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Abstract

In this study, we build a vendor‐agnostic software application capable of importing

and analyzing non‐image‐based DICOM files for various radiation treatment modali-

ties (i.e., DICOM RT Dose, RT Structure, and RT Plan files). Dose‐volume histogram

(DVH) and planning data are imported into a SQL database, and methods are pro-

vided to manage, edit, view, and download data. Furthermore, the software provides

various analytical tools for plan evaluations, plan comparisons, benchmarking, and

plan outcome predictions. DVH Analytics is developed using Python, including

libraries such as pydicom, dicompyler, psycopg2, SciPy, Statsmodels, and Bokeh for

parsing DICOM files, computing DVHs, communicating with a PostgreSQL database,

performing statistical analyses, and creating a web‐based user interface. This soft-

ware is open‐source and compatible with Windows, Mac OS, and Linux. For proof‐
of‐concept, a database with over 3,000 DVHs from a single physician's head & neck

practice was built. From these data, differences in means, correlations, and temporal

trends in dose to multiple organs‐at‐risk (OARs) were observed. Furthermore, an

example of the predictive regression tool is reported, where a model was con-

structed to predict maximum dose to brainstem based on minimum distance from

planning target volume (PTV) and treatment beam source‐to‐skin distance (SSD).

With DVH Analytics, we have developed a free, open‐source software program to

parse, organize, and analyze non‐image‐based DICOM data for use in a radiation

oncology setting. Furthermore, this software can be used to generate statistical

models for the purposes of quality control or outcome predictions and correlations.
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1 | INTRODUCTION

Evaluation of treatment plans in radiation oncology is heavily depen-

dent on dose‐volume histograms (DVHs). However, such evaluations

typically are limited to a small set of points from the DVH. Arguably,

this is because the majority of readily available data (e.g., Emami,

QUANTEC, RTOG/NRG trials, and ICRU guidelines) comprises dis-

crete points as opposed to a continuum of data.1,2 Comparisons with

established protocols do have merit as to whether the organ‐at‐risk
(OAR) criteria are met; however, from a quality control perspective,
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the use of historical data can better determine if a plan is atypical.

Furthermore, it is conceivable that radiation toxicities may have

stronger correlations to other DVH points or perhaps the combina-

tion of additional DVH points. In either case, developing a large

database of treatment planning data can provide the ability of more

complex statistical analysis of larger datasets more quickly and accu-

rately than manually transcribing statistics of one plan at a time into

a spreadsheet of predetermined thresholds.

To the best of our knowledge, the open‐source treatment plan-

ning and evaluation tools currently available have been developed

without an explicit database. The Matlab‐based software known as

CERR (Computational Environment for Radiotherapy Research) pro-

vides an open‐source platform that is effective for prototype treat-

ment planning and evaluation, especially for research purposes.

Furthermore, CERR is capable of working with patient files from

DICOM or AAPM/RTOG archives, which makes data transfer

between multiple platforms straightforward.3 For analysis across

multiple patients, the Matlab‐based software DREES (dose–response
explorer system) is an open‐source extension of CERR which pro-

vides a data‐driven analysis of treatment outcomes; DREES provides

analytical tools such as fitting tumor control probability (TCP) and

normal tissue complication probability (NTCP) curves, modeling and

visualizing dose‐volume and plan metrics, and estimating uncertainty

in planning parameters.4 The input data for DREES assume a Mat-

lab‐based data structure comprising DVH and outcome data, which

can be a limitation when working directly with DICOM files. Another

option, RadOnc, is an R package designed for radiation oncology and

provides an extensive library of analytical tools.5 However, similar to

CERR and DREES, RadOnc does not provide a way to store, query,

explore, or analyze a large, scalable database.

Currently, storage of patient data with open‐source platforms

developed on Matlab and R is file‐based. For such individual file‐
based systems, making a query on a single parameter over multiple

patients can involve opening, reading, and closing a large number of

files, which adds an excessive amount of memory use and computa-

tional overhead. Because of this, scalability for large datasets is a

concern for currently existing open‐source platforms in radiation

oncology. Ideally, a user should be able to access only the data of

interest so not to unnecessarily burden computational resources.

Moreover, current open‐source platforms only allow data access

to one user at a time. This may limit efficient use of clinical

resources. To address these limitations, a SQL (Structured Query

Language) database can be employed for data storage. With regard

to size restrictions, the entire database is only restricted by the size

of the available disk space on the computer or server hosting the

database. More importantly, the SQL database also allows multiuser

interaction simultaneously, which may improve efficiency of clinical

resource usage. In essence, the SQL database is a fast and light-

weight data storage system that can access only the queried data,

without accessing large individual patient files in entirety. Because of

these benefits, the standard for scalable databases is SQL. While

there are SQL‐based software programs intended to create a data-

base of DICOM data, such as DICOM Data Warehouse, those cur-

rently available are not specific to radiation oncology nor provide

statistical analyses, to the best of our knowledge.6 Therefore, the

aim of the proposed software is to provide an open‐source platform

with a long‐term, scalable database and the statistical tools needed

to explore and analyze a large set of data in a radiation oncology

setting.

In the following, we develop a database and analytics platform

that directly reads DICOM files and stores the parsed data in a SQL

database. This tool provides visualizations and evaluation metrics for

individual and multiple patients, with the aim to significantly reduce

importing times for plans, while providing an overall clinical perspec-

tive of a large dataset. In Section 2, we discuss the data assump-

tions, database design, back‐end computations of additional

anatomical metrics, as well as front‐end computations of plan evalua-

tion metrics. Subsequently in Section 3, we present the results as a

demonstration of the viability of the tool using an example dataset

and not as actual clinical findings.

2 | MATERIALS AND METHODS

A database of DVH and treatment planning data can provide insight-

ful information at the start and after the completion of a course of

radiation treatment. Figure 1 illustrates a proposed workflow includ-

ing such a database into a radiation oncology clinic. Combined with

clinical outcome data, a DVH database can significantly reduce data

collection time and potential transcription errors when correlating

dosimetric data to patient outcomes. Alternatively, the combination

of DVH and treatment planning data can be used to detect anoma-

lous data during the final chart check prior to the first day of treat-

ment, which may have otherwise gone unnoticed. Lastly, historical

DVH data can be used for comparison to potentially indicate how a

draft plan can be improved at the beginning of the treatment

F I G . 1 . We propose this workflow as an example incorporating a DVH Database into a radiation oncology clinic. The bottom row represents
a typical workflow without the use of a DVH database, while the top row indicates which stages a DVH database may provide benefit.
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planning process. DVH Analytics was designed to facilitate these

examples.

