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Original Article

17β-Estradiol Concentration and Direct 
β2-Adrenoceptor Inhibition Determine 
Estrogen-Mediated Reversal of Adrenergic 
Immunosuppression

Hannah P. Priyanka1,2 , A. Thiyagaraj3,4, G. Krithika5, R. S. Nair2, W. Hopper1,3 and 
S. ThyagaRajan1

Abstract

Background: Sympathetic innervation of lymphoid organs, and the presence of 17β-estradiol (estrogen or E2) and adrenergic 
receptors (ARs) on lymphocytes, suggests that sympathetic stimulation and hormonal activation may influence immune functions. 
Purpose: Modeling and simulating these pathways may help to understand the dynamics of neuroendocrine-immune 
modulation at the cellular and molecular levels. 
Methods: Dose- and receptor-dependent effects of E2 and AR subtype-specific agonists were established in vitro on 
lymphocytes from young male Sprague-Dawley rats and were modeled in silico using the MATLAB Simbiology toolbox. 
Kinetic principles were assigned to define receptor–ligand dynamics, and concentration/time plots were obtained using 
Ode15s solvers at different time intervals for key regulatory molecules. Comparisons were drawn between in silico and in 
vitro data for validating the constructed model with sensitivity analysis of key regulatory molecules to assess their individual 
impacts on the dynamics of the system. Finally, docking studies were conducted with key ligands E2 and norepinephrine (NE) 
to understand the mechanistic principles underlying their interactions. 
Results: Adrenergic activation triggered proapoptotic signals, while E2 enhanced survival signals, showing opposing effects as 
observed in vitro. Treatment of lymphocytes with E2 shows a 10-fold increase in survival signals in a dose-dependent manner. 
Cyclic adenosine monophosphate (cAMP) activation is crucial for the activation of survival signals through extracellular 
signal-regulated kinase (p-ERK) and cAMP responsive element binding (p-CREB) protein. Docking studies showed the direct 
inhibition of ERK by NE and β2-AR by E2 explaining how estrogen signaling overrides NE-mediated immunosuppression in vitro. 
Conclusion: The cross-talk between E2 and adrenergic signaling pathways determines lymphocyte functions in a receptor 
subtype and coactivation-dependent manner in health and disease.
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Introduction

The neuroendocrine-immune network is a complex 
interregulatory system with wide plasticity in order to 
maintain systemic homeostasis.1–3 In females, the cyclic 
fluctuations in the levels of gonadal hormones, especially 
17β-estradiol (E2), affect the functioning of immune effector 
cells by binding to specific estrogen receptors (ERs).4–7

In the periphery, in vitro and in vivo E2-stimulation has 
been shown to enhance splenocyte proliferation and cytokine 
production through the alteration of specific signaling 
molecules.2,4,8 E2 enhances splenocyte proliferation, 
Interferon-γ (IFN-γ) expression, through extracellular 
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signal-regulated kinase (p-ERK) and cAMP responsive 
element binding (p-CREB) signals; enhances activity of 
antioxidant enzymes (AOE) including superoxide dismutase 
(SOD) and catalase (CAT); and increases splenocyte nitric 
oxide (NO) expression dose dependently.4 In the resting state, 
the close apposition of T-lymphocytes in direct synaptic 
association with sympathetic noradrenergic (NA) nerve fibers 
that innervate the lymphoid organs renders them highly 
responsive to NE.7,9–13 Because both E2 and NE mediate their 
effects on lymphocytes through their specific receptors, their 
downstream effects are dependent upon the kinetic parameters 
that govern receptor–ligand interactions.10,14–16 Previous 
studies from our laboratory and others have shown that both 
E2 and NE signaling cascades involve similar molecules 
(p-ERK, p-CREB, cAMP, and phosphorylated serine/
threonine kinase [p-Akt]) in modulating the expression of 
similar cytokines (IFN-γ and interleukin-2 [IL-2]), thereby 
altering cell-mediated immune functions.2,4,17,18 Thus, the 
scope of cross-talk between the two pathways during multiple 
ligand–receptor interactions is complex. Considering that NE 
can bind to α1-/α2- or β1-/β2-/β3-adrenoceptors (AR) on 
lymphocytes and that E2 can bind to cytosolic or nuclear 
estrogen receptors (cER and nER) and initiate signals that 
target similar down-stream signaling molecules, the underlying 
kinetic parameters can influence the outcome of the cross-talk 
through synergistic, additive, or diminutive effects.

