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A B S T R A C T   

Severe COVID-19 is associated with the dynamic changes in coagulation parameters. Coagulopathy is considered 
as a major extra-pulmonary risk factor for severity and mortality of COVID-19; patients with elevated levels of 
coagulation biomarkers have poorer in-hospital outcomes. Oxidative stress, alterations in the activity of cyto-
chrome P450 enzymes, development of the cytokine storm and inflammation, endothelial dysfunction, 
angiotensin-converting enzyme 2 (ACE2) enzyme malfunction and renin–angiotensin system (RAS) imbalance 
are among other mechanisms suggested to be involved in the coagulopathy induced by severe acute respiratory 
syndrome coronavirus (SARS-CoV-2). The activity and function of coagulation factors are reported to have a 
circadian component. Melatonin, a multipotential neurohormone secreted by the pineal gland exclusively at 
night, regulates the cytokine system and the coagulation cascade in infections such as those caused by coro-
naviruses. Herein, we review the mechanisms and beneficial effects of melatonin against coagulopathy induced 
by SARS-CoV-2 infection.   

1. Introduction 

In December 2019, the outbreak of pneumonia of unknown region 
was reported in China. Soon thereafter, the disease spread globally and 
claimed more than 5.3 million lives by December 2021. Further in-
vestigations revealed the severe acute respiratory syndrome coronavirus 
(SARS-CoV-2) as the responsible pathogen, a novel beta coronavirus and 
the successor of SARS-CoV and Middle east respiratory syndrome 
coronavirus (MERS-CoV) which had 10 % and 35 % mortality rates, 
respectively [1]. Analyses have revealed significant clinical and struc-
tural overlap between SARS-CoV-2 and SARS-CoV since they exhibit 80 
% sequence similarity [2]. SARS-CoV-2 is a zoonotic virus which ex-
hibits human-to- human transmission through airborne particles and 
droplets which mainly enter via the respiratory route. Other avenues of 
infection including orofecal, conjunctival and vertical transmission 
through pregnancy have also been frequently documented. In addition, 
the virus has relatively long incubation and shedding periods, which 

significantly aids its spread and evasion during routine analysis [3]. 
Although a considerable percentage of those infected with the virus 
remain asymptomatic, disease manifestation in the early stages includes 
fever, sore throat, dry cough, headache, fatigue, restlessness, myalgia, 
anosmia, and dysgeusia, which may later evolve into more serious 
conditions such as acute respiratory distress syndrome (ARDS). 

SARS-CoV-2 infections are associated with dynamic changes in 
coagulation parameters when they become severe. Coagulopathy is 
considered as a major extrapulmonary risk factor for disease severity 
and mortality of COVID-19 patients and early detection of elevated 
coagulation biomarkers are useful for predicting higher risk stratifica-
tion and poorer outcomes of infected patients [4]. Herein, we describe 
coagulation parameters alterations during a SARS-CoV-2 infection, and 
follow this with a description of the potential modulatory effects of 
melatonin on coagulation pathways. 
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2. Covid-19: pathogenesis, clinical manifestations and 
complications 

SARS-CoV-2 gains cell entry through transmembrane protease serine 
2 (TMPRSS2) and lysosomal proteases via two independent mechanisms 
including cleavage of coronavirus spike glycoproteins (cell entry 
glycoprotein activation) and the proteolytic cleavage of angiotensin- 
converting enzyme-2 (ACE-2) receptor both of which increase viral 
uptake by host cells [5]. Cell entry is initiated upon the attachment of 
the virus spike proteins to the ACE-2 protein [6,7]. In humans, ACE-2 is 
expressed by an array of cells including the pneumocytes of the alveolar 
sacs, vascular endothelium, cardiovascular tissue, renal tissue, and in-
testinal epithelia [6,7]. This diverse distribution may explain the mul-
tiorgan involvement of this infection as well as contributing to disease 
severity in individuals infected with SARS-CoV-2. The ACE-2 expression 
in endothelial cells is controversial. In a study conducted by McCracken, 
the expression of ACE2 in endothelial cells has been not found and it is 
suggested that SARS-CoV-2 could not directly infects endothelial cells 
[8]. However, Costa et 2021 demonstrated the expression of ACE 2 and 
TMPRSS2 proteins in HUVECs infected by SARS-CoV-2 [9]. In Covid-19 
infected patients, interstitial pneumonia is the hallmark involvement of 
the pulmonary system and if left untreated it may result in hypoxia, 
ARDS, systemic inflammatory response syndrome (SIRS) and multiorgan 
failure (MOF) [10]. The expression of ACE-2 receptors on cells in 
addition to those on the respiratory alveolar lining cells may account for 
the widespread extrapulmonary damage in the setting of COVID-19. The 
involvement of other organs presents organ-specific symptoms. For 
example, the involvement of the gastrointestinal tract causes nausea, 
vomiting, diarrhoea and abdominal pain. In addition, hepatic injury, as 
reflected in circulating elevated liver enzymes, are also common. Pe-
ripheral and central nervous system involvement is associated with 
headache, dizziness, encephalopathy, hyposmia (or anosmia), neural-
gia, and Guillian-Barre syndrome [11]. In the cardiovascular system, 
infection with SARS-CoV-2 may result in the development of acute 
coronary syndrome, cardiomyopathies, arrythmias, pericarditis, and 
thromboembolic events [12–14]. The latter is more commonly observed 
in hospitalized patients and has been identified as an independent 
prognostic risk factor. 

