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Abstract

The master regulators of the cell cycle are cyclin-dependent kinases (Cdks), which influence the function of a myriad of
proteins via phosphorylation. Mitotic Cdk1 is activated by A-type, as well as B1- and B2-type, cyclins. However, the role of a
third, conserved cyclin B family member, cyclin B3, is less well defined. Here, we show that Caenorhabditis elegans CYB-3 has
essential and distinct functions from cyclin B1 and B2 in the early embryo. CYB-3 is required for the timely execution of a
number of cell cycle events including completion of the MII meiotic division of the oocyte nucleus, pronuclear migration,
centrosome maturation, mitotic chromosome condensation and congression, and, most strikingly, progression through the
metaphase-to-anaphase transition. Our experiments reveal that the extended metaphase delay in CYB-3–depleted embryos
is dependent on an intact spindle assembly checkpoint (SAC) and results in salient defects in the architecture of holocentric
metaphase chromosomes. Furthermore, genetically increasing or decreasing dynein activity results in the respective
suppression or enhancement of CYB-3–dependent defects in cell cycle progression. Altogether, these data reveal that CYB-3
plays a unique, essential role in the cell cycle including promoting mitotic dynein functionality and alleviation of a SAC–
dependent block in anaphase chromosome segregation.
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Introduction

The eukaryotic cell cycle is driven by the temporally controlled

activation of cyclin-dependent kinases (CDKs) in association with

their requisite cofactors, the cyclins [1]. The expression and

stability of individual cyclins is coordinated with specific cell cycle

stages. For instance, cyclin E is expressed as cells enter G1 and is

degraded in early S phase, while cyclin B levels rise in G2 and fall

at the metaphase-to-anaphase transition [1]. Cyclins not only

contribute to the temporal activation of specific CDKs at

particular cell cycle transitions, but also appear to provide

substrate specificity [2].

As cells prepare to enter mitosis, cyclin B/Cdk1 complexes

phosphorylate a host of substrates leading to chromosome

condensation, centrosome maturation, and nuclear envelope

breakdown [3]. During this period, the chromosome/microtubule

interface, the kinetochore, is constructed from several protein

complexes that are coordinately built at the centromere, an

epigenetically defined chromosomal location [4]. In budding yeast,

the centromere consists of a defined 125 base-pair sequence, while

in fission yeast and higher eukaryotes centromeres are hetero-

chromatin rich and are not identified by specific nucleotide

sequences. Other organisms, including C. elegans, have holocentric

chromosomes with kinetochores along their entire length [5].

Despite these differences, all eukaryotic centromeres harbor

specialized nucleosomes wherein the canonical histone H3 is

replaced by the centromere-specific histone CENP-A/CenH3 [6].

The raison d’être for mitosis is the equal partitioning of replicated

genetic material to each daughter cell. Hence, progression through

mitosis is inextricably linked to the state of kinetochore-

microtubule attachment. To be properly segregated, each pair of

sister chromatids must be attached to the mitotic spindle in a

bipolar fashion [7]. Once bipolar attachment is achieved, the

cohesed sister centromeres and kinetochores are under tension;

stretching occurs between sister centromeres and within kineto-

chores [8]. The spindle assembly checkpoint (SAC) monitors this

process and is exquisitely sensitive to the attachment and tension

state of individual kinetochores. The SAC delays the metaphase-
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anaphase transition via inhibition of the anaphase-promoting

complex (APC) until all chromosomes are attached and are under

tension. The SAC consists of several components, including the

Bub- and Mad-related proteins first identified in genetic screens in

budding yeast, and is influenced by the Mps1, Polo, and Aurora B

kinases [7]. Unattached kinetochores recruit Mad2 [9,10], while

the Polo and Aurora B kinases monitor tension [11,12]. Aurora B

is localized to the inner centromere where it destabilizes

inappropriate kinetochore-microtubule interactions via phosphor-

ylation of microtubule-associated proteins, including Ndc80/

Hec1, MCAK, and Kif2 [13–16]. This activity releases kineto-

chore-microtubules, resulting in ‘‘free’’ kinetochores that can

undergo reattachment [17].

It has become increasingly clear that once a cell engages a

checkpoint such as the SAC, the checkpoint must be shut-off or

silenced once the checkpoint is satisfied (i.e., all chromosomes are

attached and under tension) [18]. Inter-centromeric and intra-

kinetochore stretching resulting from bipolar attachment appears

to limit the interaction between Aurora B and its substrates at the

outer kinetochore, resulting in the stabilization of bipolar

attachments [19]. In addition, the minus-end directed protein

dynein is required for SAC silencing as it strips Mad2 and other

checkpoint proteins from kinetochores and traffics them along

kinetochore-microtubules to centrosomes [20–23]. When dynein

function is compromised, the APC remains inhibited and the

metaphase-to-anaphase transition is delayed, even when all

chromosomes are properly attached.

A key target of the APC is cyclin B, a mitotic-specific Cdk1

partner. Mammals have three B-type cyclins -B1, B2, and B3-

which appear to have both overlapping and specific functions [24].

While cyclins B1 and B2 are highly similar, B3 forms a distinct

sub-family with more sequence conservation among B3 proteins

from divergent species than with B1 and B2 cyclins from the same

species [25]. While human B1 and B2 cyclins are highly expressed

in dividing cells, B3 is found at much lower levels [24]. However,

human B3 is also highly expressed in male and female meiotic

germ cells [25,26]. In Drosophila, a cyclin B3/CycB3 mutant is

female sterile yet viable [27]. RNAi experiments also revealed that

cycB3 is not essential for mitosis, but does share a partially

redundant function with cycB to promote timely anaphase entry

[28]. To date, a specific, functional role for cyclin B3 in mitosis has

not been revealed.

C. elegans harbors four partially redundant cyclin B family

members [29,30]. While previous studies revealed a role for CYB-

3 in progression through meiosis II and the oocyte-embryo

transition [31–33], here we demonstrate that loss of CYB-3 leads

to specific defects in multiple dynein-related mitotic processes.

Strikingly, CYB-3 depletion leads to an unprecedented C. elegans

mitotic phenotype: a persistent block in the initiation of anaphase

chromosome segregation. The experiments herein reveal the

nature of this phenotype and lead to a working model whereby

CYB-3 genetically promotes mitotic dynein functionality and is

required to satisfy the spindle assembly checkpoint.

Results

CYB-3–depleted embryos exhibit defects in MII,
pronuclear migration, and synchronous mitotic entry

The first mitotic division of C. elegans embryogenesis occurs after

fertilization and the completion of the meiotic divisions of the

oocyte nucleus. Upon extrusion of the second polar body, the

maternal pronucleus migrates towards the paternal pronucleus at

the posterior end of the embryo. As their chromosomes condense,

the two pronuclei join and traverse toward the center of the

embryo while the growing mitotic spindle undergoes a rotation to

align with the long axis. Nuclear envelope breakdown and

microtubule attachment ensue, culminating with chromosome

alignment at the metaphase plate followed by immediate anaphase

sister chromatid segregation, cleavage furrow ingression, and

mitotic exit [34].

To assess the role of C. elegans CYB-3 in these processes, young

hermaphrodites (L4 larvae) were fed bacteria expressing cyb-3

dsRNA. This RNAi treatment resulted in efficient CYB-3

depletion (Figure S1A and Text S1) and fully penetrant embryonic

lethality. To fully address this phenotype, progression through the

meiotic divisions and early embryogenesis were monitored by live

imaging of fertilized oocytes and embryos expressing either

GFP::Histone H2B; GFP::c-tubulin (TH32) [35] or mCherry::-

Histone H2B; GFP::a-tubulin (OD57) [36] to visualize chromo-

somes, centrosomes, and/or spindle microtubules. As in controls,

the maternal nucleus of newly fertilized cyb-3(RNAi) oocytes

underwent an apparently normal first meiotic division followed by

extrusion of the first polar body at the anterior end of the embryo

(Videos S1, S2). Likewise, both types of embryos generated a

second meiotic spindle with chromosomes aligned at the

metaphase plate. However, in the majority of cyb-3(RNAi)

embryos, anaphase II did not occur. Sister chromatids failed to

separate from one another and a second polar body was not

extruded (Videos S1, S2); similar findings were recently reported

[30]. In many of these embryos, the meiotic spindle ‘‘floated’’

away from the anterior cortex and ultimately disassembled in the

anterior third of the embryo (Video S2). This MII defect resulted

in either multiple maternal pronuclei or a single diploid

pronucleus (Videos S3, S4, S5, S6).

Upon completion of the two meiotic divisions in wild-type cells,

the maternal pronucleus migrates toward the male pronucleus,

which is positioned at the posterior end of the embryo. The

maternal pronucleus migrates in two distinct phases, with an initial

slow velocity until it reaches approximately 40% of embryo length

(EL) from the anterior end (Anterior: 0%; Posterior: 100%)

[22,37]. The migration rate then increases significantly (fast

phase). Since the paternal pronucleus migrates toward the

anterior, the two pronuclei meet at approximately 70% of EL

[37]. Compared to control, both phases of maternal pronuclear

Author Summary

Every time a cell divides in two, the genetic material, DNA,
is copied; each copied chromosome is referred to as a pair
of sister chromatids. Each chromatid must be cleanly
separated from its sister so that each daughter cell inherits
the same DNA complement as the starting cell. The mitotic
spindle is a cellular machine that physically separates the
sister chromatids from one another. The chromatids are
attached to the spindle at kinetochores, which are
structures built at specific sites (centromeres) on each
chromatid. The cell monitors the attachment of each
chromatid and blocks their separation until they are all
properly attached. This process is called the spindle
assembly checkpoint (SAC). Here we report that loss of
an evolutionarily conserved cell cycle regulator, Cyclin B3/
CYB-3, results in an unusual and strikingly persistent SAC–
dependent delay in sister chromatid separation. Further-
more, CYB-3 promotes the activity of a cellular motor,
dynein, in this and other mitotic processes. Altogether, our
results indicate that Cyclin B3 genetically interacts with
mitotic dynein and is absolutely required to satisfy a SAC–
dependent inhibition in sister chromatid separation.