Our lab has delineated these effects in splenocytes using 
AR-specific agonists and antagonists in the presence and 
absence of E2.17,18 α1-AR agonist phenylephrine enhances 
p-ERK and p-CREB expression, while α2-AR agonist 
clonidine enhances p-Akt expression and may play a crucial 
role in the sustenance of naïve cells in the secondary lymphoid 
organs.17 β2-AR agonist terbutaline enhances the expression 
of p-ERK, p-CREB and p-Akt signals, AOE activities 
including CAT and SOD, and the production of NO in 
splenocytes.18 In this study, we have superimposed the four 
signaling cascades (Estrogen signaling, α1-AR signaling, 
α2-AR signaling, and β2-AR signaling) from our in vitro 
studies and have created a dynamic model of resting 
lymphocyte functions. In order to simulate real-time events, 
we have used kinetic principles that govern receptor–ligand 
activation based on secondary data from the available 
literature along with concentration data from in vitro studies 
published from our laboratory.4,17,18 The present study aims to 
create a computational model of the pathways studied in vitro 
so that the scope of the intercommunication between these 
pathways can be better understood in health and disease.

Methods

Model Building

The model was built using both primary and secondary data 
sources. The dose- and receptor-dependent effects of E2 and 
AR subtype-specific agonists were established in vitro on 

lymphocytes from young male Sprague-Dawley rats in 
previous studies published by our laboratory.17,18 Briefly, 
splenic lymphocytes were isolated from young male Sprague-
Dawley rats and treated with different doses of E2,4 AR-α 
agonists phenylephrine and clonidine,17 and AR-β agonist 
terbutaline18 for a period of 24 to 72 h. In these studies, the 
concentration of the signaling molecules, cytokines, and other 
secondary molecules was determined using enzyme-linked 
immunosorbent assay (ELISA), and these data were used to 
construct the model (Tables 1 and 2). The possible cross-talk 
pathway was mapped using receptor-specific inhibitors and 
inhibitors of signal transduction molecules, and it was 
modelled in silico using the MATLAB Simbiology toolbox 
(MATLAB and SimBiology toolbox Release 2019a, The 
Mathworks, inc., Natick, Massachusetts, United States). 
Receptor–ligand dynamics were defined based on kinetic 
principles from the available literature and previous studies 
from our laboratory.4,17,18 State-versus-time plots were 
obtained using Ode15s solvers at 24 h or 72 h for long-term 
effects on lymphocyte functions. Comparisons were drawn 
between in silico and in vitro data for validating the constructed 
model. Sensitivity analysis was performed on key regulatory 
molecules to assess their individual impacts on the dynamics 
of the system. The model was uploaded in the Github database. 
(https://github.com/Anandt1082/Neuroimmunomodulation-
by-estrogen-and-adrenergic-agonists.git).

Model

The model was built to show an interconnected network of 
four signaling pathways on the basis of in vitro studies 
conducted in our laboratory including the following:

1. α1-adrenoceptor signaling17; (Table 1A and Figure 1A)
 Construction of the α1-adrenoceptor signaling 

pathway was based on the data from our lab and 
others which showed that stimulating the α1-AR in 
splenocytes with 10-6 M and 10-9 M specific agonist 
phenylephrine did not alter splenocyte proliferation 
but enhanced the survival signaling molecules 
including p-ERK and p-CREB.17 In order to simulate 
the receptor–ligand reactions in real-time, the 
receptor–ligand interactions were defined for α1-AR 
as shown in Table 2A.19 The concentrations of ERK 
and CREB used in the model were based on the data 
from the published in vitro study determined using 
ELISA.17 Downstream signaling cascades were 
assumed to follow the law of mass action. Molecules 
for which concentrations were not known, such as 
protein kinase-A (PKA) and CREB-binding protein 
(CBP), were assigned arbitrary values (257 nM) that 
did not impose a constraint on the system.

2.  α2-adrenoceptor signaling17; (Table 1B and Figure 1A)
 α2-AR signaling was constructed based on the data 

obtained from our study showing that incubation of 
α2-AR specific agonist clonidine (10-9 M- 10-6 M) 
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enhanced the Akt signaling cascade.17 Although our 
study showed a decrease in cellular proliferation in 
response to clonidine, there was no reversal upon 
cotreatment with specific antagonist idazoxan. It is 
possible that α2-AR stimulation is necessary for the 
sustenance of nerve fibers through the activation of 
B-cell lymphoma-2 (BCL-2) downstream to Akt 
signaling.20 The receptor–ligand interactions for 
α2-AR are defined in Table 2A.21 The concentration 
for Akt was obtained from the in vitro study using 
ELISA.17 Downstream signaling cascades were 
assumed to follow the law of mass action. Molecules 
for which concentrations were not known, such as 
BCL-2, were assigned arbitrary values (300 nM) that 
did not impose a constraint on the system.