SARS-CoV-2 infections also result in the development of coagulo-
pathies, the most common of which is thrombocytopenia; this is most 
frequently observed in critically ill patients. A meta-analysis of 3342 
patients with COVID-19 showed that the incidence rates of pulmonary 
embolism (PE) and deep vein thrombosis (DVT) were around 16.5 % (95 
% CI: 11.6–22.9) and 14.8 % (95 % CI: 8.5–24.5), respectively; PE was 
more frequently identified in intensive care unit (ICU) patients (24.7 %) 
compared to those with a less serious condition. COVID-19 associated 
acute kidney injury (AKI) is also observed in an estimated 25 % of 
hospitalized patients, rendering it yet another independent risk factor 
for in-hospital mortality. The pathophysiology of AKI in COVID-19 is 
multi-factorial, arising from inflammatory and immune responses, 
activation of coagulation pathways and the renin–angiotensin system 
[15]. Importantly, it should be noted that COVID-19-associated coagu-
lopathies appear to be crucial in the development of extrapulmonary 
complications. Collectively, the published literature confirms that 
COVID-19 is not a mere viral pneumonia and the development of MOF is 
to be expected in severe cases. Therefore, a systemic treatment approach 
is crucial to completely counter the effects of this viral infection. 

3. Melatonin, a multipotential agent in different diseases 

Melatonin, N-acetyl-5-methoxytryptamine, is a secretory product of 
the pineal gland and is mainly released at night. Additionally, melatonin 
is also synthesized in the retina, kidneys, gastrointestinal tract, skin and 
other organs [16–18]. This molecule is found both in animals and plants 
[19] and in the plants melatonin may be produced in both mitochondria 
and chloroplasts [20]. 

Melatonin is primarily considered a hormone that influences 
numerous biological events such as modulating the release of other 
hormones, apoptosis and immune responses among others. Further-
more, melatonin has oncostatic, anti-inflammatory and antioxidant 
properties (21)features highlight the potential role of melatonin as a 
treatment of many diseases. Melatonin is considered a natural sleep-aid 
compound and regulates different physiological events including the 
sleep-wake cycle and other circadian rhythms [22]. The prophylactic 
and therapeutic effects of melatonin have been extensively addressed in 
a number of neurological disorders including Parkinson's disease 
[23,24], amyotrophic lateral sclerosis, multiple sclerosis [25], Alz-
heimer's disease [26,27], headache, epilepsy, and Huntington's disease 
[28]. Moreover, anti-depressive actions of melatonin are noted in LPS- 
induced depression; this action is thought to be mediated via the mod-
ulation of autophagy [29]. Of note, melatonin has been shown to exert 
anti-aging effects and could be used for the management and treatment 
of age-related diseases in humans [30]. 

The ability of melatonin to prevent oxidative damage and its path-
ophysiological consequences is well documented in numerous experi-
mental ischemia/reperfusion studies, particularly in myocardial 
infarction and stroke [25]. Clinical data obtained from human beings 
indicate that the use of melatonin helps to lower blood pressure in pa-
tients with hypertension. Several lines of evidence have demonstrated 
that administration of melatonin to experimental animals leads to the 
improvement of cardiac function and the reduction of cardiomyocyte 
injury induced by ischemia/reperfusion. Also, melatonin markedly at-
tenuates the adverse effects caused by the use of cardiotoxic drugs by 
cancer patients [31]. Moreover, the beneficial impact of melatonin on 
coagulopathy has been reported by several studies. 

In addition to its ability to prevent the loss of normal cells due to its 
anti-apoptotic properties, melatonin exerts anti-proliferative and pro- 
apoptotic activities on cancer cells; indeed, melatonin has been widely 
tested for its oncostatic actions [32]. Based on both in vitro and in vivo 
data and preclinical studies, melatonin defers the development of tu-
mors via both membrane-independent and –dependent mechanisms. Its 
inhibitory effect on cancer is manifested at the initiation, development, 
progression, and the metastatic phase of tumorigenesis [33]. As a result 
of its anti-metastatic, anti-angiogenic, and anti-proliferative activity, 
melatonin could be employed for the treatment for many types of ma-
lignancies, especially for those that have a high tendency to metastasize. 
Furthermore, melatonin has synergistic effects with conventional ther-
apies used for the treatment of malignancies; the combination of mela-
tonin with chemotherapeutic agents increases the sensitivity of cancer 
cells to undergo apoptosis [21]. Since melatonin scavenges free radicals, 
it also has been used to neutralize the toxic side effects of some chemical 
compounds such as methamphetamine [25]. A number of studies have 
documented the ability of melatonin in neutralizing the effects of 
nematocyst and snake venom toxins which are largely a result of massive 
free radical generation [34,35]. The use of melatonin as an anti-viral 
agent has recently come into focus as well and it has been proposed as 
a treatment for Ebola, COVID-19 and other viral infections [36,37]. 
There are currently 185 publications suggesting the utility of melatonin 
to treat COVID and all it variants [38–40]. The first of these reports 
appeared within two months after the COVID infection was recognized 
as a pandemic [41]. 

