 vs. GNAQ: 77.8 vs. 43.1 months) and a
better OS (79.8 vs. 33.7 months). Nonetheless, they discuss that the differences between
their results, and those from other investigations, could be due to the ratio of metastatic vs.
primary tumour examined, and also to the small number of samples [69].

5. Targeted Therapy of GNAQ and GNA11 Mutations in UM

Targeted therapy is a therapeutic modality that refers to the drugs designed to inter-
fere with a specific molecular pathway that is believed to play a critical role in tumour
development or progression [72]. As it was described, UM has a distinctive genetic profile
and specific recurrent mutations that make them potential candidates for targeted therapy.
Given that the most frequent mutations are those observed in the GNAQ and GNA11
genes [17,20,62], these molecules and their downstream signalling pathways have been
postulated as interesting therapeutic targets.

The growing relevance of this therapeutic strategy is now evidenced by the numerous
relevant papers that regularly report the latest results and knowledge on UM-targeted
therapies [73–76] (Figure 1, Table S1)
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Figure 1. Simplified view of heterotrimeric G protein Gαq/11 and its cellular downstream signalling
pathways in UM. Targeted therapies studied only preclinically are shown in red, and those already
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5.1. Guanine Nucleotide Dissociation Inhibitors (GDI)

The main action of GDIs is to prevent the release of GDP, i.e., they inhibit GDP/GTP
exchange, which leads to the G protein remaining in an inactivated state, and therefore,
blocking its signalling. Two molecules stand out within this group, FR900359 and YM-
254890 [77].

The first of these, FR900359, is a cyclic depsipeptide derived from the plant Ardisia
crenata, which selectively inhibits Gαq, Gα11 and Gα14, and is inactive in cells lacking these
proteins [78]. It was also shown that FR900359 prevents Gq-dependent ERK1/2 activation.
Lapadula et al. demonstrated that the inhibition of oncogenic Gαq/11 signalling by using
this molecule promotes apoptosis, induces G1 cell cycle arrest, and prevents UM cell colony
formation [23]. In a similar way, Onken et al. observed that FR900359 was able to restore
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melanocytic differentiation, promote apoptosis, and inhibit cell proliferation and second
messenger signalling in UM cells with Gαq constitutively activation [79].

On the other hand, the YM-254890 molecule is a cyclic depsipeptide isolated from
Chromobacterium sp. QS3666 [80] also with inhibitory action on Gαq/11 activation. In
2019, a study led to the discovery of an analogue, YM-19, which possessed potent inhibition
of Gαq/11-mediated signaling. This analogue, despite showing minimal loss of activity in
comparison to YM-254890, exhibited the advantage of being synthesised more rapidly [81].
In a recent publication, it was concluded that YM-254890 was able to suppress oncogenic
Gαq signalling and cell proliferation in a wide range of UM cells, regardless of primary
or metastatic origin. Interestingly, it was also observed that GNAQ mutant cells were less
sensitive than GNA11 mutant cells to YM-254890 [82].

Despite the fact that heterotrimeric Gαq/11 G proteins have been known for decades,
their selective inhibition is still considered a challenge. The reasons include the high affinity
of GDP/GTP for the G-protein, as well as the fact that its high intracellular levels hinder
biochemical competition, and that this “mutation-nonspecific” type of inhibitor can block
both wildtype and oncogenic protein forms [83].

5.2. RAS/RAF/MEK/ERK/MAPK Signalling Pathway

It is well known that Gαq/11 activation leads to the stimulation of the downstream
signalling pathway MAPK, which contributes greatly to UM carcinogenesis [84].

One of the most important intermediate effectors in this pathway are the MEK enzymes.
Within the subgroup of MEK inhibitors, one of the best known and most tested molecules
is selumetinib (MEK1/2 inhibitor). Ambrosini et al. demonstrated that treatment with
selumetinib (AZD6244) regulated the expression of the genes involved in proliferation,
cell invasion and drug resistance in tumour tissues of patients with metastatic GNAQ/11
mutant UM [85]. Thus, based on this premise, a series of studies were developed. That
same year, a phase II open-label randomised trial of selumetinib as monotherapy versus
temozolomide in patients with advanced melanoma (uveal and cutaneous) was published
without significant clinical benefit [86].