CYB-3 Is Required for Anaphase Onset
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migration were approximately two-fold slower in cyb-3(RNAi)

embryos (Figure 1A; Videos S3, S4, S5, S6). In addition, paternal

pronuclear migration toward the anterior was greatly reduced,

resulting in pronuclear meeting (PNM) occurring significantly

closer to the embryo posterior (Figure 1B, 1D, and Figure 3C;

Videos S4, S6).

C. elegans oocytes are devoid of centrioles and centrosomes [38].

Therefore, the centriole donated by the sperm is the sole mitotic

organizing center (MTOC) in the newly fertilized one-cell embryo

[39]. The paternal centriole duplicates upon completion of the

meiotic divisions of the oocyte nucleus. As the maternal pronucleus

migrates, the centrioles recruit pericentriolar material and separate

away from one another along the surface of the paternal pronucleus.

Concurrently, condensation of the maternal and paternal pronuclei

occurs in a synchronous manner. We noted that the maturing

centrosomes in cyb-3(RNAi) embryos were much smaller compared

to controls. At the time of PNM, cyb-3(RNAi) centrosomes were

approximately two-fold smaller than control centrosomes

(Figure 1C, 1D; Videos S3, S4). However, by nuclear envelope

breakdown (NEB), there was no appreciable difference in

centrosome size between CYB-3-depleted embryos and controls.

Curiously, condensation of the paternal and maternal pronuclei was

asynchronous in cyb-3(RNAi) embryos; condensation of the paternal

pronucleus was significantly delayed with respect to the maternal

pronucleus (Figure 1D; Videos S3, S4). However, as with

centrosome size, condensation of the paternal pronucleus also

‘‘caught up’’ to control levels by NEB (Figure 1D, Figure 2, and

Figure S2; Videos S3, S4). These defects are not likely to be

secondary consequences of a failure to undergo MII anaphase since

other MII defective mutants do not display these phenotypes [40].

Asynchrony of pronuclear condensation is a feature of mutants

that fail to undergo pronuclear migration [37]. However, it is the

maternal pronucleus that is delayed in these cases. This delay is

thought to be due to the increased distance between a stationary

maternal pronucleus and centrosome-based signals that promote

mitotic entry [41,42]. The role of CYB-3 in regulating centrosome

maturation and differential mitotic entry of maternal and paternal

pronuclei is an exciting question that will be addressed in detail in

a forthcoming manuscript (Deyter et al., in preparation).

CYB-3 is required for timely mitotic progression and
anaphase onset

We quantified the duration of the first mitotic division in OD57

embryos treated with control or cyb-3(RNAi) using specific mitotic

landmarks as follows: Prophase: interval between pronuclear meeting

(PNM; the initial joining of the maternal and paternal pronuclei) and

nuclear envelope breakdown (NEB; the absence of clearly demar-

cated nucleoplasm surrounded by a nuclear envelope); Prometa-

phase: interval between NEB and chromosome congression to the

metaphase plate; Metaphase: interval between complete (or nearly

complete) congression and the initiation of anaphase chromosome

segregation; Anaphase: interval between the initiation of chromo-

some segregation and the beginning of chromosome decondensation;

Telophase/mitotic exit: interval between the initiation of chromo-

some decondensation and centrosome breakdown.

Fixed-cell and live imaging revealed that prophase and

prometaphase were approximately two-to-three fold longer in

cyb-3(RNAi) embryos compared to control, and chromosome

congression was often incomplete (Figure 3; Videos S5, S6). 30%

of cyb-3(RNAi) embryos had at least one chromosome that initially

congressed to the metaphase plate but subsequently underwent

movement towards the centrosome, followed by re-alignment in

the majority of embryos (Figure 3A, 3B; Video S6). cyb-3(RNAi)

mitotic spindles also had an abnormal appearance, with

microtubule bundles appearing to be pinched at the centrosomes

rather than the more spread out, straight microtubules of control

spindles (Figure 3A). The centrosome-centrosome distance at

metaphase was also much greater (Figure 3A and below).

However, the most striking and unusual phenotype was the

prolonged metaphase delay (Figure 3, Figure S3; Video S6). While

metaphase was the shortest mitotic stage in control embryos

(Figure 3C, 3D, Figure S3, Video S5), loss of CYB-3 resulted in a

prolonged metaphase delay characterized by the persistence of

aligned, condensed chromosomes even after other cell cycle events

had proceeded (i.e., spindle disassembly) (Figure S3, Video S6).

The pinched spindle pole phenotype appears to be a function of

time spent in metaphase since it becomes more apparent over the

course of the delay (Video S6). Since anaphase chromosome

segregation and telophase decondensation did not occur, meta-

phase in cyb-3(RNAi) embryos was defined as the continued

alignment of chromosomes at the metaphase plate until centro-

some breakdown (Figure S3, Video S6). In these embryos,

cleavage furrow ingression occurred while chromosomes remained

condensed and aligned at the metaphase plate. Indeed, the

cleavage furrow often ‘‘cut’’ these chromosomes depending on

their position relative to the furrow (Video S6). In addition,

centrosomes in cyb-3(RNAi) embryos were disassembled only to

reform, separate, and nucleate microtubules in the presence of

aligned chromosomes (Video S6). These results indicate that the

absence of chromosome segregation does not prevent other cell

cycle events from proceeding.

To address whether the persistent metaphase delay is a

secondary consequence of the failure of the oocyte nucleus to

undergo the MII meiotic division, we assayed cell cycle

progression in the relatively rare cyb-3(RNAi) embryos with two

extruded polar bodies, which is indicative of complete MI and MII

divisions. All of these embryos (n = 7) displayed metaphase delays

comparable to cyb-3(RNAi) embryos with single polar bodies

(Figure S4). Hence, the failure to undergo mitotic anaphase

chromosome segregation does not correlate with increased

embryonic ploidy or a failure to undergo the MII division. These

results are consistent with the absence of prolonged mitotic

metaphase delays in other genetic conditions that disrupt the

meiotic divisions of the oocyte nucleus and/or polar body

extrusion [43–46].

CYB-3 is one of four B-type cyclins in C. elegans [30]. The other

three Cyclin B proteins include CYB-1, the closest homolog to

mammalian B1, and two B2-like proteins. cyb-1, cyb-2.1, and cyb-

2.2 are highly similar to one another and were targeted for RNAi

elimination via microinjection of a single dsRNA (Figure S1B). As

recently described [30], the meiotic divisions were aberrant in cyb-

1&2(RNAi) embryos (data not shown). However, in sharp contrast

to cyb-3(RNAi), cyb-1&2(RNAi) mitotic chromosomes did not align

to a metaphase plate but still underwent anaphase (Figure S3A;

Video S7). Surprisingly, the interval between NEB and the onset of

anaphase spindle elongation in CYB-1&2-depleted embryos was

similar to controls (control: avg. = 161626 seconds, number of

embryos (n) = 11; cyb-1&2(RNAi): avg. = 124620 seconds, n = 7),

suggesting that there were no appreciable delays in prometaphase

or the metaphase-to-anaphase transition. In conclusion, embryos

depleted of CYB-3 exhibit a phenotype distinct from that caused

by co-depletion of CYB-1 and CYB-2.

Anaphase chromosome segregation is restored to cyb-
3(RNAi) embryos when the spindle assembly checkpoint
is compromised

Since the spindle assembly checkpoint (SAC) delays the

metaphase-to-anaphase transition in the presence of unattached

CYB-3 Is Required for Anaphase Onset
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Figure 1. Depletion of C. elegans Cyclin B3 leads to defects in pronuclear migration and synchrony of chromosome condensation.
Embryos from TH32 (GFP::Histone H2B;GFP::c-tubulin) and OD57 (mCherry::Histone H2B; GFP:: a-tubulin) hermaphrodites fed control or cyb-3 dsRNA
were subjected to live imaging. A) The rate of pronuclear migration was calculated by measuring the distance (mm) between the maternal and
paternal pronuclei with respect to time (seconds). Slow: slow phase (0–40% EL); Fast: fast phase (.40% EL); 0%: anterior end; control(RNAi), n = 5; cyb-
3(RNAi), n = 7; Error bars: standard error of the means (SEM). B) The position of PNM was measured as the distance from the position of PNM to the
anterior end and is displayed as % EL. control(RNAi), n = 12; cyb-3(RNAi), n = 14; Error bars: SEM; p = 0.0007. C) Centrosome size in TH32 embryos
treated with control and cyb-3(RNAi) was measured at PNM and NEB. n = centrosomes; control(RNAi), PNM: n = 17, NEB: n = 17; cyb-3(RNAi), PNM:
n = 11, NEB: n = 13; Error bars: SEM; PNM: p,0.0001; NEB: p = 0.9. D) Selected images from Videos S3 and S4: TH32 embryos treated with control and
cyb-3(RNAi) at PNM and NEB. Anterior is to the left in all images. Scale bar: 10 mm.
doi:10.1371/journal.pgen.1001218.g001