The results of many studies indicated that the anti-inflammatory 
actions of melatonin involve the suppression of IFN-alpha, MCP-1, 
tumor necrosis factor alpha (TNF-α), IL-6, IL-8, as well as the inhibition 
of JNK phosphorylation and promotion of the degradation of proteins 
which are responsible for the integrity of tight junction [42]. Further-
more, melatonin reduces the apoptosis rate of endothelial cells [43–45]. 
The maintenance of vascular integrity and protecting endothelial cells 
against injury are among the mechanistic roles of melatonin in the fatal 
hemorrhage at the late phase of Ebola virus infection [46]. In brief, 
melatonin exerts a broad range of biological activities including neu-
roprotection, immunomodulation, regulation of reproduction, 
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prevention of tumorigenesis, protection of gastrointestinal function, and 
it exhibits anti-aging actions [47]. 

4. Melatonin and coagulation cascade parameters 

Hemostasis is an intricate balance of numerous molecules, cells, and 
pathways influenced by many intrinsic and extrinsic factors. Like many 
other processes, the machinery of coagulation and fibrinolysis differs 
throughout the circadian cycle. Platelet count and function, the activity 
of the procoagulant, anticoagulant, and fibrinolytic factors, as well as 
the endothelial function, are influenced by the circadian system [48]. In 
general, diurnal changes have been observed in the form of increased 
platelet activity and aggregation, enhanced vasoconstriction, elevated 
activity of the factors VII and VIII and the von Willebrand factor, as well 
as higher protein –C and –S and tissue plasminogen activator are re-
ported in the early light period [49,50]. In contrast, a marked increased 
activity occurs in the early evening and night hours, as evidenced by 
reduced endothelial reactivity, increased secretion of tissue plasmin-
ogen activator inhibitor, and decreased platelet hyperreactivity 
compared to early daytime [51]. 

The role of melatonin in regulating hemostasis and fibrinolysis, 
although previously investigated, remains to be fully elucidated. The 
administration of melatonin has been proposed to treat many emerging 
diseases, the most recent being the Ebola virus, due to its role as a 
regulator of the cytokine system and coagulation cascade [52]. The ef-
fect of melatonin on platelet function varies in accordance with serum 
levels. At physiologic concentrations, platelet aggregation is promoted, 
while in therapeutic doses, thrombosis is an expected event [53]. 

Pashalieva and colleagues observed that the administration of 
melatonin (3 days, twice daily, 0.2 mg/kg) in a rat model was associated 
with a significant elevation in thrombocyte count and plasma markers of 
platelet activity β-TG and PF-4, while the administration of luzindole, a 
melatonin receptor blocker, prevented these changes [54,55]. Another 
study demonstrated that the administration of the same doses of mela-
tonin caused a reduction of activated partial thromboplastin time 
(aPTT), prothrombin time and thrombin time [56]. Lansik and col-
leagues reported that administration of melatonin (3 mg/kg) 15 min 
prior and 120 and 240 min after the induction of disseminated intra-
vascular coagulation (DIC) due to lipopolysaccharide administration 
(0.5/kg/h for 3 h) was solely successful in ameliorating reduced platelet 
counts and cell-free hemoglobin [57]. Similarly, Nyagolov and col-
leagues also observed that the administration of melatonin (0.2 mg. kg) 
reduced aPTT and increased the activity of plasma clotting factors V, XII, 
and VIII, while luzindole (0.4 mg/kg) reduced these effects [58]. 
Obayashi and colleagues also reported a significant inverse association 
between urinary 6-sulfatoxymelatonin with platelet and white blood cell 
counts in a cohort of elderly Japanese participants [59]. 

The administration of melatonin (10 mg/kg, intraperitoneal injec-
tion) at 3, 8 and 16 h after injury to Wistar rats subjected to burns 
resulted in the decreased fibrin degradation products (24 h after), 
lengthened PT (3 and 24 h after), and increased glutathione (GSH; 3 and 
24 h after). Decreased lipid peroxidation was also prominent 24 h after 
melatonin treatment which may be attributed to the anti-oxidative 
properties of melatonin or the elevation of GSH level [60]. In a study 
with a similar design, Bekyarova and colleagues administered 10 mg/kg 
melatonin immediately and 12 h after burning injury and observed 
inhibited prothrombin activity, reduced CRP, fibrinogen, and MDA 
levels, as well as normalizing platelet levels [61]. A study on diabetic 
rats also reported that the administration of melatonin results in pro-
longed bleeding time, prothrombin time, partial thromboplastin time, 
and inhibited platelet aggregation [62]. Calcium is the critical ion in the 
aggregation and activation of platelets. A study by Kumari and Dash, 
compared intracellular free Ca2+ levels in controls with melatonin (100 
or 500 μM) treated platelets. They reported that incubation with 500 μM 
of melatonin was associated with a significant elevation in the intra-
cellular calcium levels while potentiating the thrombin-induced calcium 