In 2014, the results of a clinical trial (NCT01143402) in patients with advanced UM
were presented. In this study, selumetinib as monotherapy was compared to chemotherapy
(temozolomide or dacarbazine), showing only a modest improvement in progression-
free survival (PFS) and response rate, with no improvement in OS [87]. Subsequently,
the efficacy of this molecule, in combination with dacarbazine, was assessed; the study
(NCT01974752) was conducted in patients with MUM, and no prior systemic therapy
revealed that the combination of selumetinib plus dacarbazine had a tolerable safety profile,
but did not significantly improve PFS compared to the placebo plus dacarbazine. These
results raise the possibility that dacarbazine limits the efficacy of MEK inhibitors in UM,
making it interesting to study selumetinib in alternative combinations other than with
alkylating agents [88,89].

Following the previous approach, Decaudin et al. evaluated the potential of drug
combinations to increase the efficacy of selumetinib in UM cell lines and patient-derived
xenograft models (PDXs) by first assessing the combination of selumetinib and dacar-
bazine. They observed that this chemotherapy agent did not improve the in vitro or in vivo
antitumour efficacy of selumetinib, which is consistent with the results of the Carvajal
et al. clinical trial. Thus, they tested other combinations of selumetinib with docetaxel
(chemotherapy agent), AZ6197 (ERK inhibitor), and vistusertib-AZD2014 (mistusertib-
AZD2014), with the latter two appearing to be the most effective in UM PDXs [90]. A
multi-center phase Ib study of intermittent dosing of selumetinib in patients with advanced
UM, not previously treated with a MEK inhibitor (NCT02768766), is currently recruiting.
This clinical trial is based on the hypothesis that greater efficacy and better tolerability can
be achieved by administering selumetinib in higher doses using a pulsatile dosing schedule.

Another orally administered selective MEK1/2 inhibitor is trametinib (GSK1120212).
Falchook et al. conducted a trial (NCT00687622) including 81 patients with CMM, and 16
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with advanced UM and. Although efficacy was mainly observed in BRAF-mutated CMM,
among the trametinib-treated UM patients, two achieved 24% tumour shrinkage (one of
whom had a GNAQ mutation), and four had stable disease for ≥16 weeks (including two
who received treatment for >40 weeks) [91].

5.3. PLCβ/PKC Signalling Pathway

Phospholipase C beta (PLCβ) is able to activate several protein kinase C (PKC) iso-
forms and RasGRPs [92]. In UM, MAPK signalling depends on the specific PKC isoforms
δ and ε, which activate the RAS-exchange factor RasGRP3 [93,94]. For this reason, the
study of inhibitors of these molecules, either in monotherapy or in combination with other
targeted therapies, is of great interest.

In an experimental study, the molecule enzastaurin was shown to decrease the expres-
sion and/or phosphorylation of several PKC isoforms including βII, ε and θ in GNAQ-
mutated UM cells. Down-regulation of these PKC isoforms resulted in enhanced antitu-
mour action through the induction of apoptosis and G1 cell cycle arrest on GNAQ mutant
UM cells, compared to those wild type [44]. In the same study, the combination of enzastau-
rin and MEK1/2 inhibitor (AZD6244 or U0126) showed an increased antiproliferative effect.
AHT956 is another PKC inhibitor with a selective effect on cells with GNAQ/11 mutations
that induces G1 cell cycle arrest [82,95].

In a similar preclinical approach, it was shown that the PKC inhibitor, AEB071 (so-
trastaurin), was able to significantly reduce the viability of UM cells harboring GNAQ
mutations through the PKC/NF-κB and PKC/ERK1/2 pathways specifically, by the inhibi-
tion of the expression of PKC isoforms α, β, δ, ε, and θ [45]. Based on these experimental
results, in which sotrastaurin showed selective sensitivity against Gα mutant UM cell
lines, an open-label, multicenter, phase I dose-escalation study (NCT01430416) in MUM
patients was performed. Preliminary data of this study showed manageable toxicity at
multiple dose levels, as well as clinical activity [96]. However, in vitro and in vivo stud-
ies demonstrated that PKC inhibitors in monotherapy were not able to induce sustained
suppression of MAPK signalling, so dual therapy was evaluated. Hence, it was observed
that the combination of PKC inhibitor, AEB071, and MEK inhibitor, MEK162 (binimetinib)
or PD-0325901 (mirdametinib) leads to the sustained inhibition of this signalling pathway.
On the one hand, in vitro studies showed a strong synergistic effect on the induction of
apoptosis and proliferation arrest. Alternatively, in vivo studies showed it causing marked
tumour regression in UM patient-derived xenograft [95,97].