3.  β2-adrenoceptor signaling18; (Table 1C, Figure 1A)
 Construction of the β2-adrenoceptor signaling was 

based on the data obtained from the published in vitro 
study.18 Stimulation of splenocytes using the 
β2-adrenoceptor agonist terbutaline significantly 
enhanced p-ERK and p-CREB expression, and 
activity of SOD and CAT through PKA. Terbutaline 
treatment also enhanced IL-2 expression through 
p-Akt. p-Akt expression also enhances the activity of 
inducible nitric oxide synthase (iNOS), leading to an 

increase in NO expression. NO can react with 
superoxides (O2-) and form peroxynitrites that may 
accumulate and lead to apoptosis, or can trigger 
CAAT, CCAAT-enhancer binding proteins (C/EBP), 
C/EBP homologous protein (CHOP), or BCL-, 
leading to dimerization of Bcl-2 Associated X-protein 
(BCL-2–BAX) complex, in turn leading to apoptosis.22 
The receptor–ligand interactions for β2-AR and IFN-γ 
are defined in Table 2A.23,24 The concentration for 
ERK, CREB, Akt, NO, IFN-γ, and IL-2 were obtained 
from the in vitro study using ELISA.17 Downstream 
signaling cascades were assumed to follow the law of 
mass action. Molecules for which concentrations 
were not known, such as phosphoinositide 3-kinase 
(PI3K), PKA, CBP (257 nM), SOD, CAT, iNOS (0 
units), CAAT, CEBP, CHOP, BAX, BCL-2, and O2- 
(0 units), were assigned arbitrary initial values that 
did not impose a constraint on the system.

4.  17β-Estradiol Signaling
 E2 signaling through ERs and G-protein coupled 

receptors (GPCRs4; Table 1D and Figure 1B) and their 
respective kinetic parameters are outlined in Table 2. 
Estrogen signaling was constructed based on the data 
from the in vitro study published from our lab.4 
Splenocytes stimulated with E2 showed enhanced 

Table 1. Reaction Table and Kinetics for α1-Adrenoceptor Signaling (1A), α2-Adrenoceptor Signaling (1B), β2-Adrenoceptor Signaling 
(1C), and E2 Signaling Through ERs and GPCRs (1D)

1A Reaction Kinetics References

1 [ ] [ ] [ ]AR Phenylephrine RL� � ��1 1 vm Phenylephrine km
Phenylephrine
*[ ] / (

[ ])
+ 26–29

2 [ ] [ ] [ ]CREB RL p CREB� � �1 nkn CREB RL.[ ].[ ]1

3 [ ] [ ] [ ]p CREB CBP CBP CREB� � � � ct p CREB CBP.[ ].[ ]−

4 [ ] [ ] [ ]
[ ] [ ]
CBP p CREB DNA
mRNA mRNA

� � � �
�1 2

tr CBP p CREB DNA.[ ].[ ]− −

5 [ ] [ ]mRNA SurvivalSignal1 → as mRNA.[ ]1

1B Reaction Kinetics References

1 [ ] [ ] [ ]AR Clonidine RL� � ��2 2 va Clonidine kn Clonidine*[ ] / ( [ ])+ 30–33

2 [ *] [ ] [ ] [ ]PI K Akt RL p Akt3 2� � � � at PI K Akt RL.[ *].[ ].[ ]3 2
3 [ ] [ *] [ ]RL PKA PKA2 � � ml RL PKA.[ ].[ *]2
4 [ ] [ ] [ *]p Akt BCL BCL� � �2 2 bc p Akt BCL.[ ].[ ]− 2
5 [ *] [ ]BCL SurvivalSignal2 → aps BCL.[ *]2

(Table 1 continued)
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1C Reaction Kinetics References

1 [ ] [ ] [ ]� 2 3� � �AR Terbutaline RL bt Terbutaline kbt
Terbutaline
.[ ] / (

[ ])
+ 34–43

2 [ ] [ ] [ *]RL PKA PKA3 � � gh RL PKA.[ ].[ ]3

3 [ ] [ ] [ *]RL PI K PI K3 3 3� � jk RL PI K.[ ].[ ]3 3

4 [ *] [ ] [ ]PKA ERK p ERK� � � fd PKA ERK.[ *].[ ]

5 [ ] [ ]
[ ] [ ]
p ERK CREB
p CREB ERK
� � �
� �

pe p ERK CREB.[ ].[ ]−

6 [ ] [ ] [ ]p CREB CBP CBP CREB� � � � ct p CREB CBP.[ ].[ ]−

7 [ ] [ ]
[ ] [ ]
CBP p CREB DNA
mRNA mRNA

� � � �
�1 2

tr CBP p CREB DNA.[ ].[ ]− −

8 [ ] [ ] [ ]p Akt DNA mRNA� � � � �2 1 1 kj p Akt DNA.[ ].[ ]−

9 [ ] [ ]mRNA iNOS2 1 1� � � hg mRNA.[ ]2 1 1− −

10 L Arg iNOS NO� � � hg L Arg fd L Arg. / ( [ ])� � �

11 [ ] [ ] [ / ]NO CAAT C EBP� � vm NO CAAT.[ ].[ ]