rise [63]. 
There is evidence of a possible dose-dependent inhibitory effect of 

melatonin on platelet activity. Vacas and colleagues observed an inverse 
pattern in platelet sensitivity to melatonin and peak melatonin values, as 
evidenced by inhibition of arachidonic acid-induced platelet aggrega-
tion. However, the sample size (n = 5) was small and the findings require 
confirmation. They had also established the presence of high-affinity 
binding sites for [3H]-melatonin on the platelet membrane [64]. 

Wang and colleagues performed a study to evaluate the impact of 
melatonin on endothelial function markers in rats. In this model, the 
animals after receiving 20 mg/kg melatonin were evaluated two weeks 
later through blood samples and dissection of the abdominal artery. The 
expression levels of melatonin, platelet endothelial cell adhesion 
molecule-1 (CD31), intercellular adhesion molecule-1 (ICAM-1), 
vascular cell adhesion molecule-1 (VCAM-1), and endothelin-1 (ET-1) 
significantly decreased, while expression levels of endothelial nitric 
oxide synthase (eNOS), nuclear erythroid 2-related factor 2 (Nrf2), NAD 
(P)H quinone oxidoreductase 1 (NQO-1), catalytic glutamate-cysteine 
ligase (GCLC) and heme oxygenase-1 (HO-1) significantly increased. 
In an associated human double-blind investigation, the participants 
included smokers or non-smokers, received 3 mg/day of melatonin. In 
association with melatonin intake, the concentration of fibrinogen (Fbg) 
and free fatty acids (FFA) were depressed in smokers, along with the 
decreased expression of ICAM-1, VCAM-1 and ET-1 and elevated 
expression of Nrf2 and HO-1 [65]. 

The role of sphingolipids in coagulation has bee34n documented, 
with a direct effect on plasma clotting factors Va and Xa [66]. Relative to 
this, Brunkhorst and colleagues observed that light exposure was asso-
ciated with increased sphingosine 1-phosphate (S1P d18:1) and sphin-
ganine 1-phosphate (S1P d18:0) in mice. The plasma concentrations of 
S1P d18:1 and S1P d18:0 exhibited an inverse correlation with intra- 
platelet values, which may be related to the involvement of sphingoli-
pid signaling in platelet metabolism. These changes were not detectable 
in melatonin receptor-1/2 double knockout mice (MT1/2-/-) and 
melatonin deficient C57BL/6J mice. However, it is essential to note that 
no diurnal variation was present in sphingolipid-binding proteins or 
intraplatelet sphingolipid sources [67]. 

Findings from a cohort study showed that the administration of a 
single dose (3 mg) of melatonin to healthy young men (n = 21) resulted 
in a marked decrease in serum factor VIII, fibrinogen and D-dimer levels 
one hour after administration, when compared to controls [68]. The 
administration of melatonin to mice is associated with the inhibition of 
platelet activation by means of restoring peroxisome proliferator- 
activated receptor γ (PPARγ), resulting in the inhibition FUN14 
domain containing 1 (FUNDC1)-dependent mitophagy and platelet hy-
peractivity [69]. Moreover, Girish and colleagues observed a significant 
increase in platelet apoptosis after melatonin administration, which was 
assumed to be a result of the elevation of intracellular calcium and ROS 
levels released from the mitochondria. Such effects, which may lead to 
thrombocytopenia, prompted the question of the safety of melatonin 
administration without further cautionary assessment. Iversen and col-
leagues also concluded that melatonin administration (2 mg per night; 4 
doses) resulted in a decreased peak thrombin generation in tetraplegic 
patients compared to healthy controls receiving placebo. In a report on 
hemorrhagic stroke patients, the administration of melatonin (30 mg/d; 
5 days) resulted in a significant decline in prothrombin time, fibrinogen 
levels, and factors VII and VWB [70]. 

The plasma concentration of tissue factor pathway inhibitor type 1 
(TFPI-1)-free antigen has been reported to exhibit a circadian variation 
in healthy participants, but not in tetraplegic subjects; TFPI-1 is pro-
duced in vascular endothelium abrogates the extrinsic pathway of 
coagulation by directly inhibiting coagulation factor Xa and activated 
factor VII (FVIIa)–tissue factor (TF) complex [71]. An opposite rhythm 
has been reported relative to the plasma concentrations of TFPI-free 
antigen and melatonin in healthy participants, but not within the tet-
raplegic individuals. Tetraplegia interrupts the innervation to the pineal 
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gland such that the gland is no longer capable of melatonin production 
[55]. Kostovski and colleagues observed that the administration of 
melatonin promotes the release of TFPI from the endothelium, which 
contributes to the inhibition of coagulation [72]. Furthermore, mela-
tonin administration (20 mg/d; one month) increases platelet count in 
patients with persistent thrombocytopenia [73]. A case series of 3 pa-
tients with idiopathic thrombocytopenic purpura garnered similar re-
sults with similar doses [74]. Such effects may result from the 
accelerated formation of colony-forming unit-megakaryocyte (CFU- 
MK), with larger megakaryocytes and the inhibition of serum-free- 
induced apoptosis in these cells via the activation of AKT/ERK 
signaling [75]. 