CYB-3 Is Required for Anaphase Onset
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Figure 2. Mitotic chromosome condensation is delayed in cyb-3(RNAi) embryos. Embryos from TH32 (GFP::Histone H2B;GFP::c-tubulin)
hermaphrodites treated with A) control(RNAi), B) cyb-3(RNAi), or C) smc-4(RNAi) were subjected to live imaging. Condensation of the paternal
pronucleus was measured as described in Materials and Methods. Condensation parameters (% pixels below threshold) are plotted for four
thresholds (20, 35, 50, and 65%) with respect to time from NEB (t = 0) [87]. PNM: Pronuclear meeting. SMC-4-depleted embryos were used as a control
for loss of condensin complexes and mitotic chromosome condensation [51]. The control(RNAi) results are overlaid on the cyb-3(RNAi) panel to assist
in direct comparison. n = embryos; control(RNAi), n = 6; cyb-3(RNAi), n = 7; smc-4(RNAi), n = 8; Error bars: SEM.
doi:10.1371/journal.pgen.1001218.g002

CYB-3 Is Required for Anaphase Onset
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Figure 3. cyb-3(RNAi) results in chromosome congression defects and a prolonged SAC–dependent metaphase delay. A) Control and
cyb-3(RNAi) embryos were fixed and stained with DAPI (blue) and an a-tubulin (green) antibody. One-cell embryos at metaphase are shown. Arrow:
unaligned chromosome. B) Percentage of fixed control and cyb-3(RNAi) one-cell embryos with complete metaphase chromosome alignment
(control(RNAi), n = 25; cyb-3(RNAi), n = 42; Error bars: SEM; p = 0.001). C) Selected live images of OD57 embryos treated with the indicated RNAi
combinations. 0:00 = NEB. Images immediately to the left of 0:00 correspond to PNM. D) Duration of mitotic stages after treatment with various RNAi
combinations. *: p,0.05 compared to control(RNAi); #: p,0.05 compared to cyb-3;control(RNAi). n = embryos; Error bars: SEM; control, n = 7; cyb-
3;control(RNAi), n = 8; mdf-1;control(RNAi), n = 10; cyb-3;mdf-1(RNAi), n = 17; smc-4(RNAi), n = 7. Scale bars: 10 mm.
doi:10.1371/journal.pgen.1001218.g003

CYB-3 Is Required for Anaphase Onset
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kinetochores or defective microtubule attachments, we asked

whether the prolonged metaphase delay in cyb-3(RNAi) embryos

was dependent on a functional SAC. Hence, OD57 embryos co-

depleted of CeMad1/MDF-1 [47] and CYB-3 were subjected to

live imaging (Figure 3C, 3D; Videos S8, S9, S10). As controls, cyb-

3 and mdf-1 dsRNA-expressing bacteria were diluted with control

bacteria (see Materials and Methods). Consistent with previous

reports, mdf-1+control(RNAi) did not result in any apparent defects

in the timing or execution of mitosis as compared to control(RNAi)

embryos (Figure 3C, 3D; Video S9) [48]. The mitotic defects of

cyb-3+control(RNAi) embryos were indistinguishable from undiluted

cyb-3(RNAi) (Figure 3C, 3D, and Figure S3; Videos S6, S8). MDF-

1 contributed to the prometaphase delay in cyb-3(RNAi) embryos,

since the duration of prometaphase in cyb-3+mdf-1(RNAi) embryos

was shortened compared to cyb-3+control(RNAi); however, this

interval remained lengthened as compared to control(RNAi)

(Figure 3C, 3D; Videos S5, S8, S10). Strikingly, cyb-3+mdf-1(RNAi)

embryos entered anaphase after a brief metaphase delay,

suggesting that the SAC is required for the prolonged metaphase

in cyb-3(RNAi) embryos (Figure 3C, 3D; Videos S8, S10). Indeed,

co-depletion of CYB-3 and other SAC proteins (CeMad3/SAN-1

and CeBub1/BUB-1 [49,50]) also resulted in anaphase onset

(Videos S11, S12).

To confirm these results, homozygous unc-46(e177); mdf-1(gk2)

L4 hermaphrodite offspring (F1) from unc-46(e177);mdf-1(gk2)

heterozygous mothers were fed control or cyb-3 dsRNA-expressing

bacteria. unc-46(e177) is a recessive linked visible marker for

homozygous mdf-1(gk2) animals [47]. gk2 is a strong loss-of-

function deletion allele of mdf-1 [47]. F1 mdf-1(gk2) homozygotes

are viable but display a low level of sterility (23%), while the

majority of F2 mdf-1(gk2) progeny arrest as embryos or larvae [47].

Embryos of RNAi-treated F1 unc-46(e177);mdf-1(gk2) or unc-

46(e177) hermaphrodites were fixed, immunostained with kinet-

ochore (CeBub1/BUB-1)[10] and spindle (a-tubulin) antibodies,

and the number of one-cell embryos in mitotic metaphase versus

other cell cycle stages was counted (Table 1). 100% of cyb-

3(RNAi);unc-46(e177) one-cell embryos were in mitotic metaphase

and none in anaphase, while 50% of cyb-3(RNAi);unc-46(e177)mdf-

1(gk2) one-cell embryos were in mitotic metaphase and 36% were

in anaphase (Table 1). These data are consistent with the RNAi

experiments described above where depletion of MDF-1 results in

a significant but not complete reduction in the duration of the

extended metaphase in cyb-3(RNAi) embryos and permits ana-

phase onset.

Given that CYB-3-depleted embryos display chromosome

condensation defects (Figure 1D, Figure 2, Figure S2), mitotic

progression of embryos depleted of the condensin subunit SMC-4

[51] was assessed to determine whether condensation defects also

lead to significant delays in mitotic progression. These experiments

revealed that smc-4(RNAi) embryos, although highly defective with

respect to chromosome condensation, do not display significant

delays at any mitotic stage (Figure 3C, 3D; Video S13). These

results suggest that the mitotic delay in cyb-3(RNAi) embryos is not

a secondary consequence of chromosome condensation defects.

Loss of CYB-3 leads to altered geometry of the
metaphase kinetochore

C. elegans chromosomes are holocentric, providing a large

centromere advantageous for studying changes in kinetochore

structure and centromere resolution [52]. Given that the

organization of kinetochore microtubules was altered in cyb-

3(RNAi) embryos, we tested whether kinetochore architecture was

also changed. Hence, control and cyb-3(RNAi) embryos were fixed

and co-stained with antibodies recognizing two kinetochore

proteins, CeCENP-F/HCP-1 [53] and CeBub1/BUB-1 [10]

(Figure 4A). In wild-type cells, sister chromatids are resolved from

one another in prophase, resulting in paired kinetochores oriented

to opposite spindle poles [54]. This geometry lessens the

probability of kinetochores interacting with microtubules emanat-

ing from the wrong spindle pole. Sister chromatid resolution

occurred in both control and CYB-3-depleted embryos, as

evidenced by parallel stripes of BUB-1 and HCP-1 staining on

prophase chromosomes (Figure 4A, arrowheads). This kinetochore

geometry was maintained in both types of embryos through

prometaphase. At metaphase, 100% of control embryos had two

clearly defined stripes of BUB-1 and HCP-1 staining, as well as

kinetochore microtubule (K-Mt) staining (Figure 4A, arrows).

However, the majority (.80%) of cyb-3(RNAi) embryos had no

clear BUB-1 or HCP-1 kinetochore stripes, and no BUB-1 or

HCP-1 localization to metaphase K-Mts (Figure 4A). Rather,

BUB-1 and HCP-1 staining appeared to be ‘‘twisted’’ and was

coincident with the body of the metaphase chromosomes

(Figure 4A). Immunostaining with additional kinetochore-specific

antibodies (e.g., a-KNL-2) [55], as well as live imaging of

GFP::KBP-4Ndc80 (strain OD11) transgenic embryos [56], con-

firmed these results (data not shown).

As in other organisms, the C. elegans kinetochore is built on

centromeric chromatin containing the histone variant CENP-A

(CeHCP-3) [57]. To determine whether the altered metaphase

kinetochore architecture in CYB-3-depleted embryos coincided

with changes in centromere geometry, fixed embryos were co-

stained with BUB-1 and HCP-3 antibodies. These experiments

revealed that HCP-3 behaves identically to BUB-1 and HCP-1,

suggesting that metaphase kinetochores and underlying centro-

meres are equally affected by the loss of CYB-3 (Figure 4B).

Similar results were obtained upon live imaging of GFP::HCP-

3;mCherry::H2B embryos (strain JS9670)[55] (data not shown).

Since the prolonged metaphase delay in cyb-3(RNAi) embryos is

dependent on the spindle assembly checkpoint, we determined

Table 1. Number of metaphase and anaphase embryos in CYB-3-depleted mdf-1(gk2) embryos.