12 [ / ] [ ]C EBP CHOP→ cvc CAAT kc CAAT.[ ] / ( [ ])+

13 [ ] [ ] [ ]DNA CHOP mRNA� � �2 1 vch CHOP kch CHOP.[ ] / ( [ ]+

14 [ ] [ ]mRNA BAX2 1� � fbax mRNA.[ ]2 1−

15 [ ] [ ] [ ] 'BAX BCL BCL BAX� � �2 2 2 vbax BAX kbax BAX.[ ] / ( [ ])+

16 [ ] [ ]BCL BAX ApoptoticSignal2 2� � vx BCL BAX.[ ]2 2−

17 [ ] [ ] [ ]DNA p Akt mRNA� � � 3 kj DNA p AKt.[ ].[ ]−

18 [ ] [ ]mRNA IL3 2� � kl mRNA.[ ]3

19 [ ] [ ]IL SurvivalSignal� �2 kj IL.[ ]− 2

20 [ ] [ ]p ERK DNA mRNA� � � 6 f p ERK DNA1.[ ].[ ]− 18

21 [ ] [ ]
[ ]
Superoxides CAT
SurvivalSignal

� � v Superoxides k
Superoxides
1 1.[ ] / [

]
+

22 [ ] [ ]p ERK DNA mRNA� � � 7 jh p ERK DNA.[ ].[ ]−

23 [ ] [ ]
[ ]
Superoxides SOD
SurvivalSignal

� � v Superoxides k
Superoxides
2 2.[ ] / [

]
+

(Table 1 continued)

(Table 1 continued)
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(Table 1 continued)

24 [ ] [ ]
[ ]
Superoxides NO
Peroxynitrite

� � gf Superoxides NO.[ ].[ ]

25 [ ] [ ]mRNA CAT6 → kj mRNA.[ ]6

26 [ ] [ ]mRNA SOD7 → kj mRNA.[ ]7
1D Reaction Kinetics References

1 [ ] [ ] [ ]17� � � �Estradiol GPCR cAMP Vm Estradiol km
Estradiol

2 1
17

.[ ] / (
[ ]

�
�

� �
�

44–50

2 [ ] [ ] [ *]cAMP PKA PKA� � pk cAMP PKA.[ ].[ ]
3 [ ] [ ] [ ]ER Estradiol E ER� � � �17� erb ER Estradiol.[ ].[ ]1 17� �
4 [ ] [ ]

[ ]
E ER shc grb sos
E ER shc grb sos
� � � �
� � �

2
2

eg E ER shc grb sos.[ ].[ ]− − 2

5 [ ] [ ]
[ *]
E ER shc grb sos PI K
PI K
� � � � �2 3
3

ep E ER shc grb sos
PI K
.[ ].

[ ]
− − − 2

3

6 [ ] [ ] [ ]
[ *]
E ER shc grb sos RAS
RAS
� � � � �2 era E ER shc grb sos

RAS
.[ ].[ ].

[ ]
− − 2

7 [ ] [ *] [ *]RAF RAS RAF� � kc RAF RAS. *. *
8 [ ] [ *] [ *]MEK RAF MEK RAF� � � mek MEK RAF.[ ].[ *]
9 [ *] [ ] [ ]MEK RAF MEK p RAF� � � � mekp MEK RAF.[ *]−

10 [ ] [ *]
[ *]
MEK p RAF
MEK p RAF

� � �
� � 2

rm MEK p RAF.[ ].[ *]−

11 [ *] [ ]
[ ]
MEK p RAF MEK pp
RAF

� � � �
�

2 mpp MEK p RAF.[ *]− − 2

12 [ ] [ ] [ ]ERK MEK pp p ERK� � � � ka ERK MEK pp2.[ ].[ ]−

13 [ ] [ ] [ ]
[ ]
p ERK p CREB p CREB
ERK
� � � � �

�

pe p ERK CREB.[ ].[ ]−

14 [ ] [ ] [ ]p CREB CBP CBP CREB� � � � ct p CREB CBP.[ ].[ ]−

15 [ ] [ ] [ ]
[ ] [ ]
CBP p CREB DNA
mRNA mRNA

� � � �
�1 2

tr CBP p CREB DNA.[ ].[ ]− −

16 [ ] [ ]mRNA IFN2 � �� ifp mRNA.[ ]2

17 [ ] [ ]mRNA SurvivalSignal2 → bnb mRNA.[ ]2

18 [ *] [ ] [ ]PI K Akt p Akt3 � � � at PI K Akt.[ *].[ ]3

(Table 1 continued)
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19 [ ] [ ] [ ]p Akt DNA mRNA� � � � �2 1 1 kj p Akt DNA.[ ].[ ]−

20 [ ] [ ]mRNA iNOS2 1 1� � � hg mRNA.[ ]2 1 1− −

21 L Arg iNOS NO� � � hg L Arg fd L Arg. / ( [ ])� � �

22 [ ] [ ] [ / ]NO CAAT C EBP� � vm NO CAAT.[ ].[ ]