DVH Analytics is built in Python 2.7 using several open‐source
libraries: pydicom to parse DICOM files, dicompyler to calculate

DVHs from DICOM files, Shapely for polygon arithmetic, SciPy for

statistics and fast OAR to planning target volume (PTV) distances

calculations, Statsmodels for multivariable regressions, psycopg2 to

communicate with a PostgreSQL database, and Bokeh to generate a

web‐based user interface to query, plot, and administer the data-

base.7–14 All of these choices were made in the interest of ease of

development and flexibility of deployment. As such, DVH Analytics

is available for free use on all three major desktop operating systems

(i.e., Microsoft Windows, Mac OS, and Linux). Although not a strict

requirement, it is recommended to install a DICOM listener on the

computer or server with DVH Analytics or have network access to a

DICOM directory available to the user's treatment planning system.

In this study, we use DCMTK DICOM Server as it is open source.15

However, DVH Analytics only needs operating system access to a

file directory containing the files to be imported; it is up to the user

to decide how to get the DICOM data into the directory.

2.A | Assumptions

The initial intent of this database was to capture treatment planning

DVHs in a clean and easily searchable manner. It is expected that

there is only one complete, composite dataset per course of treat-

ment, including all boosts. That said, each prescription will be

included in the prescription, plan, and beam data, but the DVH data

will represent only the final composite treatment plan for each

structure.

Furthermore, the software was designed to automate data col-

lection by extracting all required data directly from DICOM files. In

this study, we validated the import process on six different treat-

ment planning systems: Philips Pinnacle3 8.0 m through 9.10, Elekta

Monaco 5.0, Brainlab iPlan 4.5, Raysearch Raystation 5.0 through

6.1, Oncentra Brachytherapy 4.5, and Varian Eclipse 10. Currently,

the only planning system among this group that does not explicitly

include prescription information in the DICOM files is Pinnacle3.

Therefore, a Pinnacle3 Script was generated to record prescription

information into the names of points of interest (POIs) within the

DICOM RT Structure file.

DVH Analytics provides a method to generate a region‐of‐inter-
est (ROI) map for each physician. Although ROI categorization hap-

pens at the time of import, an admin user can initiate reprocessing

without the need to reimport DICOM files. With only these three

exceptions (i.e., prescription, treatment site, and ROI categorization),

all other data are extracted from DICOM files without additional

user input. However, it still is possible for some data to be incorrect

or missing (e.g., physician, patient date of birth, simulation study

date). Therefore, DVH Analytics provides an administrator view to

query and edit any parameter after import. For users familiar with

PostgreSQL, the database could be managed from command line or

any PostgreSQL compatible database management software.

2.B | SQL database design

The primary data for DVH Analytics is organized into four tables:

DVHs, Plans, Prescriptions, and Beams. These tables are linked by

patient medical record number (MRN) and study instance unique

identification (UID). The contents of these tables are listed in

Table 1. The MRN is extracted from the “Patient ID” tag in the

DICOM RT files. The study instance UID is the same parameter used

by DICOM to uniquely identify all files associated with a particular

image study (e.g., CT simulation). Both the DICOM RT Dose and

DICOM RT Structure files are required to extract or compute this

DVH data.

The data in the Plans table includes patient demographics (i.e.,

age, birthdate, and gender), physician's initials, patient's treatment

orientation, treatment planning system data (i.e., manufacturer, soft-

ware version, heterogeneity corrections, and dose grid resolution),

treatment modality (e.g., Photon arc, Protons, Brachytherapy), and

treatment time (for Brachytherapy). DICOM RT Dose, Plan, and

Structure files are required to build this table. The treatment site

defaults to the plan name. However, if the user creates a POI in the

TPS, prior to export, beginning with “tx:,” DVH Analytics will set the

treatment site to the text that follows. For example, a POI name of

“tx: Brain” will prompt DVH Analytics to set the treatment site to

“Brain.” This method is similar to that used to extract prescription

information for plans exported from Pinnacle3.

The Prescriptions (Rxs) table contains the fraction group data.

Aside from the plan name, which is the same for each prescription,

all data refer to the particular fraction group (e.g., initial, boost1,

boost2, etc.). The Beams table primarily contains data specific to

each beam, including beam energy min/max (proton beams have a

range of energies), beam type (e.g., static, dynamic), scan spot count

for proton plans, and gantry/collimator/couch information (i.e., start,

stop, min, max, and range). Currently, all data in this table are appli-

cable for linac or proton‐based treatments. Importing data into DVH

Analytics from brachytherapy plans will not result in Beams table

data; however, all other SQL tables will be populated.

Finally, a catalog of imported DICOM files is maintained using a

fifth SQL table. This table includes MRN, study instance UID, the

postimport directory which contains the DICOM files, and the file

names of the RT Plan, RT Structure, and RT Dose files used for

import. If multiple instances of a DICOM file type are found, only

the file with the latest timestamp will be used for import; however,

all files with the same study instance UID will be collected into the

user‐specified import directory and further organized by the MRN.

This feature allows DVH Analytics the ability to easily reimport data

directly from DICOM files; it also allows for future development of

DVH Analytics that may rely on imaging data.