Genotype One-cell mitotic embryos

n (total number)* Metaphase Anaphase

unc-46(e177);control(RNAi) 8 1 (12.5%) 2 (25%)

unc-46(e177);mdf-1(gk2);control(RNAi) 8 1 (12.5%) 3 (38%)

unc-46(e177);cyb-3(RNAi) 20 20 (100%) 0 (0%)

unc-46(e177);mdf-1(gk2);cyb-3(RNAi) 14 7 (50%) 5 (36%)

*Remainder of the embryos were in prophase, prometaphase, or telophase.
doi:10.1371/journal.pgen.1001218.t001
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Figure 4. CYB-3 depletion leads to altered metaphase kinetochore geometry and premature spindle pole separation. A) Control and
cyb-3(RNAi) embryos were fixed and stained with DAPI and antibodies recognizing the kinetochore proteins HCP-1 (green) and BUB-1 (red).
Arrowheads: resolved sister chromatids (prophase). Arrows: K-Mt immunostaining. B) Embryos treated as in (A) were stained with DAPI and antibodies
recognizing HCP-3 (green) and BUB-1 (red). Arrowheads: resolved sister chromatids. C) Embryos treated with the indicated RNAi were fixed and
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whether depletion of SAC components affected kinetochore

geometry. As above, the majority of one-cell embryos treated

with cyb-3+control(RNAi) displayed ‘‘twisted’’ kinetochores

(Figure 4C). The twisting appears to increase over the course of

the delay since it correlates with the severity of the pinched spindle

pole phenotype (compare the two cyb-3;control(RNAi) embryos in

Figure 4C). Co-depletion of CeMad1/MDF-1 resulted in a

suppression of both phenotypes, with 65% of co-depleted one-

cell embryos displaying two distinct stripes of BUB-1 staining and

normal spindle morphology (Figure 4C). Note that while BUB-1

was localized to metaphase K-Mts in control and mdf-1+control(R-

NAi) embryos, no K-Mt BUB-1 localization was apparent in cyb-

3(RNAi) or cyb-3+mdf-1(RNAi) embryos.

The quality of kinetochore-microtubule attachments in C. elegans

is directly reflected by the timing and rate of spindle pole

separation. C. elegans chromosomes do not undergo anaphase A

movements [35]; therefore, cortical pulling forces on centrosomes

and astral microtubules prior to anaphase are countered by

bipolar kinetochore-microtubule attachments to cohesed sister

chromosomes. When kinetochore-microtubule attachments are

defective, spindle poles separate immediately upon NEB as there

are no forces counteracting astral microtubule-based pulling of

centrosomes to the cell cortex [35]. For instance, in embryos

depleted of the core kinetochore protein KNL-1, the distance

between centrosomes rapidly increases immediately after NEB

(Figure 4D and [58]). Interestingly, the centrosome-centrosome

distance in cyb-3(RNAi) embryos was significantly greater than

control embryos prior to NEB (Figure 4D), indicating that CYB-3

is likely to be affecting processes other than or in addition to

kinetochore-microtubule interactions (see below). Indeed, this

premature spindle pole separation was not affected by abrogation

of the spindle assembly checkpoint (Figure 4D). Spindle length in

cyb-3(RNAi) embryos is stabilized within 60 seconds after NEB at

the same length (14.5 mm60.73 (SEM); n = 6) as the metaphase-

to-anaphase transition spindle in control embryos (15.7 mm60.56

(SEM); n = 6; p = 0.2)(180 seconds post-NEB)(Figure 4D). Spindles

in embryos co-depleted of CYB-3+MDF-1 behaved similarly to

cyb-3(RNAi) spindles until the centrosomes of the former separated

coincident with anaphase chromosome segregation (approximately

240 seconds post-NEB) (Figure 4D). Mitotic spindles in SMC-4-

depleted embryos undergo a brief premature spindle pole

separation just after NEB, but then the centrosome-centrosome

distance increases at the same rate as spindles in control embryos

(Figure 4D). Hence, the premature spindle pole separation

phenotype of CYB-3-depleted embryos is not likely to be a

consequence of chromosome condensation defects. Altogether,

these data indicate that loss of CYB-3 results in very early, pre-

NEB centrosome separation, perhaps due to abnormalities in the

attachment of centrosomes to the nuclear envelope (see Discus-

sion). cyb-3(RNAi) spindles then stabilize at the same length as

control metaphase spindles (180 seconds post-NEB), indicating

that kinetochore-microtubule interactions reach levels that balance

cortical pulling forces similarly to control spindles. This balance

could also be achieved if kinetochore-microtubule interactions

were compromised coincident with a diminution of cortical pulling

forces. However, spindle pole separation and sister chromatid

segregation in cyb-3+mdf-1(RNAi) embryos are not consistent with

this latter model. While we cannot rule out the presence of

underlying spindle abnormalities or assembly defects, these data

reveal that CYB-3-depleted embryos are capable of generating at

least grossly functional kinetochore-microtubule attachments.

Metaphase chromosomes in cyb-3(RNAi) embryos
accumulate spindle checkpoint proteins and dynein

The spindle assembly checkpoint delays anaphase entry until all

chromosomes achieve bipolar attachment to the mitotic spindle [4].

In mammalian cells, this delay can be several hours [9]. However,

C. elegans SAC-dependent mitotic delays are transient. The worm

SAC mediates a modest two-fold increase in the interval between

NEB and anaphase onset, even when kinetochore-microtubule

attachments are severely compromised by treatment with the

microtubule inhibitor nocodazole [50]. The complete SAC-

dependent abrogation of anaphase spindle elongation and chro-

mosome segregation in CYB-3-depleted cells suggests that loss of

CYB-3 results in a much ‘‘stronger’’ and/or persistent checkpoint

response. Since the checkpoint protein CeMad2/MFD-2 is

recruited to unattached chromosomes and is ‘‘stripped’’ from

kinetochores upon microtubule attachment and checkpoint satis-

faction [9,10,20], we examined the localization of GFP::MDF-2 in

living C. elegans embryos (strain OD110) treated with control or cyb-

3(RNAi). As previously reported, GFP::MDF-2 localizes to prophase

and prometaphase nuclei but is not apparent on metaphase

kinetochores in control embryos (Figure 5A; Videos S14, S15 and

[10]). Interestingly, in cyb-3(RNAi) embryos, GFP::MDF-2 accumu-

lated on chromosomes beginning in prophase and remained on

chromosomes throughout the prolonged metaphase in these cells

(Figure 5A; Videos S16, S17). In SMC-4-depleted embryos,

GFP::MDF-2 behaved similarly to control cells, indicating that

reduced chromosome condensation does not lead to the retention of

MDF-2 on metaphase chromosomes (Figure 5A: Videos S18, S19).

A second hallmark of an engaged SAC is the accumulation of

phospho-specific epitopes recognized by the 3F3/2 antibody

[11,59,60], which is thought to correlate with reduced tension

within and across paired sister kinetochores [8,61]. As expected,

3F3/2 immunostaining of chromosomes increased upon taxol

treatment (Figure S5), indicating that this antibody recognizes

epitopes in C. elegans that are sensitive to microtubule dynamics.

3F3/2 immunostaining accumulated around prophase and

prometaphase chromosomes in control and cyb-3(RNAi) treated

embryos (Figure 5B and data not shown). While staining was

absent in control cells at metaphase, it accumulated to high levels

on metaphase chromosomes in cyb-3(RNAi) embryos, consistent

with persistent SAC signaling.

The ability of checkpoints to halt cell cycle progression in

response to DNA damage and spindle assembly defects is well

established [7,62]. In the past few years, it has become apparent

that cells must not only satisfy these checkpoints (e.g., attach all

chromosomes) but also actively silence these checkpoints once the

damage or defects have been repaired [18,63,64]. The minus-end

directed microtubule motor dynein contributes to SAC inactiva-

tion by trafficking SAC components from kinetochores along K-

Mts to centrosomes [20,23]. Since SAC proteins accumulate on

metaphase chromosomes in CYB-3-depleted cells, we wondered

whether dynein was appropriately localized in cyb-3(RNAi)

embryos; hence, we examined dynein behavior in C. elegans

embryos harboring a GFP-tagged dynein heavy chain

stained with DAPI, and BUB-1 (red) and tubulin (green) antibodies. Arrowheads: pinched spindle poles. Scale bars: 10 mm. D) The centrosome-
centrosome distance (mm) in one-cell OD57 embryos treated with the indicated RNAi is plotted with respect to time from NEB (seconds). NEB: 0. Error
bars: SEM. *:p,0.05 compared to control(RNAi) embryos at the same time-point. n = embryos. control(RNAi), n = 7; cyb-3;control(RNAi), n = 8; mdf-
1;control(RNAi), n = 5; cyb-3;mdf-1(RNAi), n = 7; smc-4(RNAi), n = 7; knl-1(RNAi), n = 4.
doi:10.1371/journal.pgen.1001218.g004
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(GFP::DHC-1) transgene (strain OD203)[65]. In control embryos,

GFP::DHC-1 localized to the nuclear periphery in prophase and

was associated with chromosomes upon nuclear envelope

breakdown (Figure 5C; Videos S20, S21). At metaphase,

kinetochore and K-Mt localization was evident. At anaphase,

GFP::DHC-1 was no longer detectable at kinetochores but was

still apparent on K-Mts and centrosomes (Figure 5C, Videos S20,

S21). A similar pattern was found in embryos treated with smc-

4(RNAi) or mdf-1+control(RNAi) (Figure 5C, Videos S22, S23, S24,

S25). In cyb-3(RNAi) embryos, GFP::DHC-1 localized to the

nuclear periphery and centrosomes during prophase and also

accumulated at kinetochores during prometaphase and metaphase

as in controls (Figure 5C, Videos S26, S27). Strikingly, there was

little or no apparent localization to K-Mts or centrosomes at

anytime after NEB. In contrast, GFP::DHC-1 was readily

apparent on kinetochores in embryos co-depleted of MDF-

1+CYB-3 but disappeared just prior to anaphase initiation; no

localization to K-Mts or centrosomes was apparent (Figure 5C,

Videos S28, S29). Immunostaining with an antibody specific for

Dynactin/DNC-1 led to similar results (Figure S6).