23 [ / ] [ ]C EBP CHOP→ cvc CAAT kc CAAT.[ ] / ( [ ])+

24 [ ] [ ] [ ]DNA CHOP mRNA� � �2 1 vch CHOP kch CHOP.[ ] / ( [ ])+

25 [ ] [ ]mRNA BAX2 1� � fbax mRNA.[ ]2 1−

26 [ ] [ ] [ ] 'BAX BCL BCL BAX� � �2 2 2 vbax BAX kbax BAX.[ ] / ( [ ])+

27 [ ] [ ]BCL BAX ApoptoticSignal2 2� � vx BCL BAX.[ ]2 2−

28 [ ] [ ] [ ]17� � � � �Estradiol cER E cER ecr Estradiol cER.[ ].[ ]17� �

29 E cER E cER� � �[ ]2 ed E cER.[ ]−

30 [ ] [ ] [ ]E cER DNA mRNA� � �2 2 nt E cER DNA.[ ] .[ ]− 2

31 [ ] [ ]mRNA IFN2 � �� ifn mRNA.[ ]2

32 [ ] [ ] [ ]IFNGR IFN IFN IFNGR� � � �� � vm CREB kd CREB.[ } / ( [ ])+

33 [ ] [ ]IFN IFNGR IFN IFNGR� �� � � 2 rd IFN IFNGR.[ ]� �

34 [ ] [ *]IFN IFNGR IFN IFNGR� �� � �2 2 rc IFN IFNGR.[ ]� � 2

35 [ *] [ ]
[ ] [ *]
IFN IFNGR RAS
shc grb sos RAS

� � � �
� �

2
2

kx IFN IFNGR RAS
shc grb sos
.[ *] .[ *].

[ ]
� �

�
2

2

36 [ ] [ ]p ERK DNA mRNA� � � 6 f p ERK DNA1.[ ].[ ]−
4,17,18

37 [ ] [ ]
[ ]
Superoxides CAT
SurvivalSignal

� � v Superoxides k
Superoxides
1 1.[ ] / [

]
+

38 [ ] [ ]p ERK DNA mRNA� � � 7 jh p ERK DNA.[ ].[ ]−

39 [ ] [ ]
[ ]
Superoxides SOD
SurvivalSignal

� � v Superoxides k
Superoxides
2 2.[ ] / [

]
+

40 [ ] [ ]
[ ]
Superoxides NO
Peroxynitrite

� � gf Superoxides NO.[ ].[ ]

41 [ ] [ ]mRNA CAT6 → kj mRNA.[ ]6

42 [ ] [ ]mRNA SOD7 → kj mRNA.[ ]7

(Table 1 continued)
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Figure 1. In silico model of adrenergic [1A] and estrogen [1B] signalling cascades in lymphocytes: The cross-talk between the adrenergic 
signals (1A) and estrogen-mediated signals (1B) result in specific immunomodulatory effects depending upon the estrogen concentration.
The layout of the signalling pathway is elucidated from receptors to transduction into the cytosol and nuclear translocation of signalling 
molecules leading to specific outcomes (1C).

1A

1B

1C
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Table 2. Receptor Binding Maxima and Kd Values (A), Signaling Molecule Concentrations (B), and Ligand Concentrations (C) as 
Incorporated in the Model

2A Receptor Bmax Kd (nM) Reference

1. α1-AR 175.3 (fM/106 cells) 0.65 19

2. α2-AR 19.9 (fM/106 cells) 3.7 21

3. β2-AR 1222 sites/cell 19.9 23,24

4. IFN-gR 708 ± 14 receptors/cell 0.9±0.2 24

5. cER 0.6204 (fM/mg protein) 5.5 25

6. nER (0.136 fM/mcg DNA) - 25

2B Signaling Molecules Concentration (nM) Reference

1. ERK 251 17

2. CREB 245.6

3. Akt 219

4. IFN-g 560

2C Signaling Molecules Concentration Reference

1. Phenylephrine 10-6 M 17,18

2. Clonidine 10-6 M

3. Terbutaline 10-6 M

4. Estrogen 10-8 M

expression of ERK and CREB signals through PKA and 
cAMP by estrogen binding to GPCRs, leading to the 
expression of IFN-γ. IFN-γ can bind to IFN-γ receptor, 
and can activate PI3K, Ras, Raf, MEK, ERK and CREB 
cascades, leading to survival signals. Estrogen can bind 
to ERs; stimulate Shc, Grb-2, and Sos; activate PI3K, 
Akt, and iNOS leading to NO expression; activate 
CAAT, CEBP, and CHOP; and induce pro-apoptotic 
signals through Bcl-2/Bax cascades. NO can also bind 
with O2- leading to the production of peroxynitrites that 
serve as an apoptotic signal. On the other hand, E2 also 
promotes the expression of SOD and CAT through 
p-ERK leading to scavenging of the excess O2-, in turn 
leading to survival signals.4 E2 can also bind to nuclear 
receptors and lead to the production of IFN-γ. The 
receptor–ligand interactions for E2 receptors and IFN-γ 
receptors are defined in Table 2A.24,25 The concentration 
for ERK, CREB, Akt, NO, and IFN-γ were obtained 
from the in vitro study using ELISA.17 Downstream 
signaling cascades were assumed to follow the law of 
mass action. Molecules for which concentrations were 
not known, such as PI3K, PKA, CBP (257 nM), SOD, 
CAT, iNOS (0 units), CAAT, CEBP, CHOP, BAX, BCL-
2, and O2- (0 units), were assigned arbitrary initial values 
that did not impose a constraint on the system. Enzyme 
kinetics for CAT, SOD, and iNOS were defined using 
the Henri-Michaelis-Menten equation.