In the same way, it was shown that AEB071, together with CGM097 (MDM2 inhibitor)
showed an additive effect enhancing the anti-proliferative and apoptotic effect, as well
as the inhibition of tumour growth [98]. Subsequently, a phase Ib dose-escalation study
(NCT01801358), with the combination of AEB071 (sotrastaurin) and MEK162 (binimetinib)
in adult patients with confirmed MUM was proposed. However, due to discontinuation
of enrolment due to side effects, the phase II part of this trial was not conducted (Array
Biopharma, now a wholly owned subsidiary of Pfizer, 2020). Other targeted therapy
modalities combined with sotrastaurin have been tested and are described under the
following headings.

A promising novel PKC inhibitor is the LSX196 molecule, later registered as IDE196
(darovasertib). An in vitro study with GNAQ/11 mutant UM cells observed that the combi-
nation of LSX196 with trametinib (MEK1/2 inhibitor), showed a strong synergistic effect in
reducing cell viability, while the combined treatment of this first molecule with VS-4718
(FAK inhibitor) reflected a more limited synergy [82].

Several clinical trials are currently underway for evaluation. A phase I/II study,
(NCT03947385) designed to characterise the safety and anti-tumour action of darovasertib
in patients with solid tumours harbouring GNAQ/11 mutations, including MUM, CMM,
and colorectal cancer among others, with an approximate completion date of late 2022–
2023, presented in July 2021 a preliminary robust 57% 1-year OS in monotherapy and early
partial responses, in combination with binimetinib (MEK inhibitor) and crizotinib (c-MET
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inhibitor), in the group of patients with MUM. More specifically, a partial response in 22%
of cases, and tumour shrinkage in 79% was observed with darovasertib and binimetinib
combination therapy (IDEAYA Biosciences, 2021).

Another clinical trial (NCT02601378), with an estimated completion date of June
2022, aims to characterise the pharmacokinetics/pharmacodynamics, tolerability, safety
and antitumour activity of LXS196 as a single agent and in combination with HDM201
(siremadlin), an MDM2 inhibitor, in patients with MUM. In 2019, Kapiteijn et al. published
preliminary analyses suggesting tolerable toxicity and encouraging clinical activity of
LXS196 as monotherapy in these patients [99].

5.4. Hippo/YAP Signalling Pathway

Feng et al. demonstrated that the GNAQ oncogene is able to control the Hippo
pathway through a cytoplasmic protein tyrosine kinase called focal adhesion kinase (FAK).
They detailed that Gαq activates FAK through a non-canonical TRIO-RhoA signalling
pathway, which in turn positively regulates the yes-associated Protein (YAP) by tyrosine
phosphorylation of MOB1, inhibiting the Hippo kinase cascade and promoting tumour
growth in the UM [100]. Therefore, given that FAK inhibition will regulate the Hippo-
YAP pathway, the same study tested FAK inhibitors (FAKi), VS-4718 (PND-1186) and
PF562771, and observed in vitro that UM cells showed a dose-dependent sensitivity to
these molecules, and that FAKi inhibits YAP-dependent UM tumour growth.

It is well known that FAK can be stimulated when tumour cells are exposed to other
types of tyrosine kinase inhibitors, implying therapeutic resistance [101]. On the other hand,
it has been observed in different cancers that FAKi shows increased activity in combination
with other antineoplastic drugs [102,103]. Therefore, several studies are currently being
conducted along these lines. Thus, Paradis et al. demonstrated, both in cell lines and in
xenograft and liver MUM models in vivo, that the pharmacological combination of MEK-
ERK and FAKi showed a negative synergistic action on cell growth, as well as cytotoxic
effects leading to tumour regression [104]. Two examples of this therapeutic strategy are
the targeted therapy trial NCT04109456 (FAKi IN10012 alone or in combination with the
MEK inhibitor cobimetinib) and NCT04720417 (VS-6063 FAKi defactinib in combination
with the dual RAF/MEK inhibitor VS-6766).