The inability of dynein and dynein-related proteins to associate

with the mitotic spindle in cyb-3(RNAi) embryos could reflect a

global defect in microtubule-associated proteins (MAPs) binding to

K-Mts. However, the CeBimC/BMK-1 kinesin [66] localizes to

K-Mts in both control and cyb-3(RNAi) embryos (Figure S7),

indicating that K-Mts in CYB-3-depleted embryos are not

inaccessible to microtubule motors.

Altogether, these data are consistent with a model whereby loss

of CYB-3 leads to persistent chromosomal SAC signaling,

characterized by a failure of dynein and SAC proteins to mobilize

from kinetochores to K-Mts and centrosomes, leading to a robust

block in anaphase chromosome segregation.

Figure 5. SAC proteins and dynein accumulate at kinetochores in cyb-3(RNAi) embryos. A) GFP::MDF-2;mCherry::H2B (OD110) embryos
treated with the indicated RNAi were subjected to live imaging. Top panel for each RNAi condition: GFP::MDF-2+mCherry::H2B; bottom panel:
GFP::MDF-2 alone. 0:00: NEB, all other images are one minute intervals post-NEB. B) Control and cyb-3(RNAi) embryos were fixed and stained with
DAPI (blue), and 3F3/2 (green) and BUB-1 (red) specific antibodies. C) Selected images from videos of GFP::DHC-1;mCherry::H2B)(OD203) embryos
treated with the indicated RNAi. Top panel for each RNAi condition: GFP::DHC-1; bottom panel: mCherry::H2B. 0:00: NEB. Scale bars: 10 mm.
doi:10.1371/journal.pgen.1001218.g005
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Modulation of dynein activity coordinately affects cell
cycle progression in CYB-3–depleted embryos

One possible mechanistic model that explains our findings is

that CYB-3 directly or indirectly promotes dynein activity with

respect to SAC satisfaction and/or silencing. One prediction of

this model is that increasing dynein activity should alleviate SAC

signaling in cyb-3(RNAi) embryos, leading to timely anaphase

entry. A recent study in C. elegans revealed that specific dynein light

chains negatively regulate the activity of the dynein heavy chain

(DHC-1) [67]. Although loss of the light chain DYLT-1 leads to no

discernible phenotype in a wild-type background, DYLT-1

depletion rescues the lethality of a temperature-sensitive (ts) dhc-1

allele [67]. Hence, we determined whether co-depleting DYLT-1

with CYB-3 would affect the ability of these cells to enter

anaphase. To increase the sensitivity of our assay, we diluted cyb-3

dsRNA bacteria 20-fold with control or control+dylt-1 dsRNA

bacteria and fed these mixtures to young adult OD57 hermaph-

rodites. Embryos treated with diluted cyb-3(RNAi)(20x dilution

with control bacteria) experienced significant metaphase delays, but

ultimately underwent anaphase chromosome segregation approx-

imately 90 seconds after control embryos (Figure 6A, 6B; Video

S30). However, diluting cyb-3 dsRNA bacteria 20x with con-

trol+dylt-1 dsRNA bacteria completely abrogated this delay,

leading to anaphase onset coincident with controls (180 seconds

post-NEB; Videos S31, S32). Furthermore, while kinetochore

twisting was readily apparent in embryos treated with dilute cyb-

3(RNAi), this phenotype was rescued by concomitant loss of

DYLT-1 (Figure 6C).

As described above, the distance between mitotic centrosomes

in CYB-3-deficient embryos begins to increase well before NEB,

and this distance remains significantly greater than in wild-type

embryos until stabilizing with the same spacing as centrosomes of

wild-type spindles at the metaphase-to-anaphase transition

(Figure 4D and Figure 6D). Interestingly, loss of DYLT-1 rescued

the premature centrosome separation phenotype of embryos

treated with dilute cyb-3(RNAi), both before and after NEB

(Figure 6D). Altogether, the rescue of these abnormalities and

abrogation of the metaphase delay by modulating dynein

functionality reveal that cyb-3 genetically interacts with compo-

nents of the dynein motor complex and support a model whereby

CYB-3 promotes the functionality of mitotic dynein with respect to

spindle assembly and mitotic progression.

If cyb-3 genetically promotes dynein activity, then we predict

that dynein impairment would enhance cyb-3(RNAi) phenotypes.

Hence we utilized a dhc-1(ts) allele to test this model. Embryos

from dhc-1(ts) hermaphrodites reared at semi-permissive temper-

atures (22uC and 24uC) were fed cyb-3 dsRNA bacteria diluted 20x

with control bacteria. Embryos were fixed after 24 hours on dsRNA

bacteria and the number of one-cell embryos at different stages of

mitosis was counted (Figure 7). With respect to embryos reared at

22uC, there were no statistically significant differences in the

number of one-cell embryos in prometaphase, metaphase, or

anaphase between wild-type or dhc-1(ts) embryos treated with

control(RNAi) or wild-type embryos treated with diluted cyb-

3(RNAi). However, in dhc-1(ts) embryos treated with diluted cyb-

3(RNAi), there was a significant increase in the number of

prometaphase embryos and a concomitant decrease in the number

of anaphase embryos (Figure 7). Embryos reared at 24uC revealed

similar distributions with the exception that dhc-1(ts) embryos

treated with control(RNAi) also showed a significant increase in the

number of prometaphase embryos and a decrease in anaphase

embryos (Figure 7). Since DHC-1 inhibition slows the rate of

prometaphase (Figure 7 and [22]), the increase in the number of

prometaphase embryos from animals co-depleted of CYB-3 and

DHC-1 is satisfyingly consistent with a model whereby CYB-3

plays a critical, positive role in the regulation of dynein during

mitosis.

Discussion

Here, we report that C. elegans CYB-3 plays an essential role in

the timing and execution of many mitotic events in the early

embryo, including pronuclear migration, chromosome condensa-

tion, centrosome maturation, spindle pole separation, chromo-

some congression, and alleviation of a SAC-dependent block in the

initiation of anaphase chromosome segregation. In addition,

genetic experiments are consistent with cyb-3 acting as a direct

or indirect positive regulator of mitotic dynein functionality.

Given that other cyclins have a variety of targets, it is not

surprising that CYB-3 affects a number of different cellular events.

A commonality of many of these processes is that they are dynein-

dependent. The significantly slower migration rate of the female

pronucleus and the failure of the male pronucleus to move from

the embryo posterior in CYB-3-depleted embryos are strikingly

similar to the pronuclear defects of C. elegans embryos harboring a

temperature-sensitive allele of the dynein heavy chain dhc-1 [22].

Moreover, centrosome attachment to the nuclear envelope is also

dynein-dependent [68–70]. The pre-NEB increase in centrosome-

centrosome distance in cyb-3(RNAi) embryos and rescue of this

phenotype by modulation of dynein activity suggest that

centrosome attachment to the nuclear envelope is compromised

in CYB-3-deficient embryos. Consequently, the shortening of the

post-NEB centrosome-centrosome distance in cyb-3;dylt-1(RNAi)

compared to cyb-3(RNAi) embryos may be a secondary conse-

quence of stronger centrosome-nuclear envelope attachments and

thus abrogation of pre-NEB separation. Alternatively, it may

reflect the more timely formation of, or more robust, kinetochore-

microtubule attachments than in CYB-3-depleted embryos.

Unfortunately, our data neither allow us to distinguish between

these two possibilities nor address whether modulating dynein

activity also affected CYB-3-dependent prophase events since

diluted cyb-3(RNAi) embryos did not display consistent defects in

early mitosis. Experiments to titrate the amount of CYB-3 and

dynein activity required for different mitotic events are underway.

Although loss of CYB-3 affects a number of processes, the most

striking abnormality is the persistent SAC-dependent delay in the

initiation of anaphase chromosome segregation. To our knowl-

edge, this is an unprecedented phenotype in the early C. elegans

embryo. Several groups have reported that the C. elegans SAC is

relatively weak and can only mount, at most, a two-to-three fold

delay in the metaphase-to-anaphase transition under all conditions

tested, including severe spindle damage after nocodazole exposure

[10,47,48,50]. Two potential mechanisms to explain the unusual

duration of the SAC-dependent metaphase delay in CYB-3-

depleted embryos are: 1) loss of CYB-3 results in rare or very

specific spindle defects that engage the SAC more persistently than

other mitotic spindle abnormalities reported to date, or 2) CYB-3

is required for SAC inactivation or silencing.