5. Melatonin in combination with anticoagulant drugs (heparin, 
warfarin): a promising future 

Melatonin may be beneficial for the management of patients with 
coronary artery disease (CAD) due to the anti-inflammatory, antioxi-
dant, and anti-thrombotic properties [76–78]. In this context, some 
laboratory experiments have shown that platelet aggregation is sup-
pressed in response to melatonin [79,80]. In a placebo-controlled study, 
oral administration of the melatonin dose-dependently reduced coagu-
lation activity in healthy young males. In fact, this study demonstrated 
that high concentrations of melatonin were correlated with lower levels 

of coagulation factors, namely fibrinogen and factor VIII activity [81]. In 
a pilot study performed on the interaction of melatonin and warfarin, 10 
adult patients with a mean age of 54 years were enrolled and referred to 
Massachusetts General Hospital (Boston, MA) between April 2011 and 
April 2012. They concurrently received melatonin and warfarin for 
2–10 days. The results demonstrated while the dose of melatonin was 
constant in all patients, the serum levels of warfarin fluctuated 
(increased/ decreased) in some participants. During the concomitant 
usage of melatonin and warfarin, prothrombin time (PT) and the in-
ternational normalized ratio (INR) were markedly elevated while no 
bleeding was reported in patients. The Drug Interaction Probability 
Scale (DIPS) indicated that two patients had doubtful drug interactions, 
two patients had probable drug interactions, and six patients had 
possible drug interactions. The serum levels of albumin and liver func-
tion tests (LFTs) were normal in most subjects. The authors concluded 
that the combined use of warfarin and melatonin leads to a change in PT 
and INR and influences the coagulation activity. They suggested that 
regular monitoring of PT and INR is recommended for those concur-
rently receiving both drugs [82]. 

6. Melatonin, as an anti-coagulant in Covid-19: mechanisms of 
actions 

As an adjunctive therapy, melatonin has been reported to reduce 

Fig. 1. Melatonin inhibits coagulopathy induced by SARS-CoV-2 infection through affecting various signaling pathways. ACE-2; angiotensin-converting enzyme-2, 
Ang II; angiotensin II, AT1R; Ang II receptor type 1, CYP450; cytochrome P450, HIF-1α; hypoxia-inducible factor 1-alpha, ELAM-1; endothelial-leukocyte adhesion 
molecule 1, ICAM-1; intercellular adhesion molecule 1, NF-κB; nuclear factor kappa B, NLRP3; NLR family pyrin domain containing 3, TNF-α; tumor necrosis factor 
alpha; VCAM-1, vascular cell adhesion molecule-1. 
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thrombosis, sepsis and mortality rate in COVID-19 patients [83]. The 
effect of melatonin in the inhibition of SARS-CoV-2-induced coagulop-
athy may be mediated by impacting various cellular events (Fig. 1), 
which are described in following sections. 

6.1. Cytochrome P450 

Cytochrome P450 (CYP450) enzymes are a superfamily of phase I 
drug-metabolizing enzymes (DMEs) that play a crucial role in the 
biotransformation and pharmacokinetic conversion of therapeutic 
molecules, environmental toxins, and dietary supplements [84]; 
CYP3A4, CYP1A2, CYP2B6, CYP2C9, CYP2C19 and, CYP2D6 are the 
main known DMEs. Cytochrome P450 enzymes often catalyze various 
oxidative reactions, including hydroxylation, which prepares drugs for 
renal excretion [85]. Numerous clinical studies have investigated the 
role of CYP450 in the development of adverse drug reactions [84]. 

The activity of CYP450 is inhibited by inflammation in pre-and post- 
transcriptional pathways [86]. The inflammatory status of COVID-19, as 
well as the release of inflammatory cytokines such as IL-1, IFN, TNFα, 
and especially IL-6 are associated with decreased activity of drug- 
metabolizing enzymes and transporters [84,87]. As reported, 
CYP2C19 was associated with the largest decrease in its activity (75 %) 
after SARS-CoV-2 infection, which inversely associated with the eleva-
tion of IL-6, TNF-α, and CRP levels [86,88,89]. In a cohort study, 
CYP2C19 activity decreased by 57 % and was found to be negatively 
correlated with CRP levels [90]. Changes in CYP activity are significant 
in terms of adverse drug reactions; the ratio of the active metabolite of 
clopidogrel (bioactivated by CYP2C19) to clopidogrel in healthy in-
dividuals is 48 times higher than that of patients with Covid-19, and 
platelet aggregation is significantly higher in patients with elevated CRP 
levels [91,92]. In addition, during SARS-CoV-2 infection, CYP1A2 
(warfarin as its substrate) activity decreases by 53 %, which is inversely 
related to IL-6 and CRP levels [86]. As a result, oral anticoagulants, 
which metabolized by CYP, should be used with caution because of the 
potential for unforeseen changes in drug metabolism in COVID-19 pa-
tients [93–95]. Furthermore, the activity of CYP2B6 and CYP2C9 in-
creases, while the activity of CYP2D6 does not change in Covid-19 
patients [86]. 