Simulations

Simulations were performed using Ode15s solvers for 24 h 
and 72 h depending upon the signals studied.

1. Estrogen Signaling
a. Simulation Conditions: (Figure 2A, Figure 3A, 

Figure 4A, and Figure 5A)
i. Terbutaline = 0 M
ii. Phenylephrine = 0 M
iii. Clonidine = 0 M
iv. E2 = 10-6 M
v. Time: 24 h and 72 h

2. Adrenergic Signaling
a. Simulation Conditions: (Figure 2B, Figure 3B, 

Figure 4B, and Figure 5B)
i. Terbutaline = 10-6 M
ii. Phenylephrine = 10-6 M
iii. Clonidine = 10-6 M
iv. E2 = 0 M
v. Time: 24 h and 72 h

3. Estrogen and Adrenergic Signaling
a. Simulation Condition-1: (Figure 2C, Figure 3C, 

Figure 4C, and Figure 5C)
i. Terbutaline = 10-6 M
ii. Phenylephrine = 10-6 M
iii. Clonidine = 10-6 M
iv. E2 = 10-6 M
v. Time: 24 h and 72 h

b. Simulation Condition-2: (Figure 6)
i. Terbutaline = 10-6 M
ii. Phenylephrine = 10-6 M
iii. Clonidine = 10-6 M
iv. E2 = 10-6 M, 10-5 M, 10-4 M, and 10-3 M
v. Time: 24 h and 72 h

The Mcode is included in the supplementary evidence. The 
model was tested for various other physiologically relevant 
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Figure 2. Expression of molecular markers p-ERK, p-CREB, cAMP and p-Akt by lymphocytes treated with estrogen, adrenergic agonists and 
in combination: Simulation of lymphocytes treated with 10-6 M Estrogen for 24 hours (2A). Simulation of lymphocytes treated with 
terbutaline (10-6 M), phenylephrine (10-6 M) and clonidine (10-6 M) for 24 hours (2B). Simulation of lymphocytes treated with terbutaline 
(10-6 M), phenylephrine (10-6 M) and clonidine (10-6 M) in the presence of estrogen (10-6 M) for 24 hours (2C).

combinations, as follows and the figures are shown in 
supplementary evidence.

1. Estrogen Signaling: (Supplementary Figures 1–4)
a. Simulation Conditions

i.  Terbutaline = 0 M
ii. Phenylephrine = 0 M
iii. Clonidine = 0 M
iv. E2 = 10-3 M, 10-6 M, 10-9 M
v. Time: 24 h and 72 h

2. Adrenergic Signaling
a. Simulation Condition-1: Terbutaline Signaling 

(Supplementary Figures 5–8)
i.  Terbutaline = 10-3 M, 10-6 M, and 10-9 M
ii. Phenylephrine = 10-6 M
iii. Clonidine = 10-6 M
iv. E2 = 0 M
v. Time: 24 h and 72 h

b. Simulation Condition-2: Phenylephrine Signaling 
(Supplementary Figures 9–12)
i.  Terbutaline = 10-6 M
ii. Phenylephrine = 10-3 M, 10-6 M, and 10-9 M
iii. Clonidine = 10-6 M
iv. E2 = 0 M
v. Time: 24 h and 72 h

c. Simulation Condition-3: Clonidine Signaling 
(Supplementary Figures 13–16)
i.  Terbutaline = 10-6 M
ii Phenylephrine = 10-6 M
iii. Clonidine = 10-3 M, 10-6 M, and 10-9 M
iv. E2 = 0 M
v. Time: 24 h and 72 h

3. Adrenergic + Estrogen Signaling
a. Simulation Condition-1: Terbutaline + Estrogen 

Signaling (Supplementary Figures 17–20)
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Figure 3. Expression of cytokines (IL-2 and IFN-g) by lymphocytes treated with estrogen, adrenergic agonists and in combination: Simulation of 
lymphocytes treated with 10-6 M Estrogen for 24 hours (3A). Simulation of lymphocytes treated with terbutaline (10-6 M), phenylephrine  
(10-6 M) and clonidine (10-6 M) for 24 hours (3B). Simulation of lymphocytes treated with terbutaline (10-6 M), phenylephrine (10-6 M) 
and clonidine (10-6 M) in the presence of estrogen (10-6 M) for 24 hours (3C).