Loss of CYB-3 leads to gross defects in kinetochore and

kinetochore-microtubule architecture. We posit that the twisted

centromeres and kinetochores are the result of multiple cycles of

microtubule attachment and detachment occurring during the

metaphase delay. Microtubule attachment appears to play a role

since prophase kinetochores are not affected by CYB-3 depletion

and the twisting correlates with increased AIR-2/Aurora B activity

(G.M.R.D, unpublished), which is congruent with increased

kinetochore-microtubule turnover. This twisting is phenotypically

distinct from that seen in embryos depleted of the condensin
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proteins SMC-4 and HCP-6 [71] (G.M.R.D, unpublished) and is

consistent with findings that centromeres and kinetochores are not

elastic [72]. These twisted kinetochores could potentially lead to

unusually persistent SAC signaling and a prolonged metaphase

delay. However, our data suggest that kinetochore-microtubule

attachments are stabilized or reach a steady state since the

centrosome-centrosome distance in cyb-3(RNAi) embryos reaches

and is maintained at the same length as control spindles at the

metaphase-to-anaphase transition. Furthermore, when the meta-

phase delay is abrogated by loss of the SAC or DYLT-1, twisting is

not apparent and sister chromatid separation readily occurs,

suggesting that kinetochore-microtubule attachments are made

and are at least partially functional. Hence, although CYB-3 loss

may very well lead to spindle assembly defects that engage the

SAC, the unusual persistence of SAC signaling in this circum-

stance and not in embryos with qualitatively more severe spindle

and chromosome segregation defects is not easily reconciled.

A second potential mechanism, and one we favor, is that among

other essential mitotic functions, CYB-3 is required to inactivate or

silence the SAC. Our data are consistent with a model whereby

CYB-3 participates in SAC silencing by either directly or indirectly

affecting the ability of dynein to strip SAC components from

kinetochores. The dynein motor has been implicated in SAC

silencing in mammals, C. elegans, and Drosophila [20–22,73].

Dynein, dynein-regulatory proteins, and SAC components all

accumulate on metaphase kinetochores but do not appear to

transfer to K-Mts or to centrosomes in CYB-3-depleted embryos,

consistent with a conserved role for dynein in SAC silencing [20–

22,73]. Suppression of the metaphase delay by depleting a dynein

inhibitor supports a working model that CYB-3 is a positive

Figure 7. Inhibition of DHC-1 enhances cell cycle progression delays in cyb-3(RNAi) embryos. Embryos from wild-type and dhc-1(ts)
hermaphrodites treated with the indicated RNAi were fixed and stained with DAPI and an a-tubulin antibody. % one-cell embryos at prometaphase,
metaphase, and anaphase (reared at 22uC or 24uC). n = total number of one-cell embryos; control (wild-type + control(RNAi)), n = 74 (22uC), 69 (24uC);
dilute cyb-3;control (wild-type+dilute cyb-3(RNAi)), n = 70 (22uC), 95 (24uC); dhc-1(ts);control (dhc-1(ts)+control(RNAi)), n = 73 (22uC), 64 (24uC); diluted
cyb-3;dhc-1(ts) (dhc-1(ts) + dilute cyb-3(RNAi)), n = 69 (22uC), 96 (24uC). Error bars: SEM. *: p,0.05 as compared to control embryos at the same
temperature.
doi:10.1371/journal.pgen.1001218.g007

Figure 6. Modulation of dynein activity alters cell cycle progression and the rate of spindle pole separation in CYB-3–depleted
embryos. A) Selected live images of OD57 embryos treated with the indicated RNAi. 0:00: NEB. A: anaphase entry. Scale Bar: 10 mm. B) Time from
NEB-anaphase entry (seconds) in OD57 embryos treated with the indicated RNAi. Error bars: SEM; n = embryos; control(RNAi), n = 11; dylt-
1;control(RNAi), n = 11; dilute cyb-3(RNAi), n = 6; dilute cyb-3;dylt-1(RNAi), n = 7; Scale bar: 10 mm. *: p,0.05 as compared to control embryos. C)
Embryos treated with the indicated RNAi conditions were fixed and stained with DAPI (blue), and BUB-1 (red) and HCP-1 (green) antibodies. n =
number of twisted metaphase plates/number of embryos examined. control(RNAi), n = 0/5; dylt-1+control(RNAi), n = 1/5; dilute cyb-3(RNAi) n = 5/5;
dilute cyb-3+dylt-1, n = 0/3. Scale bar: 5 mm. D) The centrosome-centrosome distance (mm) in one-cell OD57 embryos treated with the indicated RNAi
is plotted with respect to time from NEB (seconds). NEB: 0. Error bars: SEM. *:p,0.05 compared to control(RNAi) embryos at the same time-point. n =
embryos. control(RNAi), n = 8; dylt-1;control(RNAi), n = 5; dilute cyb-3(RNAi), n = 7; dilute cyb-3;dylt-1(RNAi), n = 6.
doi:10.1371/journal.pgen.1001218.g006
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regulator of dynein vis-à-vis SAC silencing. Furthermore, a role for

CYB-3 in SAC silencing is more easily reconciled with the rare

and unusually persistent metaphase delay in CYB-3-depleted

embryos. While a plethora of proteins are required for spindle

assembly [74], relatively few have been shown to be required for

SAC silencing [18,20,21,75,76]. Hence, while loss of many

different proteins leads to spindle defects and transient engage-

ment of the SAC in the C. elegans embryo, many fewer would be

necessary to turn off the SAC and allow cell cycle progression. It

will be very interesting to determine whether proteins implicated

in SAC silencing in other systems, such as the phosphatase PP1

[75,77], also lead to prolonged SAC-dependent metaphase delays

in the C. elegans embryo.

One puzzling aspect of the cyb-3 loss-of-function phenotype is

that despite a complete inhibition of sister chromatid separation

and chromosome decondensation, centrosomes breakdown and

duplicate with the same timing as mitotic centrosomes in wild-type

cells (i.e., at the same time relative to NEB). Engagement of the

SAC should inhibit all aspects of cell cycle progression. Strikingly,

an uncoupling of the nuclear and centrosome cell cycle occurred

upon depletion of Drosophila mitotic cyclins [28,78]. While mitotic

entry was inhibited, centrosomes continued to duplicate with the

same timing as the wild-type cell cycle. Centrosome duplication

even occurred in the presence of an inhibitor of the anaphase

promoting complex (APC). In the presence of mitotic cyclins, the

same inhibitor led to a block in both the nuclear and centrosome

cell cycle [78]. These results suggest that loss of mitotic cyclins

eliminates the dependence of the centrosome cycle on an active

APC, which is consistent with our findings that centrosome

breakdown and duplication continues in the absence of CYB-3

despite an engaged SAC. Recent reports further support a model

whereby cyclins and cyclin-dependent kinases ‘‘entrain’’ other cell

cycle events and the dependency of these events is disrupted when

cyclin or CDK activity is compromised [79,80].

Altogether, our data demonstrate that CYB-3 plays a distinct,

non-redundant role in mitosis by influencing dynein-dependent

mitotic processes. That CYB-3 depletion does not mirror all

dynein/DHC-1 loss-of-function phenotypes may reflect a require-

ment for CYB-3 in some dynein-related processes but not others,

or may indicate that different processes require varying doses of

dynein activity. This hypothesis is supported by the isolation of

hypomorphic dynein alleles that display a range and severity of

defects [22,68,81]. The simplest of multiple possible mechanistic

relationships between CYB-3 and dynein would be the direct

phosphorylation of dynein subunits by a CYB-3/CDK-1 holoen-

zyme. In mammalian cells, cyclin B3 associates with both Cdk1

and Cdk2 [24], but a second report suggests that human cyclin B3

binds exclusively with Cdk2; however, this association does not

result in detectable kinase activity [25]. C. elegans CYB-3 associates

with CDK-1 in vitro, and CYB-3 complexes display H1 kinase

activity; H1 is commonly used as a Cdk1 substrate [30,33].

Interestingly, a recent study revealed that direct phosphorylation

of the human dynein light intermediate chain (LIC1) by Cdk1

activates dynein and promotes Mad2 removal from the kineto-

chore, leading to SAC inactivation and anaphase progression [23].

Cdk1 complexes isolated from cell extracts phosphorylated LIC1,

and while the authors did not identify the specific cyclin cofactor,

our results suggest that this phosphorylation may be specifically

due to a Cdk1/Cyclin B3 complex. However, of the four Cdk1

phosphorylation sites in LIC [23], only one is partially conserved

in the C. elegans ortholog, DLI-1. Furthermore, unlike CYB-3 and

DHC-1, DLI-1 does not appear to be required for the MII division

of the oocyte nucleus [82], suggesting that if DLI-1 is a direct

CYB-3/CDK-1 target, then there are certain to be additional

substrates. Biochemical studies to address which, if any, of the 13

dynein subunits in C. elegans are directly phosphorylated by CYB-

3/CDK-1 and the functional consequence of these phosphoryla-

tion events on mitotic progression are important investigations for

the future.