5.5. PI3K/AKT/mTOR Signalling Pathway

PI3K/AKT/mTOR is a downstream signalling pathway that can also be activated and
deregulated in the UM due to oncogenic Gα action. Within this pathway, mTOR inhibitor
RAD001 (everolimus) is one of the most studied drugs, both alone, and in combination.
It showed reduced cell line viability and significantly delayed UM growth in preclinical
studies [105], whereas when it was evaluated in patients in trial NCT01252251 (everolimus
in combination with the somatostatin receptor agonist pasireotide), it only showed clinical
benefit in 26% of cases and dose adjustment since side effects were common [106].

Everolimus was also studied together with the PI3K inhibitor GDC0941, which syn-
ergistically increased apoptosis in several UM cell lines compared to monotherapies, and
enhanced the antitumour effect of each agent alone in UM PDXs. Evaluation of the combi-
nation of everolimus with the PKC inhibitor AEB071 (sotrastaurin) demonstrated greater
activity than single molecules, inducing cell death and observing tumour regression in
several UM PDXs [98].

Following the strategy of these synergistic effects, the PI3Kα inhibitor alpelisib (BYL719)
was studied in combination with sotrastaurin. In the first study, it was observed that
the combination of BYL719/AEB071 decreases cell viability and induces apoptosis in
GNAQ/GNA11 UM cell lines, and similarly, inhibits tumour growth in vivo in a GNAQ
mutant xenograft model [107]. In the second study, despite the observation of a safety
profile, pharmacodynamic effects and antitumour activity consistent with other targeted
inhibitors, the alpelisib/AEB071 combination did not show objective efficacy [108].
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Finally, molecules of this pathway have been tested in combination with MEK in-
hibitors. AZD8055 (mTOR inhibitor) and MK2206 (AKT inhibitor) in combination with
selumetinib (MEK1/2 inhibitor) showed, in preclinical studies, a synergistic inhibition
of viability in GNAQ mutant cell lines and xenograft models, but no impact on apopto-
sis [85,109].

On the other side, GSK2126458 (PI3K inhibitor) was combined with trametinib (MEK
inhibitor), a trial that showed a higher rate of apoptosis with the combination therapy
compared to each PI3K and MEK inhibitor alone [110]. In this field, a clinical trial in
patients with advanced UM aimed to assess the improvement in PFS by combining an
AKT inhibitor GSK2141795 (uprosertib) with trametinib compared to trametinib alone;
unfortunately, objective responses were rare, PFS did not improve, and dose reduction due
to adverse effects was common [106].

5.6. Other Targets and Signalling Pathways

ADP rybosylation factor 6 (ARF6) is a GTPase that triggers, in the presence of the onco-
genic Gαq mutation, multiple downstream signalling pathways, such as Rho/Rac/YAP
and PLCβ/PKC. The pyrazolopyrimidinone compound NAV-2729 was identified as a
promising direct inhibitor of ARF6, reducing UM cell proliferation and tumorigenesis in a
mouse model. Therefore, ARF6 is a potential therapeutic target for patients with oncogenic
GNAQ-driven UM [111].

As previously mentioned, c-MET inhibitors are also targets of study. Within this group,
cabozantinib obtained, in a first trial (NCT00940225), encouraging results from a PFS and
OS point of view [112]. However, in a recent study (NCT01835145), it was observed that this
molecule not only showed no improvement in PFS, but also increased toxicity compared
to the classical chemotherapeutics temozolomide/dacarbazine in MUM [113]. Similarly,
crizotinib was suggested to prevent the development of metastases in a MUM mouse
model [114]. Despite this, Khan et al., who conducted a phase II study (NCT02223819) of
adjuvant crizotinib in high-risk UM, did not find a reduction in relapse rate [115].