Melatonin has been reported to reduce the inflammatory mediators 
such as CRP, TNF-α and IL-6 levels, which indirectly regulate CYP levels 
[87]. On the other hand, melatonin is biotransformed by the CYP450 
system. In addition to its role in melatonin catabolism, the CYP450 
system is one of the principal sources of ROS generation in the cells 
[96–98]. Oxidative circumstances may change the biological activity of 
endoplasmic reticulum biomolecules, including phospholipids and 
enzymatic systems involved in drug biotransformation [99]. Melatonin 
has a potential role to retain the properties of CYP450 monooxygenase 
spectrum. Melatonin not only scavenges oxygen free radicals, but also 
protects the CYP450-catalyzed O-demethylation of p-nitroanisole from 
oxidative damage caused by Fe3+/ascorbate. In its modified Fe3+/ 
ascorbate form, melatonin seems to bind to a critical histidine residue in 
the CYP450 monooxygenase, thereby protecting this enzyme and the 
CYP450 system's catalytic function; the cationic radical generated by the 
melatonin oxidation directly binds to nucleophilic sites of CYP450 such 
as those found in histidine residues and protect CYP450 from oxidative 
stress [100]. 

6.2. Cytokine storm and inflammation 

Over-activation of the immune system results in a severe conse-
quence known as cytokine storm or cytokine release syndrome (CRS), an 
uncontrolled production of pro-inflammatory cytokines and inflamma-
tory cells leading to hyperinflammation [87]. Cytokine storm is critical 
in the progression of SARS-CoV-2 infection, leading to comorbidity in 
COVID-19 patients. The most prevalent co-morbidities linked with the 
COVID-19 are coagulopathy, thrombosis, and pulmonary problems 

[101]. Pro-inflammatory cytokines including IL-1, IL-2R, IL-6, and TNF- 
α are the key contributors to the cytokine storm [102]. The number of 
different inflammatory cells rises due to the cytokine storm. These cells 
produce cytokines attracting immune cells into the infection site, and at 
the same time, cytokines leave the bloodstream to enter the infected 
cells. As a result of these cellular activities, blood vessels become thinner 
and more permeable. The unregulated cycle of this process raises 
vascular permeability and ultimately leads to capillary leaks throughout 
the body. Excessive leakage of blood plasma into nearby cells forms a 
blood clot within the blood vessels, eventually causing coagulation and 
thrombosis [102,103]. 

Several investigations have indicated that melatonin can reduce 
inflammation in vivo and in vitro via regulating both pro-and anti-in-
flammatory cytokines in distinct pathophysiological situations 
[104–108]. Melatonin has been demonstrated to inhibit the expression 
of positive acute-phase proteins (APPs), pro-inflammatory cytokines, 
and chemokines such as IL-1, IL-6, TNF-, CCL2, CCL5, C-reactive protein, 
serum amyloid A, haptoglobin, ceruloplasmin, granulocyte monocyte 
colony-stimulating factor (GM-CSF), and − 1 antitrypsin. Furthermore, 
melatonin therapy increases the expression of the anti-inflammatory 
cytokine IL-1R and the negative APP fibrinogen [105]. Moreover, 
melatonin may reduce LPS-induced iNOS production by acting on nu-
clear factor kappa B (NF-κB) in rat endothelial cells and aortic rings. 
Activation of NF-κB pathway leads to the initiation of a cascade of 
molecular processes, some of which may be prospective targets for the 
treatment of inflammation. Melatonin performs part of its anti- 
inflammatory effect by altering nuclear NF-κB trafficking 
[104,109,110]. Furthermore, melatonin has an inhibitory effect on 
NLRP3 inflammation. In LPS-induced acute lung injury in mice, mela-
tonin reduces the migration of neutrophils and macrophages into the 
lungs and limits lung damage through inhibiting NLRP3 inflammation 
[111]. Furthermore, melatonin ameliorates LPS-induced inflammation 
in rat adipose tissue by affecting the expression of inflammatory genes 
such as NLRP3 and ASC, leading to the reduction of caspase-1 and IL-1β 
expressions [112]; this results in the inhibition of {Liu, 2017 #52} 
pyroptosis, a type of programmed necrotic cell death induced by 
caspase-1 [112,113]. 