2.C | Back‐end computations

For the most part, there are explicit DICOM tags for the data con-

tained in the DVH Analytics database. As DVH data often are not

explicitly stored in DICOM files, DVH Analytics uses the dicompyler
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Python code to compute the DVH data.8 In addition, DVH Analytics

stores information for the purposes of ROI name management and

computes the union of all PTVs for calculations determining mini-

mum ROI‐to‐PTV distances and PTV overlap. Anatomical factors,

such as distance between structures, can have a significant impact

on treatment planning goals. In fact, factors such as distance

between PTV and a surrounding OAR, as well as the volume overlap

between PTV and OAR, have been identified as significant predictors

of DVH goals.16 In addition, radiobiological calculations are per-

formed based on equivalent uniform dose (EUD) as described by

Niemierko.17

2.C.1 | ROI name management

One of the more difficult challenges of maintaining a meaningful

DVH database is overcoming variations in ROI names. For example,

a particular physician or planner may choose to name the left eye

any of the following: L Eye, Orbit left, eye l, etc. The only certain

way to catch all ROIs intended to be the left eye is to always name

the ROI the same exact way. In practice, this does not happen when

the treatment planning software allows the user to type in any ROI

name. As a way to mitigate this, DVH Analytics provides a method

to map any number of possible ROI name variations. Over time and

with user input, this system becomes more robust, reducing the like-

lihood of missing a ROI categorization. From the Admin view, a user

can view a list of all uncategorized ROIs. From this list, the user may

tag the ROI as “ignore” so that it is removed from the list or add the

ROI to the ROI map.

This mapping system uses two separate ROI name categories:

institutional ROI and physician ROI. Institutional ROIs are names

used to define a sample of DVHs across the entire database,

whereas a physician ROI is curated for a particular physician's prac-

tice, which will either map to an institutional ROI or be left as uncat-

egorized. This allows physicians the flexibility to create their own

naming system as well as the ability to track more anatomically

specific ROIs for their specialty. DVH Analytics provides a view of

any selected ROI name as shown in Fig. 2, which illustrates another

example of potential variations for the left cochlea.

For tumor/target volumes (e.g., gross tumor volume (GTV), clinical

target volume (CTV), and PTV), DVH Analytics records the DICOM

information containing the structure type (e.g., PTV, Organ at Risk,

External, etc.). It is recommended that these tags be appropriately

defined prior to DICOM export. For plans with multiple PTVs, DVH

Analytics will assume a naming scheme of PTV1, PTV2, PTV3, etc.,

TAB L E 1 SQL table design for DVH Analytics.

DVHs Plans Prescriptions Beams

MRN MRN MRN MRN

Study instance UID Study instance UID Study instance UID Study instance UID

Import timestamp Import timestamp Import timestamp Import timestamp

DVH Age at study date Fractions (Fxs) Beam name

PTV distance Baseline Fx dose Beam number

PTV overlap Birthdate Fx group name Beam dose

ROI name Dose grid resolution Fx group number Beam MU

ROI type Dose timestamp Fx group count Beam MU per degree

ROI coordinates Fractions Norm. method Beam MU per control point

ROI dose Heterogeneity correction Norm. object Beam control point count

ROI institutional category MU (plan total) Prescription dose Beam energy (min/max)

ROI physician category Patient sex Prescription percent Beam radiation type

ROI volume Patient orientation Beam type

Physician Collimator angle information

Plan timestamp Couch angle information

Prescription dose Fx count

Sim study date Fx group beam count

Structure timestamp Fx group number

TPS manufacturer Gantry angle information

TPS software name Isocenter

TPS software version Scan spot count

Treatment modality Scan mode

Treatment site SSD (Avg SSD for arcs)

Treatment time Treatment machine

The SQL database for DVH Analytics was designed to include the following data. Each column of this table represents a unique SQL table with SQL

table's columns named based on the data listed here. Each of the SQL tables are linked by MRN and study instance UID.
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ordered by the D95% of each volume. However, the user could

choose to create a consistent ROI naming scheme and add this

information into the ROI Name Manager for greater flexibility. Cur-

rently, some planning systems do not export DICOM tags that

include internal target volume (ITV) as a structure type (e.g., versions

of Pinnacle3 at least 9.10 and earlier). However, DVH Analytics will

tag any structure that begins with “ITV” as such in the database,

regardless of the associated structure type in the DICOM file.

2.C.2 | Geometric computations

DVH Analytics provides a method to calculate the geometrical union

of ROIs; this method is specifically applied to generate a combined

PTV for the purposes of computing ROI distances to the combined

PTV as well as PTV overlap. For convenience and computational effi-

ciency, we employ the Python packages Shapely and SciPy.9,10

Shapely provides a convenient way to perform geometric opera-

tions between two‐dimensional polygons, specifically the calculation

of intersections, differences, and unions. After converting the

DICOM coordinates of a ROI into ordered sets of points, polygons

representing the ROI are generated with Shapely. Per DICOM con-

vention, if multiple polygons exist in a single slice (2D image), a sub-

sequent polygon that exists inside the cumulatively generated

polygon represents a subtraction of area from the cumulatively gen-

erated polygon (e.g., a ring structure). Likewise, a subsequent poly-

gon outside the cumulatively generated polygon represents an island

structure (e.g., delineating both left and right lungs in a single ROI).

With this understanding, the authors generated a combined polygon

(i.e., a MultiPolygon class in the Shapely code) for the PTV, and sep-

arately, the OAR, accounting for any holes or islands.

PTV union

All calculations in this section are based on a combined PTV. The

method employed to compute the combined PTV is as follows. First,

the coordinates of all ROIs with the ROI types beginning with PTV

are retrieved from the SQL database. Second, the coordinates from

each slice (or z‐coordinate) of each ROI are converted into polygons

with Shapely. The union of all polygons of a given slice is calculated,

and the coordinates of the subsequent polygon of every slice are

then stored. This method returns a complete 3D geometric union of

all PTVs in the same format as any other ROI in DVH Analytics.

PTV overlap

After the generation of the combined PTV, the intersection of the

resulting MultiPolygon with the ROI is calculated for each slice.

The resulting areas of these intersections are multiplied by their

respective slice thickness. Then, these volumes are summed to cal-

culate the PTV overlap volume. The slice thicknesses are obtained

from the z‐coordinates of the slice of interest and an adjacent

slice.