6. Conclusions

In this review, we have attempted an interrelated assessment of the possible prognostic
implication of mutations in the GNAQ/GNA11 genes in UM and their putative therapeutic
opportunities. It seems clear that both genes play an important role in the oncogenic
process of UM, but their role in the prognosis of these tumours remains controversial.

Most published studies agree that GNAQ and GNA11 genes are only involved in the
early development of UM, playing a lesser role in its progression. Nevertheless, even
in the absence of statistically significant results, several investigations have suggested a
more aggressive course of tumours with the mutated GNA11 gene, due to the general
observation of a trend towards longer survival among patients with tumours carrying
GNAQ mutations. Irrespective of these results, it should be noted that most of the published
investigations regarding somatic mutations in UM focused on the evaluation of time from
the initial diagnosis and treatment of the primary UM to the development of metastasis
or death. Moreover, there is even less knowledge about the role of these mutations in
the advanced state of UM, and even less, in MUM. Regarding this, the few published
studies that focuse on assessing the role of these mutations in MUM observed similar rate
frequencies for both genes in patients with metastasis, and suggested that the survival of
MUM patients could be predicted according to the mutation (p.Q209 vs. p.Q209L) rather
than the mutated gene [35]. After all the controversy throughout history, Piaggo et al. have
recently statistically demonstrated, for the first time, that UM patients with mutated GNA11
have worse prognosis than those with mutations in GNAQ [70].

The GNAQ and GNA11 genes are involved in various signalling pathways that are
essential for the proliferation of tumoral cells in UM. This, in combination with its high
mutational rate of these tumours, makes them promising targets and regulators of the
therapeutic response in UM. Despite the relatively good response of the primary UM to
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treatment, almost 50% of patients will develop metastatic disease [116,117]. Furthermore,
there do not appear to be any notable differences in survival when comparing the different
current MUM treatment modalities [118]. It is for these reasons that the development of
new adjuvant therapies is urgently needed. In this context, direct oncogenic inhibition of
Gαq/11, and its respective signalling pathways, have yielded promising results that could
be considered a therapeutic alternative with great potential in UM patients carrying these
mutations.

Today, there are still important limitations that hinder and slow down the progress in
the development of new adjuvant therapies. Overall, it is worth noting that many studies
are in the preclinical phase, that trials include a small sample size of patients, and that
the absence of randomisation is common, as well as the fact that molecular knowledge
on UM is mostly based on primary tumour samples, and not so much on metastatic
specimens [59,105]. More specifically, alternative activation of a signalling pathway as
a compensatory mechanism for inhibition decreases the effectiveness of monotherapy
drugs. Hence, all of these points explain the move towards dual therapies against Gαq/11
that prevent rebound activation of such alternative proliferative signalling pathways,
with the undesirable drawback of increased toxicity [76]. Similarly, certain chromosomal
alterations and gene mutations were associated with resistance to the action of these
targeted therapies, such as the relationship observed between M3 and decreased sensitivity
to MEK inhibition [119]. The role of these alternative genetic alterations in the effectiveness
of drugs targeting downstream GNAQ/GNA11 signalling pathways could support the idea
that these genes are not really involved in UM prognosis.

Ultimately, to overcome these obstacles and obtain consistent conclusions on the
benefit of different targeted therapies, it will be necessary, in the near future, to develop
protocolised in vivo studies in advanced UM that consider key aspects such as the individ-
ualised molecular-genetic profile of each patient. This includes more studies to investigate
the functional and prognostic relevance of oncogenic mutations in GNAQ/GNA11 genes,
and more sequencing studies involving a larger number of tumour samples at different
follow-up times to generate preliminary findings that will require further clinical validation.

7. Materials and Methods

This article was developed in the context of an intensive literature review. The con-
sidered publications were mainly searched in PubMed using key words or sentences such
as the following: UM prognosis, driver mutations in UM, oncogenic mutations in UM,
G-protein coupled receptors in UM, GNAQ gene, GNA11 gene, MAPK signalling pathway,
targeted therapy in uveal melanoma, genetic basis of UM, sequencing studies in UM. The
results of that search form the basis for publishing this article.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers14133066/s1, Table S1: UM-targeted therapies against GNAQ and GNA11 in preclinical
studies and their outcomes.
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