6.3. Oxidative stress 

Oxidative stress is considered a significant factor in the progression 
of COVID-19 [114,115]. Evidence suggests that following activation of 
the Angiotensin (Ang) II -Ang II receptor type 1 (AT1R) pathway, the 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) 
is activated [56,116–119]. NOX is present in many different cells and 
organs, like cardiomyocytes, vascular smooth muscle cells, endothelial 
cells, macrophages, and neutrophils [120], and its activation is one of 
the critical factors to the generation of reactive oxygen species (ROS) 
[121]. Studies have shown that COVID-19 patients experienced oxida-
tive stress due to the activation of NOX [122] and inhibition of NOX-2 in 
macrophages has been reported to improve disease phenotypes by 
decreasing oxidative stress [123]. The activity of NOX may increase in 
the endothelial cells in response to the cytokines and other agonists 
[124], leading to the local oxidative stress and subsequent endothelial 
dysfunction [125]. Moreover, reduction of eNOS activity induces 
oxidative stress in SARS-CoV-2 infection [126]. 

Another mechanism in COVID-19 is the release of iron from red 
blood cells into the bloodstream, which can mediate Fenton and Haber- 
Weiss responses to induce oxidative stress. SARS-CoV-2 attacks hemo-
globin [127] groups in red blood cells and releases free Fe (III) ions from 
the heme groups into the circulation [128], resulting in elevated ferritin 
levels [129]. Viral hemoglobinopathy and iron dysmetabolism may 
contribute to clinical pathologies such as oxidative stress, ferroptosis, 
lipid peroxidation, and mitochondrial damage [130]. In COVID-19 pa-
tients, oxidative stress may cause fibrinogen oxidation and clot forma-
tion, leading to coagulopathy [131]. Moreover, a higher neutrophils-to- 
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lymphocytes (N/L) ratio is identified in patients with COVID-19 [88], 
which is associated with an increased level of oxidative stress [132]; a 
higher N/L ratio increases the severity and mortality in COVID-19 cases 
[133,134]. 

Melatonin is a molecule with antioxidant properties and both scav-
enges free radicals and increases the expression and the activity of 
antioxidant enzymes such as superoxide dismutase (SOD), catalase 
(CAT), and glutathione peroxidase (GPx) by increasing their expression 
[135]. Melatonin is found on the cell membranes surface, near the polar 
heads of phospholipids, which protects cell membranes from oxidation 
through eliminating radicals before they harm cell membrane lipids and 
proteins by modifying the fluidity of the membranes [135]. Melatonin 
metabolites such as cyclic-3-hydroxymelatonin (c3OHM), N1-acetyl-N2- 
formyl-5-methoxykynuramine (AFMK), and N1-acetyl-5- 
methoxykynuramine (AMK) are produced when it scavenges free radi-
cals. These metabolites also have antioxidant properties and trap hy-
droxyl radicals and other ROS [25]. Furthermore, melatonin has an 
important role in boosting mitochondrial function by increasing com-
plex I and complex IV activity and suppressing electron leakage [127]. 

6.4. Endothelial dysfunction 

Endothelial cell dysfunction may occur following SARS-CoV-2 
infection-induced damage to pneumocytes, resulting in aberrant coag-
ulation and immunothrombosis [136,137], which suggest a bad prog-
nosis in COVID-19 patients [102]. Spike protein of SARS-CoV-2 has been 
reported to bind to angiotensin-converting enzyme 2 (ACE2), leading to 
the degradation of the vascular endothelial growth factor (VEGF)-VEGF 
receptor (VEGFR) pathway and inhibition of VEGF activation; this is 
associated with the elevation of some VEGF subgroup levels, as key 
determinants for thrombosis and coagulopathy development [138]. 
Toll-like receptors, which are the predominant factors involved in 
inflammation and multiple pathologies in COVID-19 patients, are also 
highly expressed in endothelial cells; activation of these receptors en-
hances the release of inflammatory cytokines and proangiogenic agents 
(e.g., VEGF) which impact target organs [139,140]. VEGF induces the 
expression of endothelial cell adhesion molecules [e.g., ICAM-1, VCAM- 
1, and endothelial-leukocyte adhesion molecule 1 (ELAM-1)] during the 
inflammation via the activation of NF-κB pathway [140]. The effect of 
melatonin on the expression of VEGF has been widely studied. Mela-
tonin prevents proliferation, invasion, and migration of human umbili-
cal vein endothelial cells (HUVEC) by inhibiting VEGF activity 
[141,142]. Likewise, melatonin protects hypoxic brain endothelial cells 
from oxygen and glucose starvation through suppressing the expression 
of VEGF [44]. In addition, melatonin as a hypoxia-inducible factor 1- 
alpha (HIF-1α) inhibitor reduces VEGF expression in lung tissue of an-
imals exposed to hypoxia [143]. Thus, due to the excessive level of VEGF 
in COVID-19 patients and the increased risk of endothelial dysfunction 
and clot formation, melatonin may have a beneficial effect in this regard 
[144]. 