Minimum ROI to PTV distances

A brute‐force method of calculating all distances between points

defining the PTV surface to all points defining the ROI surface is

employed to compute the minimum ROI to PTV distance. The mini-

mum distance between the PTV and the ROI is the minimum of all

the distances computed. DVH Analytics also records the mean, med-

ian, and maximum of these distances to provide additional spatial

context. This brute‐force method can be very computationally

expensive, particularly with straightforward methods of lists and for‐
loops in Python. To overcome this limitation, we employ the SciPy

library, which includes a “spatial” module with a function to do these

distance computations.10 We observed more than an order of magni-

tude reduction in computation time compared with non‐library‐
dependent methods in Python. This results in computation times on

the order of 100 ms for most ROIs, which is relatively small com-

pared with the DVH calculation times. Additional computation times

are reported in Section 2.E. PTV distances to large ROIs (e.g., exter-

nal, skin) could be calculated in under a second; however, memory

issues could arise. Therefore, only categorized ROIs that are not

external or skin are calculated by default. However, the user may

manually trigger this calculation for specific ROIs in the admin view

of DVH Analytics.

2.C.3 | Radiobiological metrics

EUD, tumor control probability (TCP), and normal tissue complication

probability (NCTP) are computed with the DVHs calculated by

dicompyler, using the formalism described by Niemierko.8,17,18 For

convenience, several published values by Emami et al. for multiple

OARs are provided in the Rad Bio module of DVH Analytics; options

are given that the user may choose to apply their own values for

the biological calculations.19 Once calculated, the user may include

F I G . 2 . Screenshot from the ROI Name
Manager module in DVH Analytics
illustrating possible variations for the left
cochlea. When a plan is imported for the
associated physician, any ROI name
matching one of the variations will
automatically be mapped to the
corresponding Physician ROI and
Institutional ROI. Additional details are in
Section 2.C.1.
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EUD, TCP, and NTCP values in the Time‐Series, Correlations, and
Regression modules, as discussed later in Sections 2.D.4. and 2.D.5.

2.D | Main application view

The main application view is split into eight tabs: Query, DVHs, Rad

Bio, ROI Viewer, Planning Data, Time‐Series, Correlation, and

Regression. The contexts of these tabs are described in the following

subsections.

2.D.1 | Query

The initial view of DVH Analytics is a module for the user to design

their query. As opposed to requiring the user to learn command‐line
syntax of PostgreSQL, DVH Analytics provides a series of dropdown

menus grouped by “Selection Filters” and “Range Filters,” which

prompt the user for discrete and non-discrete data constraints,

respectively.12 These categories are listed in Table 2. Once a Selec-

tion Filter category from Table 2 is selected, the adjacent dropdown

will automatically populate with all choices available in the user's

database. Likewise, once a Range Filter category is assigned, the

titles for the two adjacent input fields for minimum and maximum

values will update based on the user's database. Any of these cate-

gories can be combined with any number of definitions to generate

the final query. If two identical categories are defined within the

same Group (Blue or Red), the query will assume an “or” operator.

In addition, the user may define up to eight “Endpoints” to be

tabulated. Each endpoint added allows the user to define a dosimet-

ric (e.g., D2 cc, D95%) or volumetric (e.g., V20%, V50Gy) point for all

DVHs in the query. These values can be reported in absolute units

of cm3 or Gy, as well as in a relative scale (relative to volume or pre-

scription dose), as shown in Fig. 3(a).

Once the user has defined the desired sample based on any

number of Range or Selection Filters, clicking the update button will

retrieve all data stored in the database that fits the query. All infor-

mation presented in the remaining tabs is based on this retrieval.

2.D.2 | DVHs and planning data

DVH Analytics provides an interactive plot containing up to two sep-

arate interquartile ranges (IQRs) of user‐defined DVH samples as

well as the option to plot a single DVH from DICOM files located

within the user‐defined “review” directory, as shown in Fig. 3(b). The

reviewed DVH is not included in the sample statistics calculations.

The plot will display the interquartile range, mean, and median

DVH of each defined sample. Each of these computations are per-

formed by calculating the appropriate percentile or mean of each

dose bin across all queried DVHs. A table displayed below the DVH

plot reports the patient's MRN, ROI name and type, the composite

plan's total prescription dose, ROI volume, the ROI's min/mean/max

dose, and the minimum distance to PTV, and PTV overlap. A second

table is populated by the DVH endpoints defined by the user. The

Planning Data tab displays all of the prescription, plan, and beam

data for the query.

2.D.3 | ROI viewer

DVH Analytics provides a visualization of ROIs from a specified

study instance UID (as filtered from the query and, subsequently,

MRN and study date); this is illustrated in Fig. 3(c). This module

processes the DICOM coordinates of the specified ROIs into poly-

gons, which may be viewed two dimensionally, one slice at a

time.

2.D.4 | Time‐series plots

A time‐series plot to demonstrate trends across simulation dates are

provided in the Time‐Series tab, as illustrated in Fig. 3(d). The y‐axis
of this time‐series plot may include a EUD, TCP, NTCP, a DVH end-

point, or any of the Range Filter variables listed in Table 2. A box is

shown on the plot indicating the user‐specified percentile bounds of

the sample, and the sample mean is displayed as a horizontal line

spanning all dates within the sample. In addition, a moving average

is plotted with a user‐defined look‐back window. Each point on the

moving‐average line represents the mean of all data from the point's

date ranging back until the user‐defined length of time. To exclude

any data from being considered for the computation of the moving

average, we rely on the “lasso select tool” developed by Bokeh,

which allows users to draw a shape such that all points within the

TAB L E 2 Searchable categories.

Selection filters Range filters

Baseline Age (at study date)

Beam type Beam dose

Collimator rotation Beam energy

Couch rotation Beam MU

Dose grid resolution Birthdate

Gantry rotation Collimator angle

Heterogeneity correction Couch angle

MRN Distance to PTV

Norm. method Fraction dose

Patient orientation Gantry angle

Patient sex Planned fractions

Physician ROI min/mean/max dose

ROI institutional category ROI volume

ROI physician category Rx dose

ROI type Rx isodose

Radiation type Scan spots (protons)

Scan mode (protons) Simulation date

Treatment machine name SSD (Linac)

Treatment modality Total plan MU

Treatment site Treatment time (brachy)

The categories listed in this table are available for query definitions in

DVH Analytics.
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shape will be selected. Then, we exclude the selected data from the

moving‐average computation and plotting.