i.  Terbutaline = 10-3 M, 10-6 M, and 10-9 M
ii. Phenylephrine = 10-6 M
iii. Clonidine = 10-6 M
iv. E2 = 10-8 M (Physiological concentration)
v. Time: 24 h and 72 h

b. Simulation Condition-2: Phenylephrine + Estrogen 
Signaling (Supplementary Figures 21–24)
i. Terbutaline = 10-6 M
ii. Phenylephrine = 10-3 M, 10-6 M, and 10-9 M
iii. Clonidine = 10-6 M
iv. E2 = 10-8 M
v. Time: 24 h and 72 h

c. Simulation Condition-3: Clonidine + Estrogen 
Signaling (Supplementary Figures 24–28)
i.  Terbutaline = 10-6 M
ii. Phenylephrine = 10-6 M
iii. Clonidine = 10-3 M, 10-6 M, and 10-9 M

iv. E2 = 10-8 M
v. Time : 24 h, 72 h

For signaling molecules including p-ERK, p-Akt, p-CREB, 
and cAMP; cytokines including IL-2 and IFN-γ; AOEs (SOD 
and CAT); and O2-/peroxynitrites, the simulations were 
performed up to 24 h, similar to the in vitro study. Finally, for 
survival vs. apoptotic signals, the simulations were carried out 
for 72 h. Because all the ARs are activated by the same ligand 
NE, physiologically, the simulations were run for different 
doses of one receptor subtype (e.g., terbutaline 10-3 M, 10-6 M, 
or 10-9 M) while allowing for a mid-range activity in the other 
two (clonidine 10-6 M and phenylephrine 10-6 M) in the 
presence (10-6 M or 10-8 M) and absence (0 M) of E2. Key 
regulatory molecules were scanned, and their sensitivities 
were analyzed at 24 h for each of the ligands used 
(supplementary Figures 1D–28D; M code attached as 
supplementary Index-2).
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Figure 4. Expression of antioxidant enzymes (CAT and SOD), superoxides and peroxynitrites by lymphocytes treated with estrogen, adrenergic 
agonists and in combination: Simulation of lymphocytes treated with 10-6 M Estrogen for 24 hours (4A). Simulation of lymphocytes treated 
with terbutaline (10-6 M), phenylephrine (10-6 M) and clonidine (10-6 M) for 24 hours (4B). Simulation of lymphocytes treated with 
terbutaline (10-6 M), phenylephrine (10-6 M) and clonidine (10-6 M) in the presence of estrogen (10-6 M) for 24 hours (4C).

Docking

Molecular docking was performed using Auto Dock 4.2.6 for
1.  ERK molecule (PDB ID: 2ERK; Rattus rattus) and 

NE (ligand).
2.  β2-AR molecule (PDB ID: 3SN6; Rattus norvegicus) 

and E2 (ligand).
The enzyme/receptor molecule was loaded after assigning 
hydrogen bonds and kollman charges. The investigation 
ligands were loaded and their torsions along with rotatable 
bonds were assigned. The map files were selected directly 
with setting up grid points with 80 X 106 X 90 dimensions for 
the searching of ligand within the active site of the enzyme 
molecule. The docking parameter files were then set up with 
the search parameter as genetic algorithm and docking 
parameter utilizing Lamarckian genetic algorithm. The 

docked structures were generated after maximum number of 
evaluations using UCSF Chimera for the best conformer 
which fits with lowest binding energy (kcal/mol).

Results

Modulation of Molecular Markers With E2 and 
Adrenergic Agonists in Silico

Simulation of lymphocytes with 10-6 M E2 for 24 h enhanced 
the expression of p-ERK, p-CREB, and cAMP, compared to 
simulation with adrenergic agonists alone or in combination 
with E2 (Figure 2). cAMP alone was significantly (P < .01) 
enhanced upon simulation with adrenergic agonists and E2 
for 24 h, compared to adrenergic agonists alone (Figure 2C).
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Figure 5. Expression of survival/apoptosis signals by lymphocytes treated with estrogen, adrenergic agonists and in combination: Simulation of 
lymphocytes treated with 10-6 M Estrogen for 24 hours (5A). Simulation of lymphocytes treated with terbutaline (10-6 M), phenylephrine  
(10-6 M) and clonidine (10-6 M) for 24 hours (5B). Simulation of lymphocytes treated with terbutaline (10-6 M), phenylephrine (10-6 M) 
and clonidine (10-6 M) in the presence of estrogen (10-6 M) for 24 hours (5C).

Modulation of Cytokines With E2 and Adrenergic 
Agonists in Silico

IFN-γ expression was significantly enhanced in lymphocytes 
simulated with E2 (Figure 3A), compared to simulation with 
adrenergic agonists (Figure 3B) and adrenergic agonists with 
E2 (Figure 3C). Simulation with adrenergic agonists and E2 
showed increased IL-2 expression, compared with adrenergic 
agonists alone. IL-2 expression declined with time in all three 
treatment groups.