Another proposed mechanism, which results in the endothelial 
dysfunction, are alterations in the function of the intact glycocalyx, a 
polysaccharide network which acts as a barrier against platelets and 
leukocytes [145–148]. Glycocalyx, composed of proteoglycans and 
glycoproteins, regulates the coagulation cascade by attaching to a cell 
membrane and maintaining membrane integrity by coating adhesion 
molecules ICAM-1. In this condition, the endothelial cell glycocalyx loss 
might contribute to the disruption of vascular homeostasis, resulting in 
endothelial dysfunction [145–149]. Investigations into the development 
of glycocalyx restoration and maintenance have been done and mela-
tonin seems to be effective in the regeneration of the glycocalyx. Tunac 
and colleagues demonstrated that melatonin, as a result of its antioxi-
dant activity, may reduce the ROS formation and protect glycocalyx by 
enhancing the activity of antioxidant enzymes [150]. Torres and col-
leagues reported that betahydroxybutyrate combined with melatonin 
(BHB/M) restored the glycocalyx layer to a baseline condition in male 

rats; this suggests the ability of melatonin in the protection of glycocalyx 
[151]. 

Neutrophil extracellular traps (NETs) are also altered in severe 
COVID-19 patients, suggesting a correlation with hypercoagulation ac-
tivities. NETs are DNA, histone, and granular protein complexes released 
by active neutrophils; NETs are engaged in pathological processes such 
as coagulation problems and thrombosis, in addition to their critical 
function in the innate neutrophil immune response [152]. NETs modify 
endothelial barrier structure and increase vascular endothelial perme-
ability, thereby reducing antithrombotic and anti-inflammatory prop-
erties [153,154]. Melatonin inhibits hyper-adhesiveness of endothelial 
cells induced by leukotriene B4-activated neutrophils, which results in 
the reduction in vascular permeability in rodents [155]. Furthermore, in 
humans, an inverse relationship exists between melatonin and the level 
of procoagulant factors including FVIII:C and fibrinogen [81]. 

6.5. ACE receptors 

SARS-CoV-2 penetrates host cells an interaction of its spike protein 
with the ACE2 receptor [156]. The virus attaches to ACE2 through the 
S1 subunit of the S protein, whereas the S2 subunit is essential for viral 
fusion into the cell membrane [157]. The ACE2 enzyme, a homolog of 
ACE, is a crucial component of the renin-angiotensin system, which has 
the opposite action of ACE. The renin-angiotensin system has two 
pathways. The first pathway, which includes the ACE/ Ang II/ AT1R, 
raises ROS levels and impairs endothelial function and microcirculation. 
The ACE2/Ang receptor [1–7]/ mitochondrial assembly (MAS) receptor 
pathway is the second pathway [158]. Vasodilation, anti-inflammatory 
and anti-fibrotic actions result from biding of Ang 1–7 to the MAS re-
ceptor [159,160]. 

The ACE2/Ang receptor [1–7]/Mas receptor pathway inhibits the 
action of the ACE/Ang II/AT1R axis; this results in the reduction in 
inflammation and dilation of blood vessels [161]. The ACE2 enzyme 
malfunction causes aberrant activation of the ACE/Ang II/AT1R axis, 
which promotes platelet adhesion and accumulation, raising the risk of 
thromboembolism in many organs such as lungs, brain, heart, and kid-
neys [158]. The binding of SARS-CoV-2 to ACE2 and the endocytosis of 
viral particles by the ACE2 complex result in a reduction in membrane- 
bound ACE2 expression. Clinical studies demonstrate that reduced ACE2 
expression shifts the renin–angiotensin system (RAS) balance toward the 
ACE/Ang II/AT1 pathway, which is implicated in organ damage. These 
findings imply that restoring tissue ACE2 levels and keeping the RAS 
balance from promoting the ACE/Ang II/AT1 pathway may be benefi-
cial in treating COVID-19 patients. Accordingly, several experimental 
studies have shown the modulatory effects of melatonin on the RAS 
system [159]. 

Calmodulin (CaM) is a primary regulator of Ca2+-dependent 
signaling in all eukaryotic cells [162]. Calmodulin is also involved in the 
regulation of ACE2 surface expression and retention in plasma mem-
branes [39]. As a CaM inhibitor, melatonin boosts the ACE2 ectodomain 
release and reduces CaM-ACE2 interaction in a dose- and time- 
dependent manner [162,163]. As a result of this interaction, mela-
tonin can be considered an indirect inhibitor of protein–protein in-
teractions between ACE2-CoV2 during viral particle fusion [164]. 

7. Conclusions and perspective 

Coagulopathy, thrombotic complications, and pulmonary problems 
are the most prevalent co-morbidities linked with COVID-19. Therefore, 
early detection of elevated coagulation biomarkers and therapeutic in-
terventions could be beneficial for the management of patients with 
COVID-19. This review summarizes the consequences of SARS-CoV-2 
infection on the activity and function of coagulation factors. The regu-
latory effect of melatonin on coagulation cascade parameters suggests 
that this molecule likely would protect COVID-19 patients against virus- 
induced coagulopathy and subsequent complications. Additional studies 
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are needed to further clarify melatonin's effects on signaling pathways 
regulating the coagulation machinery, which is impaired by SARS-CoV- 
2 infection. This review will hopefully stimulate additional research 
related to the impact of melatonin on COVID-19-induced coagulopathy. 
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