2.D.5 | Tests of means, correlations, and
regressions

DVH Analytics provides three analytical modules: testing of sample

mean differences, Correlations, and Regressions. A two‐sample t test

on the difference of means between the two selected groups of data

is conducted and a P‐value is reported. In addition, for nonparamet-

ric data, a Wilcoxon rank‐sum test is provided with the p‐value. The

Correlations module generates a correlation matrix of many of the

continuous variables listed in Table 2, user‐specified DVH endpoints,

or computed radiobiological values (i.e. EUD, TCP, NTCP). The Pear-

son‐R value for each variable pair is represented by a color‐coded
circle, which has a radius and opacity that scales with the magnitude

of the Pearson‐R value, as calculated with the stats module of

SciPy.10 This provides the user with a clear visual indicating strong

or weak correlations. The information provided in the correlation

matrix may help guide the user's attention to likely relevant variables

for predictive modeling in the Regressions module. In the Regres-

sions module, the user may plot any of the variables listed in the

F I G . 3 . Example views of Query, DVHs, ROI Viewer, and Time‐Series tabs within DVH Analytics. (a) Queries are generated with a series of
dropdown menus populated by existing data within the user's SQL database. Text input is required to filter continuous data or define DVH
endpoints. All data in subsequent tabs are based on the filters defined here. (b) Interquartile, mean, and median DVHs are shown by default,
but all DVH data can be displayed in this plot by selecting DVHs in the table below (not shown). One DVH from the “review” folder may be
plotted here as well. (c) The ROI Viewer can plot any ROI from the database; however, only MRNs from the queried sample are selectable. (d)
The Time‐Series tab presents time‐series plots, their respective histograms, as well as P‐values from normality tests, two‐sample t test, and
Wilcoxon rank‐sum test.
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Correlations module against another. Along with this plot, the results

of a univariable linear regression are displayed in a table including

slope, y‐intercept, R2, P‐value, standard error, and sample size, as cal-

culated by the stats module of Scipy. The user may tag any of these

variables to be included in a multiple linear regression conducted

using the Python package Statsmodels.11 The results of this multiple

regression are displayed in a table including the R2 and probability

for the F‐statistic of the regression as well as the coefficient and P‐
value for each tagged variable.

2.E | Importing and processing times

DICOM file importing times were tested on a 2016 MacBook Pro

running MacOS Sierra (10.12.6) with a 2.6 GHz Intel Core i7 and

16 GB of RAM. For testing purposes, a sample of 70 clinically used

plans were imported. The total import time was 42 min 35 s, result-

ing in an average import time of 37 s per plan. The total time taken

to compute all PTV distances to the 2,063 categorized ROIs was

26 min 35 s, resulting in an average computation time of 0.8 s per

ROI; the total time to compute the PTV overlap volumes in 3,273

ROIs was 26 min 45 s, resulting in an average computation time of

0.5 s per ROI.

3 | RESULTS

3.A | Data validation

DVH calculations were validated against DVH data extracted from

Pinnacle3 using a script that stores the data into an ASCII file. ROI

volumes and selected DVH points were manually recorded as dis-

played in Pinnacle3. All DVH Analytics data were extracted from the

csv file generated when clicking the “download” button in the DVH

Analytics application. These data were collected into a spreadsheet

for plotting and tabulation to ensure independent validation DVH

Analytics with another DVH calculation method. DVHs for ITV, PTV,

spine, left lung, heart, spine, and ribs were plotted, as shown in

Fig. 4. The DVHs are virtually identical, with the largest deviation on

the initial shoulder of the PTV.

The calculations for ROI volume, PTV overlap, and minimum dis-

tance from ROI to PTV were validated by comparing these results to

those computed in Pinnacle3 with ROIs from a randomly selected

plan (nonanatomical ROIs were omitted for brevity, e.g., ROIs for

optimization). These data are reported in Tables A1–A3, located in

the Appendix.

Volume calculations are performed with the code from dicompy-

ler.8 The data in Table A1 show a maximum absolute difference of

2.76 cm3. All absolute differences greater than 0.5 cm3 correspond

to relative differences of typically 1–3%, at most 6.2%. Because

dicompyler's volume calculation is dependent on the dose grid reso-

lution (at the time of this study), these differences can be reduced

further by calculating the dose grid with a finer resolution prior to

DICOM export from the treatment planning system. The values

reported in Table A1 are based on a 4‐mm cubic dose grid resolu-

tion. These deviations are comparable to other studies reporting on

variations of volumes between multiple treatment planning sys-

tems.20,21

The 40 ROIs reported for volume calculation comparisons were

also used to validate PTV overlap calculations in DVH Analytics

against those calculated with Pinnacle3. Pinnacle3 does not directly

report PTV overlap. Therefore, PTV overlap calculations are per-

formed using Pinnacle3's ROI Expansion/Contraction tool. First, the

union of all PTVs was calculated and stored into a separate ROI.

Then, the intersection of this combined PTV with each remaining

ROI was generated one at a time. The volume of these subsequent

ROIs, as calculated by Pinnacle3, is reported as PTV overlap in Table

A2. Only two calculations resulted in an absolute difference greater

than 0.21 cm3; both of these calculations were for large structures

(i.e., external and skin).

F I G . 4 . DVH comparison of calculations
from DVH Analytics (computed with
dicompyler) and Pinnacle3.

TAB L E 3 Two multivariable models generated with DVH Analytics.