Materials and Methods

C. elegans strains
C. elegans strains were maintained at 15uC–25uC [83]. The

following strains were used: N2 (C. elegans wild type, DR subclone

of CB original (Tc1 pattern I)) [83], OD57 (unc-119(ed3); ltIs37

[pAA64: pie-1p::mCherry::his-58+ unc-119 (+)]; ltIs25 [pAZ132; pie-

1p::GFP::tba-2+ unc-119 (+)]) [36,84], CB177 (unc-46(e177) V) [83],

KR3627 (unc-46(e177)mdf-1(gk2) V/nT1[let-X] IV;V) [85], OD110

(unc-119(ed3) III; ltIs52 [pOD379; pie-1/GFP::Y69A2AR.30; unc-119

(+)]; ltIs37 [pAA64;pie-1/mCherry::his-58; unc-119 (+)] IV)[10],

OD203 (unc-119(ed3) III; orls17 [dhc-1::GFP::dhc-1; unc-119(+)];

ltIs37 [pAA64; pie- 1/mCherry::his-58; unc-119 (+)] IV)[65,86], OD11

(unc-119(ed3) III; ltIs7 [pIC41; pie-1/GFP-TEV-STag::kbp-4; unc-

119(+)]/+)[65], TH32 (unc-119(ed3) III; ruIs32 [pAZ132; pie-1/

GFP::his-58; unc-119(+)] III; ddIs6 [pie-1/GFP::tbg-1; unc-119(+)]V)

[87], EU828 (dhc-1(or195) I) [22]. To create the GFP::HCP-3;

mCherry::Histone H2B strain (JS967), OD101 [55] and OD56

[10] strains were crossed and animals homozygous for the pie-1/

GFP::hcp-3 and pie-1/mCherry::his-58 transgenes were isolated.

RNAi–mediated interference (RNAi)
RNAi plasmids for cyb-3, mdf-1, san-1, bub-1, smc-4, knl-1, and

dylt-1 were obtained from the Geneservice Ltd. C. elegans feeding

library [88]. The L4440 RNAi vector was used as an RNAi

control (control). To deplete CYB-3 alone, a three ml LB + 100 mg/

ml ampicillin liquid culture was seeded with a single colony of

HT115 bacteria transformed with the cyb-3(RNAi) L4440 plasmid

and shaken overnight (O/N) at 37uC. The next day, the O/N

culture was expanded to 50 ml with the same media and grown

until the OD600 of the culture was between 0.6–0.8 (, two hours).

IPTG was added to a final concentration of 1 mM and the culture

was grown an additional three hours at 37uC to induce cyb-3

dsRNA expression. The culture was then centrifuged at 5000 rpm

for 10 minutes, the pellet was resuspended in 800 ml LB, and

200 ml of the suspension plated on nematode growth (NG) media

containing 100 mg/ml ampicillin and three mM ITPG (NG/AMP/

IPTG). Plates were incubated at 37uC O/N and then seeded with

L4 larvae. Seeded plates were incubated at 25uC O/N and

embryos from the young adult worms (L4+24 hours) were utilized

for experiments.

To co-deplete CYB-3 and MDF-1, SAN-1, or BUB-1, the

induction conditions were as described above. However, after

resuspension of the pellets in 800 ml LB, 200 ml of each suspension

(i.e., cyb-3 and mdf-1 dsRNA-expressing bacteria) were thoroughly

mixed and transferred to NG/AMP/IPTG plates, incubated at

37uC O/N, and then seeded with L4 larvae. To generate highly

dilute cyb-3(RNAi) conditions for dylt-1 and dhc-1(ts) experiments,

control and cyb-3 dsRNA expressing bacteria were induced,

pelleted, and resuspended as above. 10 ml cyb-3(RNAi) bacteria

were thoroughly mixed with 190 ml control or dylt-1(RNAi) bacteria

in a 15 ml conical tube and briefly centrifuged at low speed. The

pellet was resuspended in the supernatant and plated as above.

For cyb-1&2(RNAi) experiments, sense and anti-sense mRNAs

corresponding to ZC168.4 (CYB-1) were transcribed from

linearized templates using a T7 in vitro transcription kit (Ambion,

Austin, TX). Complementary RNAs were mixed, heated at 90uC
for five minutes, and annealed at room temperature (RT). cyb-3
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dsRNA was also generated in this manner for direct comparison of

injected animals. dsRNAs were injected into the gonads of OD57

L4 larvae and the injected animals incubated at 25uC O/N.

Immunostaining
Embryos from adult hermaphrodites were fixed and stained as

previously described [89]. Primary antibodies used were a-tubulin

(Sigma, St. Louis, MO), HCP-1 [53], BUB-1 [90], HCP-3 [90],

3F3/2 (Boston Biologicals, Boston, MA)[60], DNC-1 [91], and

BMK-1 [66]. Secondary antibodies were: Alexa FluorH 488 goat

anti-mouse IgG or IgM, and Alexa FluorH 555 goat anti-rabbit

IgG (both at 1:1000) (Invitrogen Molecular Probes, Eugene, OR).

For HCP-3 and BUB-1 co-staining experiments, HCP-3 and

BUB-1 antibodies were directly conjugated to fluorophores

utilizing the Zenon Tricolor Rabbit IgG labeling kit (Invitrogen

Molecular Probes, Eugene, OR) as per the manufacturer’s

instructions. The labeled antibodies were incubated on slides with

fixed embryos for three hours at RT. Slides were washed three

times with PBSTb (PBS, 0.1% TritonX-100, 0.1% BSA) and

mounted with ProLong Gold with DAPI (Invitrogen Molecular

Probes, Eugene, OR).

Image analysis and live imaging
Immunofluorescent images were acquired on a Nikon 2000U

inverted microscope equipped with a Photometrics Coolsnap HQ

camera. Metamorph software was used for image acquisition. Z-

sections were acquired at 0.2 mm steps using a 60X/1.49 NA

objective. Z-stacks were projected and deconvolved for 10

iterations using Autodeblur (Autoquant Media Cybernetics,

Bethesda, MD). Images were processed for figures using Adobe

Photoshop.

For live imaging, embryos cut from RNAi-treated hermaphro-

dites (24 hours post-RNAi exposure) were mounted on 2%

agarose pads and imaged using a spinning disk confocal (Perkin

Elmer, Waltham, MA) attached to a Nikon TE2000U inverted

microscope. Images were acquired using an ORCA-ER digital

camera (Hamamatsu, Bridgewater, NJ) and a 6061.45 NA Plan

Apo VC lens. Ultraview software (Perkin Elmer) was used to

control the confocal, microscope, and camera. Images were

captured at 30 second intervals; Z-sections were 1 mm. For

condensation assays, condensation of male pronucleui in TH32

RNAi-treated embryos were imaged and the condensation

parameter calculated as previously described [87]. Image J

software (http://rsbweb.nih.gov/ij) was used to measure centro-

some size, centrosome-centrosome distance, and pronuclear

migration rates.

Supporting Information

Figure S1 cyb-3(RNAi) efficiency and an alignment of C. elegans

B-type cyclins. A) Protein extracts from control and cyb-3(RNAi)

embryos were immunoprecipitated with a CYB-3 antibody and

subjected to western analysis with the same antibody. a-tubulin

was used as a loading control. Asterisk: non-specific protein band.

B) A Clustal-W alignment of approximately 1000 nucleotides from

the N-terminal protein coding region of cyb-1, cyb-2.1, cyb-2.2, and

cyb-3 cDNAs. The percent identity among the four C. elegans B-

type cyclins is listed in the table below.

Found at: doi:10.1371/journal.pgen.1001218.s001 (0.87 MB TIF)

Figure S2 Mitotic chromosome condensation is modestly

delayed in CYB-3 depleted embryos Selected images of the

male pronucleus from TH32 embryos treated with the indicated

RNAi are shown. Time 0:00 = NEB, intervals are 30 seconds.

Images are flattened from five 1 mm optical slices.

Found at: doi:10.1371/journal.pgen.1001218.s002 (0.73 MB TIF)

Figure S3 Depletion of different C. elegans Cyclin B proteins

leads to distinct mitotic defects. A) Embryos from OD57

hermaphrodites microinjected with control, cyb-3, and cyb-1&2

double-stranded RNA were subjected to live imaging. Time 0:00

corresponds to NEB. Frames to the right of 0:00 depict mitotic

progression in minutes after NEB. PNM: Pronuclear meeting;

NEB: nuclear envelope breakdown. Scale bar: 10 mm. B) Mitotic

progression in control and cyb-3(RNAi) treated OD57 embryos

undergoing the first mitotic division. Error bars: SEM, n = 4

embryos for each condition. Metaphase*: metaphase in cyb-

3(RNAi) embryos was defined as the interval between near

complete chromosome alignment and centrosome breakdown.

Found at: doi:10.1371/journal.pgen.1001218.s003 (1.21 MB TIF)

Figure S4 Completion of meiosis does not affect the metaphase

delay in cyb-3(RNAi) embryos OD57 embryos treated with control

or cyb-3(RNAi) were subjected to live imaging. 0:00 = NEB.

Arrows point to two extruded polar bodies indicating that the MI

and MII divisions were complete. Scale bar: 10 mm.

Found at: doi:10.1371/journal.pgen.1001218.s004 (1.21 MB TIF)

Figure S5 3F3/2 immunostaining of C. elegans chromosomes is

increased upon taxol exposure Wild-type embryos treated with

vehicle or taxol were fixed and stained as described in Materials

and Methods. Individual nuclei are shown. 3F3/2 immunostaining

(red) is localized to chromosomes in taxol-treated cells. Scale bar:

1 mm.

Found at: doi:10.1371/journal.pgen.1001218.s005 (0.45 MB TIF)

Figure S6 DNC-1/p150(glued) is sequestered at chromosomes

in CYB-3 depleted cells Control and cyb-3(RNAi) embryos were

fixed and stained with DAPI (blue) and antibodies recognizing a-

tubulin (green) and DNC-1 (red). Arrows: DNC-1 centrosome

staining in control embryos that is decreased upon CYB-3

depletion. Arrowhead: centrosome breakdown. Scale bar: 10 mm.