Regression model Independent variable Coefficient P‐value

Model 1 (R2 = 0.819,

P = 0.000)

Constant −80.62 0.005

PTV distance (mean) −6.932 0.000

PTV distance (min) −8.028 0.005

SSD (max) 1.547 0.000

Model 2 (R2 = 0.760,

P = 0.000)

Constant 63.74 0.000

PTV distance (mean) −5.586 0.003

PTV distance (min) −10.58 0.001

Results from multivariable regressions for the maximum brainstem doses

contained within the data used to generate Figs. 6(a) and 6(b).
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F I G . 5 . Example time‐series plots using H&N planning data: (a) beam MU, (b) total plan MU of IMRT (blue/earlier) and VMAT (red/later)
plans, (c) mean larynx doses, and (d) maximum brachial plexus doses for a single physician. In all four plots, the shaded regions contain 90% of
the data within the respective sample, the dashed lines represent the sample mean, and the solid lines represent a rolling average with a look‐
back window of 6 simulation dates.
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The minimum distance to PTV for the same ROIs used in Tables

A1 and A2 was calculated as described in Section 2.C.2, with the

exceptions of external and skin ROIs as these are omitted in DVH

Analytics due to potential memory overload issues. Although Pinna-

cle3 does not explicitly calculate distances between ROIs, Pinnacle3

does have functionality to calculate distances between two user‐spe-
cified points. When possible, the distances reported in Table A3 are

the minimum distance measured in any of the orthogonal planes (ax-

ial, sagittal, or coronal) of several measurements. In the few cases

when the listed ROI could not be viewed in an axial, sagittal, or

coronal plane with the PTV simultaneously, points were placed in

the nearest corners of the ROI and PTV; the 3D distance between

these two points was reported. Notably, all absolute differences

greater than 2 mm correspond to relatively small ROIs comprising a

small number of slices. Considering the plan selected for this analysis

is based on a CT study with 3‐mm thick slices, an absolute differ-

ence of 3‐mm perpendicular to axial planes is not unexpected. The

largest absolute difference was 3.4 mm.

3.B | Data exploration

While the authors’ initial intent for the design of DVH Analytics was

to develop a queryable database of DVHs, the collection of a large

subset of the DICOM data other than DVHs originally meant for

query definitions has added significant value. Simply plotting any of

these data over time can reveal potentially invalid data, quality con-

trol metrics, or temporal variations (e.g., across a physician, the insti-

tution, treatment site, etc.).

3.B.1 | Seeking “Bad” data

The benefit of time‐series plots is not exclusively individual patient

QA or easy data aggregation for clinical outcome studies; time‐series
plots also provide a valuable method for seeking incorrect or incor-

rectly categorized data. For example, when plotting the H&N larynx

volume data, it was observed that one larynx volume was more than

double the average of the sample. Upon inspection, the outlier was

actually due to the incorrect categorization of the ROI. Ostensibly,

the name of the ROI was a misspelling of larynx. In fact, the ROI

was poorly labeled; it was an expansion from the anatomically delin-

eated ROI and used for planning purposes. This is clear evidence

that automated categorization of ROIs is not without caveats and

should serve as a warning to users. The authors recommend plotting

and examining various variables in this fashion after importing new

data as a time‐series plot can easily demonstrate gross outliers.

3.B.2 | Quality control metrics with context

Observing temporal changes in data can provide valuable insight to

build physician‐specific profiles of typical dose constraints, indicate

plans with atypical parameters, and even help correlate patient toxic-

ities to dosimetric data. For example, Fig. 5(a) illustrates a change in

beam (MU) of 75 plans spanning 11 years. All of these plans are

H&N plans from a single physician in a single institution. All plans

were generated using Pinnacle3 and planned with step‐and‐shoot
IMRT or VMAT delivery techniques. Figure 5(a) illustrates a signifi-

cant increase in beam MU over time. Furthermore, Fig. 5(b) provides

context about the clinic in that treatment techniques transitioned

from step‐and‐shoot IMRT to VMAT arc deliveries. Because of the

treatment technique change, planning parameters derived from beam

MU should not span both IMRT and VMAT datasets. Instead, they

should be derived by treating IMRT and VMAT as separate samples.

The important takeaway from Fig. 5(b) is that examination of an out-

lier should consider multiple variables and include clinical context.

Therefore, DVH Analytics provides this quality check with emphasis

to examine each outlier.

The data in Fig. 5(c) illustrate a decrease in the mean larynx dose

of H&N plans from a single physician's practice over the span of

about 11 yr. The institution transitioned to VMAT delivery around

the start of 2016. It would appear as though VMAT deliveries gener-

ally result in lower mean larynx doses. However, this change is

reflective of a change in planning choices and physician practice.

Likewise, Fig. 5(d) shows a similar trend for brachial plexus doses.

Again, the downward change is more indicative of physician prefer-

ence than technological capabilities. Notably, there are three clear

outliers in Fig. 5(d). Upon inspection, the authors discovered that

these three points can be explained by correlating the ROI minimum

distance to PTV. A series of plots such as these could provide a

planner enough information about what a physician typically expects

and drive the plan toward the physician's preferences and/or clinical

norm.

3.C | Data analysis

Pearson‐R correlations between nine variables with a dataset of 88

patients are presented in Fig. 6(a) for brainstem and larynx data.

Some of the data points in this matrix have strong correlations but

have relatively little utility in a clinical setting. For example, a strong

correlation between the mean and median PTV distances is more

indicative of the skewness of the dataset. However, the correlation

values observed between PTV distance and ROI dose are of interest.

F I G . 6 . A correlation matrix and linear regression of brainstem and larynx data from H&N plans. (a) The top right of the correlation matrix
represents brainstem data (blue group), while the bottom left represent larynx data (red group). The diameter and opacity of each circle scale
with the magnitude of the Pearson‐R correlation. Green and purple colors indicate negative correlations for brainstem and larynx data,
respectively. (b) Univariable linear regression parameters are reported for both brainstem and larynx data. After inspection, the user may
indicate which variables are to be included in a multivariable regression. The results of the multivariable regression with this brainstem data are
tabulated in Table 3.
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In the case of brainstem, being a serial structure, the correlation val-

ues observed between PTV distance and ROI dose may be of clinical

significance in evaluating plan quality and/or OAR constraints. In this

H&N dataset, the larynx mostly overlaps with the PTV, and hence,

little correlation is observed. However, the brainstem never overlaps

resulting in a strong negative correlation.

Multivariable linear regressions were performed, with the same

dataset used to generate the correlation matrix in Fig. 6(a), using

Statsmodels.11 These results are tabulated in Table 3. The models

indicate a significant correlation between the minimum and average

PTV‐to‐brainstem distances and the maximum brainstem dose, which

is consistent with the previously discussed correlation matrix. Inter-

estingly, Model 1 summarized in Table 3 indicates a strong correla-

tion with the maximum source‐to‐skin distance (SSD) of the

treatment beams. However, it is important to appreciate that there

is likely a more fundamental independent variable at play than SSD

(e.g., laterality of PTV or beam isocenter, patient weight or size, etc.).