Found at: doi:10.1371/journal.pgen.1001218.s006 (3.28 MB TIF)

Figure S7 cyb-3(RNAi) K-Mts are accessible to microtubule-

associated proteins Control and cyb-3(RNAi) embryos were fixed

and stained with DAPI (blue) and antibodies recognizing a-tubulin

(green) and BMK-1 (red). Scale bar: 10 mm.

Found at: doi:10.1371/journal.pgen.1001218.s007 (1.38 MB TIF)

Text S1 Supplemental Materials and Methods.

Found at: doi:10.1371/journal.pgen.1001218.s008 (0.04 MB

DOC)

Video S1 Meiotic divisions in a fertilized control(RNAi) oocyte. A

fertilized oocyte from a control(RNAi)-treated OD57 hermaphrodite

(QuickTime; 1.2 MB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s009 (1.29 MB

MOV)

Video S2 Meiotic divisions in a fertilized cyb-3(RNAi) oocyte. A

fertilized oocyte from a cyb-3(RNAi)-treated OD57 hermaphrodite

(QuickTime; 2 MB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s010 (2.10 MB

MOV)

Video S3 Pronuclear migration in a control(RNAi) embryo. A

one-cell embryo from a control(RNAi)-treated TH32 hermaphrodite

(QuickTime; 1.8 MB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s011 (1.83 MB

MOV)

Video S4 Pronuclear migration in a cyb-3(RNAi) embryo. A one-

cell embryo from a cyb-3(RNAi)-treated TH32 hermaphrodite

(QuickTime; 1.2 MB; 2.5 frames/sec).
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Found at: doi:10.1371/journal.pgen.1001218.s012 (1.31 MB

MOV)

Video S5 First mitosis in a control(RNAi) embryo. A one-cell

embryo from a control(RNAi)-treated OD57 hermaphrodite

(QuickTime; 743 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s013 (0.75 MB

MOV)

Video S6 First mitosis in a cyb-3(RNAi) embryo. A one-cell

embryo from a cyb-3(RNAi)-treated OD57 hermaphrodite (Quick-

Time; 548 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s014 (0.56 MB

MOV)

Video S7 First mitosis in a cyb-1&2(RNAi) embryo. A one-cell

embryo from a cyb-1&2(RNAi)-treated OD57 hermaphrodite

(QuickTime; 472 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s015 (0.48 MB

MOV)

Video S8 First mitosis in a cyb-3+control(RNAi) embryo. A one-

cell embryo from a cyb-3+control(RNAi)-treated OD57 hermaphro-

dite (QuickTime; 1 MB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s016 (1.08 MB

MOV)

Video S9 First mitosis in a mdf-1+control(RNAi) embryo. A one-

cell embryo from a mdf-1+control(RNAi)-treated OD57 hermaph-

rodite (QuickTime; 456 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s017 (0.47 MB

MOV)

Video S10 First mitosis in a cyb-3+mdf-1(RNAi) embryo. A one-

cell embryo from a cyb-3+mdf-1(RNAi)-treated OD57 hermaphro-

dite (QuickTime; 544 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s018 (0.56 MB

MOV)

Video S11 First mitosis in a cyb-3+san-1(RNAi) embryo. A one-

cell embryo from a cyb-3+san-1(RNAi)-treated OD57 hermaphro-

dite (QuickTime; 824 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s019 (0.84 MB

MOV)

Video S12 First mitosis in a cyb-3+bub-1(RNAi) embryo. A one-

cell embryo from a cyb-3+bub-1(RNAi)-treated OD57 hermaphro-

dite (QuickTime; 236 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s020 (0.24 MB

MOV)

Video S13 First mitosis in a smc-4(RNAi) embryo. A one-cell

embryo from a smc-4(RNAi)-treated OD57 hermaphrodite

(QuickTime; 420 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s021 (0.43 MB

MOV)

Video S14 GFP::MDF-2 dynamics in a control(RNAi) embryo. A

one-cell embryo from a control(RNAi)-treated OD110 hermaphro-

dite. Only the GFP channel is shown. (QuickTime; 208 KB; 2.5

frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s022 (0.21 MB

MOV)

Video S15 GFP::MDF-2 and chromosome dynamics in a

control(RNAi) embryo. A one-cell embryo from a control(RNAi)-

treated OD110 hermaphrodite. Both the GFP and mCherry

signals are shown (QuickTime; 200 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s023 (0.20 MB

MOV)

Video S16 GFP::MDF-2 dynamics in a cyb-3(RNAi) embryo. A

one-cell embryo from a cyb-3(RNAi)-treated OD110 hermaphro-

dite. Only the GFP channel is shown. (QuickTime; 180 KB; 2.5

frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s024 (0.18 MB

MOV)

Video S17 GFP::MDF-2 and chromosome dynamics in a cyb-

3(RNAi) embryo. A one-cell embryo from a cyb-3(RNAi)-treated

OD110 hermaphrodite. Both the GFP and mCherry signals are

shown (QuickTime; 172 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s025 (0.17 MB

MOV)

Video S18 GFP::MDF-2 dynamics in a smc-4(RNAi) embryo. A

one-cell embryo from a smc-4(RNAi)-treated OD110 hermaphro-

dite. Only the GFP channel is shown. (QuickTime; 248KB; 2.5

frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s026 (0.25 MB

MOV)

Video S19 GFP::MDF-2 and chromosome dynamics in a smc-

4(RNAi) embryo. A one-cell embryo from a smc-4(RNAi)-treated

OD110 hermaphrodite. Both the GFP and mCherry signals are

shown (QuickTime; 244 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s027 (0.25 MB

MOV)

Video S20 GFP::DHC-1 dynamics in a control(RNAi) embryo. A

one-cell embryo from a control(RNAi)-treated OD203 hermaphro-

dite (QuickTime; 452 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s028 (0.46 MB

MOV)

Video S21 GFP::DHC-1 and chromosome dynamics in a

control(RNAi) embryo. A one-cell embryo from a control(RNAi)-

treated OD203 hermaphrodite (QuickTime; 440 KB; 2.5 frames/

sec).

Found at: doi:10.1371/journal.pgen.1001218.s029 (0.45 MB

MOV)

Video S22 GFP::DHC-1 dynamics in a smc-4(RNAi) embryo. A

one-cell embryo from a smc-4(RNAi)-treated OD203 hermaphro-

dite (QuickTime; 484 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s030 (0.49 MB

MOV)

Video S23 GFP::DHC-1 and chromosome dynamics in a smc-

4(RNAi) embryo. A one-cell embryo from a smc-4(RNAi)-treated

OD203 hermaphrodite (QuickTime; 504 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s031 (0.51 MB

MOV)

Video S24 GFP::DHC-1 dynamics in a mdf-1+control(RNAi)

embryo. A one-cell embryo from a mdf-1+control(RNAi)-treated

OD203 hermaphrodite (QuickTime; 160 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s032 (0.16 MB

MOV)

Video S25 GFP::DHC-1 and chromosome dynamics in a mdf-

1+control(RNAi) embryo. A one-cell embryo from a mdf-1+con-

trol(RNAi)-treated OD203 hermaphrodite (QuickTime; 164 KB;

2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s033 (0.17 MB

MOV)

Video S26 GFP::DHC-1 dynamics in a cyb-3+control(RNAi)

embryo. A one-cell embryo from a cyb-3+control(RNAi)-treated

OD203 hermaphrodite (QuickTime; 504 KB; 2.5 frames/sec).
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Found at: doi:10.1371/journal.pgen.1001218.s034 (0.51 MB

MOV)

Video S27 GFP::DHC-1 and chromosome dynamics in a cyb-

3+control(RNAi) embryo. A one-cell embryo from a cyb-3+con-

trol(RNAi)-treated OD203 hermaphrodite (QuickTime; 480 KB;

2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s035 (0.49 MB

MOV)

Video S28 GFP::DHC-1 dynamics in a cyb-3+mdf-1(RNAi)

embryo. A one-cell embryo from a cyb-3+mdf-1(RNAi)-treated

OD203 hermaphrodite (QuickTime; 840 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s036 (0.86 MB

MOV)

Video S29 GFP::DHC-1 and chromosome dynamics in a cyb-

3+mdf-1(RNAi) embryo. A one-cell embryo from a cyb-3+mdf-

1(RNAi)-treated OD203 hermaphrodite (QuickTime; 820 KB; 2.5

frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s037 (0.84 MB

MOV)

Video S30 First mitosis in a dilute cyb-3(RNAi) embryo. A one-cell

embryo from a dilute cyb-3(RNAi)-treated OD57 hermaphrodite

(QuickTime; 312 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s038 (0.32 MB

MOV)

Video S31 First mitosis in a dilute cyb-3+dylt-1(RNAi) embryo. A

one-cell embryo from a dilute cyb-3+dylt-1(RNAi)-treated OD57

hermaphrodite (QuickTime; 296 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s039 (0.30 MB

MOV)

Video S32 First mitosis in a dylt-1(RNAi) embryo. A one-cell

embryo from a dylt-1(RNAi)-treated OD57 hermaphrodite

(QuickTime; 436 KB; 2.5 frames/sec).

Found at: doi:10.1371/journal.pgen.1001218.s040 (0.44 MB

MOV)
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