Model 2 also is significant, but reports a reduction in correlation.

The same two models applied to larynx data reported poor correla-

tion (i.e., R2 = 0.316 and R2 = 0.038, respectively), demonstrating

the need for context as these regression models for brainstem data

are clearly not suitable for the larynx data.

4 | DISCUSSION

As with any database, maintaining its integrity is critical for useful

implementation. There are a number of points‐of‐failure that DVH

Analytics is not equipped to handle in an automated fashion. The

methods below are suggestions from the authors to help mitigate

these issues.

4.A | Planning vs anatomical structures

Arguably, the biggest flaw in a DVH database is that much of its

data are based on subjective delineation of anatomical structures.

Furthermore, although with the best of intentions, it is not uncom-

mon for physicians or treatment planners to exaggerate/expand

these delineations in the interest of patient safety, with respect to

evaluating dose constraints. Strictly speaking, these exaggerated/ex-

panded OARs should be denoted as PRVs (Planned Risk Volumes);

however, this is not always done in practice. Therefore, users who

wish to implement DVH Analytics should be aware of these differ-

ences. However, users wishing to use a database such as DVH Ana-

lytics for the purpose of seeking a correlation between dosimetric

data and patient toxicities should strongly consider careful ROI delin-

eation with appropriately named ROIs and ROI mappings before

drawing any conclusions.

4.B | Database gatekeeper

Although DVH Analytics provides automation methods for parsing

data into a database, there is still some manual effort required by

the user to maintain the integrity of the data quality. For instance,

the source of some of the data included in DICOM files can be from

manual entry (e.g., date of birth, MRN, gender, sim study date). It is

worthwhile to implement a second check to verify the DICOM data

for these tags against patient records at the time of import. Although

DVH Analytics technically is capable or importing multiple plans for

a single study instance UID (or CT‐sim study), the automated import

process does not allow this to occur, as a means to notify the user

of potential data duplication. As such, the authors recommend users

to wait until a patient has fully completed his or her course of treat-

ment to ensure the composite plan is imported into the database. It

is also important to monitor which ROIs do not get categorized.

After a large number of plans are imported for a particular physician,

this need is reduced. However, manually updating a physician's ROI

naming map from a large number of uncategorized ROIs may lead to

categorization mistakes or unintentional and unnoticed deletion of

otherwise useful DVH data. Appointing a “database gatekeeper” can

help mitigate many of these issues and lead to a more consistent

database quality. Someone with the experience of seeing all data

entered into the database should have a better chance of spotting

inconsistencies. This will better establish the utility of labeling a par-

ticular plan as “baseline” to be used for quality control purposes.

The intent of this category is to allow a user to tag a plan as being

suitable for building baseline statistics, which is entirely based on

the user's judgment. For example, a user may not want to include a

patient being treated with two lung tumors simultaneously to deter-

mine typical lung DVH endpoints.

4.C | Treatment site and ROI naming policies

As with any database, drawing useful conclusions requires proper

context. In the case of a DVH database, DVHs need to be grouped

by treatment site and anatomy, at a minimum. For example, it does

not make any sense to compare the lung DVH of a patient being

treated with a lung tumor to that of a patient whose treatment was

for a brain tumor. Including lung DVHs from all treatment sites will

unnecessarily skew data and reduce the ability to determine outliers

for the purposes of quality control. Therefore, it is important for

users of a DVH database to decide on a consistent list of treatment

sites. With respect to ROI name categorization, although DVH Ana-

lytics provides a way to build a ROI name map, consistent ROI nam-

ing will reduce the chance of leaving a ROI uncategorized or

incorrectly categorized. In addition, the authors suggest a ROI nam-

ing policy that considers factors such as surgical status (i.e., pre‐ or
postsurgery) for tumor volumes.

4.D | Future research

Considering that radiation treatment is just one piece of cancer care

for many patients, our next step is to seamlessly connect pertinent

patient data from other treatment modalities. We are particularly

interested in combining the DICOM data extraction and statistical

tools currently available in DVH Analytics with information such as
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cancer staging, chemotherapy agents/prescriptions, surgical status,

and clinical outcome data (including radiation induced toxicities).

5 | CONCLUSION

A free and open‐source software application called DVH Analytics is

developed that can store, organize, parse, and analyze non‐image‐
based DICOM data for use in a radiation oncology setting. The soft-

ware accepts DICOM files as input data, allowing a seamless transi-

tion between DVH Analytics and treatment planning systems. To

highlight a few tools, the software allows time and memory efficient

queries on single parameters of large patient datasets, displays ROIs,

performs statistical tests, and builds predictive models using a data-

base. DVH Analytics is available at http://www.dvhanalytics.com.

Newer versions will be updated at the same location as new tools

are developed.
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TAB L E A1 Volume (cm3) calculation comparisons of dicompyler
and Pinnacle3.

ROI name
DVH

Analytics Pinnacle3
Abs.
Diff.

Rel.
Diff.

Base of tongue 28.90 29.28 0.38 1.30%

Brachial plexus total 18.53 18.58 0.05 0.27%

Brain 1285.06 1287.82 2.76 0.21%

Brainstem 21.84 21.69 0.15 0.69%

Cervico‐thoracic
esophagus

17.23 17.85 0.62 3.47%

Cochlea l 0.14 0.25 0.11 40.00%

Cochlea r 0.14 0.18 0.04 22.22%

Constrictors total 20.3 21.64 1.34 6.19%

Ext 8430.77 8429.25 1.52 0.02%

Eye l 10.03 10.17 0.14 1.38%

Eye r 9.70 9.9 0.21 2.12%

Glottic larynx 10.75 10.46 0.29 2.77%

Inferior pharyngeal

constrictors

3.02 2.77 0.26 9.39%

Larynx total 33.94 33.75 0.19 0.56%

Left brachial plexus 8.83 8.78 0.06 0.68%

Lips 3.70 3.63 0.06 1.65%

Mandible 54.91 54.62 0.29 0.53%

Middle pharyngeal

constrictors

1.54 1.87 0.33 17.65%

Opticchiasm 1.01 1.18 0.17 14.41%

Opticnerve l 0.77 0.8 0.03 3.75%

Opticnerve r 0.82 0.77 0.05 6.49%

Oralcavity 66.67 65.49 1.18 1.80%

Parotid l 18.10 18.06 0.03 0.17%

Parotid r 16.13 16.28 0.15 0.92%

Parotid total 34.27 34.34 0.07 0.20%

Pituitary 0.24 0.42 0.18 42.86%

Posterior cricoid

esophagus

1.06 1.23 0.17 13.82%

Presurgery gtv 12.38 12.18 0.21 1.72%

PTV 54 Gy 243.22 244.66 1.44 0.59%

PTV 56 Gy 69.74 69.87 0.13 0.19%

Right brachial plexus 9.65 9.81 0.16 1.63%

rt. neck bst PTV 6 Gy 21.26 20.74 0.52 2.51%

Skin 2803.1 2804.84 1.74 0.06%

Spinalcord 20.78 20.99 0.21 1.00%

Subglottic larynx 6.14 6.17 0.02 0.32%

Superior pharyngeal

constrictors

15.65 16.53 0.88 5.32%

Supraglottic larynx 16.80 17.12 0.32 1.87%

Surg bed PTV 60 Gy 258.53 259.78 1.25 0.48%

Surgical bed CTV 119.95 118.59 1.36 1.15%

Thyroid 10.85 11.37 0.52 4.57%

TAB L E A2 PTV overlap (cm3) calculation comparisons of DVH
Analytics and Pinnacle3.

ROI name
DVH

Analytics Pinnacle3
Abs.
Diff.

Rel.
Diff.

Base of tongue 4.49 4.53 0.04 0.88%

Brachial plexus total 11.90 12.07 0.17 1.41%

Brain 0.00 0.00 0.00 –

Brainstem 0.00 0.00 0.00 –

Cervico‐thoracic esophagus 0.00 0.00 0.00 –

Cochlea l 0.00 0.00 0.00 –

Cochlea r 0.00 0.00 0.00 –

Constrictors total 7.57 7.70 0.13 1.69%

Ext 573.83 574.36 0.53 0.09%

Eye l 0.00 0.00 0.00 –

Eye r 0.00 0.00 0.00 –

Glottic larynx 1.24 1.27 0.03 2.36%

Inferior pharyngeal

constrictors

0.00 0.00 0.00 –

Larynx total 3.02 3.10 0.08 2.58%

Left brachial plexus 5.07 5.15 0.08 1.55%

Lips 0.00 0.00 0.00 –

Mandible 3.67 3.79 0.12 3.17%

Middle pharyngeal

constrictors

0.10 0.11 0.01 9.09%

Opticchiasm 0.00 0.00 0.00 –

Opticnerve l 0.00 0.00 0.00 –

Opticnerve r 0.00 0.00 0.00 –

Oralcavity 0.17 0.19 0.02 10.53%

Parotid l 0.00 0.00 0.00 –

Parotid r 6.67 6.72 0.05 0.74%

Parotid total 6.67 6.72 0.05 0.74%

Pituitary 0.00 0.00 0.00 –

Posterior cricoid esophagus 0.00 0.00 0.00 –

Presurgery gtv 12.09 12.18 0.09 0.74%

PTV 54 Gy 244.45 244.66 0.21 0.09%

PTV 56 Gy 69.82 69.87 0.05 0.07%

Right brachial plexus 6.83 6.91 0.08 1.16%

rt. neck bst PTV 6 Gy 20.68 20.74 0.06 0.29%

Skin 476.16 476.64 0.48 0.10%

Spinalcord 0.00 0.00 0.00 –

Subglottic larynx 0.59 0.60 0.01 1.67%

Superior pharyngeal

constrictors

7.48 7.58 0.10 1.32%

Supraglottic larynx 1.19 1.23 0.04 3.25%

Surg bed PTV 60 Gy 259.63 259.78 0.14 0.05%

Surgical bed CTV 118.46 118.59 0.13 0.11%

Thyroid 1.31 1.51 0.20 13.25%

APPENDIX
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TAB L E A3 Minimum distance (cm) to PTV calculation/measurement
comparisons of DVH Analytics and Pinnacle3.

ROI name
DVH

Analytics Pinnacle3
Abs.
Diff.

Rel.
Diff.

Base of tongue 0.00 0.00 0.00 –

Brachial plexus total 0.00 0.00 0.00 –

Brain 0.90 0.87 0.03 3.45%

Brainstem 1.02 1.03 0.01 0.97%

Cervico‐thoracic
esophagus

0.48 0.49 0.01 2.04%

Cochlea l 4.17 4.51 0.34 7.54%

Cochlea r 1.82 1.52 0.30 19.74%

Constrictors total 0.00 0.00 0.00 –

Eye l 5.51 5.45 0.06 1.10%

Eye r 4.42 4.37 0.05 1.14%

Glottic larynx 0.00 0.00 0.00 –

Inferior pharyngeal

constrictors

0.00 0.00 0.00 –

Larynx total 0.00 0.00 0.00 –

Left brachial plexus 0.00 0.00 0.00 –

Lips 4.00 3.88 0.12 3.09%

Mandible 0.00 0.00 0.00 –

Middle pharyngeal

constrictors

0.00 0.00 0.00 –

Opticchiasm 4.50 4.18 0.32 7.66%

Opticnerve l 4.70 4.64 0.06 1.29%

Opticnerve r 4.50 4.21 0.29 6.89%

Oralcavity 0.00 0.00 0.00 –

Parotid l 0.12 0.00 0.12 –

Parotid r 0.00 0.00 0.00 –

Parotid total 0.00 0.00 0.00 –

Pituitary 3.60 3.28 0.32 9.76%

Posterior cricoid esophagus 0.58 0.47 0.11 23.40%

Right brachial plexus 0.00 0.00 0.00 –

Spinalcord 1.09 1.09 0.00 0.00%

Subglottic larynx 0.00 0.00 0.00 –

Superior pharyngeal

constrictors

0.00 0.00 0.00 –

Supraglottic larynx 0.00 0.00 0.00 –

Thyroid 0.00 0.00 0.00 –

CUTRIGHT ET AL. | 427