Modulation of Antioxidant Enzymes, Superoxides 
and Peroxynitrites With E2 and Adrenergic 
Agonists in Silico

AOE expression and decline in peroxynitrites and O2- were 
similar in lymphocytes simulated with E2 (Figure 4A), 

adrenergic agonists (Figure 4B), and adrenergic agonists with 
E2 (Figure 4C) for 24 h.

Modulation of Survival/Apoptosis Signals With E2 
and Adrenergic Agonists in Silico

While apoptotic signal expression was similar in all three 
groups, survival signal was enhanced in lymphocytes 
simulated with E2 (Figure 5A), compared to simulations run 
with adrenergic agonists (Figure 5B) and adrenergic agonists 
with E2 (Figure 5C).

Dose-Dependent Modulation of Survival Signals in 
Lymphocytes Simulated With E2

Survival signal was significantly elevated with every 10-fold 
increase in E2 concentration compared to simulation with 
10-6M E2 (Figure 6).
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Figure 6. Effects of increasing doses of estrogen on survival/apoptosis signals by terbutaline, phenylephrine and clonidine: Simulation of 
lymphocytes treated with terbutaline (10-6 M), phenylephrine (10-6 M) and clonidine (10-6 M) in the presence of increasing doses of 
estrogen (10-6 M (6A), 10-5 M (6B), 10-4 M (6C), 10-3 M (6D)) for 72 hours.

Docking Studies With Norepinephrine and p-ERK

Docking studies show that NE can directly inhibit ERK and 
thereby affect subsequent signal transduction processes. NE 
binds directly to the catalytic pocket with Asp 147 and Glu 
69, preventing the Lys 52 residue in the phosphate binding 
site from forming an ion pair (Ki = 207.69 µM, bond 
distance = 2Ȧ, and energy = –5.02Kcal/mol; Figure 7A). 

Close to the same catalytic pocket, NE also binds to residues 
Asp 177 and His 178 with a Ki = 365.7µM and an energy of 
–4.69Kcal/mol (Figure 7B). However, the inhibition 
concentrations are not physiologically significant. Near the 
active site, NE binds Thr 179, Tyr 203 (Ki = 523.7µM and 
an energy of –4.48Kcal/mol) and Tyr 203, and Asp177 (Ki = 
528.44µM and an energy of –4.47Kcal/mol) in the β9 ribbon 
strand (Figure 7C).
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Docking Studies With 17β-Estradiol and β2-AR 
Receptor

Docking studies show that E2 binds directly to the β2-AR 
receptor (PDB ID: 3SN6; Rattus norvegicus) at the Asp 173 
residue with a Ki of 22.09 µM, bond distance of 1.99 Ȧ and 
an energy of –6.35Kcal/mol (Figure 8A), the Met 61 residue 
with a Ki = 11.0 µM and an energy of –6.76Kcal/mol 
(Figure 8B), and the Arg 314 residue with a Ki = 8.77 µM, 
and an energy of –6.9Kcal/mol (Figure 8C), indicating potent 
inhibitory effect at physiological levels.

Discussion

Immune functions of innate, humoral, or cell-mediated origin 
are modulated by sympathetic signals and circulating 
hormone levels during health and disease in a dose- and 
receptor-type dependent manner.1,10,12,51 In vitro studies from 
our laboratory have shown that adrenergic stimulation 
through α1-, α2-, or β2- ARs using specific agonists 
nonspecifically inhibit lymphoproliferation through distinct 
signaling pathways: α1-AR mediated immunosuppressive 
effects by inhibiting IFN-γ production; α2-AR activated the 
NF-κB, p-Akt; and NO pathways and β2-AR activation 
involved IL-6, NO, and NF-κB signaling cascades mediating 
immunosuppression (Figure 1A).17,18 On the other hand, 
treatment of lymphocytes with E2 enhanced proliferation in a 
dose and receptor subtype-specific manner through p-ERK, 
p-CREB, and p-Akt involving IFN-γ and compensatory 
mechanisms including AOEs (Figure 1B).4,52 Our studies 
have shown that cotreatment of lymphocytes with E2 and 
adrenergic agonists lead to E2-mediated override of adrenergic 
immunosuppression in a dose-dependent, AR-subtype 
independent manner.17,18

In the present study, we have modelled these signaling 
pathways in silico using the MATLAB Simbiology toolbox. 
Because of difficulties in conducting the experiments using 
NE, the in vitro studies were conducted using receptor-
specific agonists and antagonists. While these experiments 
are highly beneficial in elucidating the dose-dependent effects 
on specific adrenoceptor subtypes, they cannot be considered 
as absolute indicators of NE-mediated effects. This is because 
when NE is added to the cells, depending on its relative 
affinity for the individual receptor subtypes, it may bind 
proportionally to all the Ars, triggering a wide variety of 
down-stream signals. The cumulative effects of these signals 
are likely to be different from the outcomes of receptor-
subtype-specific signaling fates. In order to overcome this 
problem, the computational model was constructed on the 
basis of the data obtained from in vitro studies, and all three 
ARs studied were simultaneously activated to study the 
outcome. Based on previous findings, an attempt was made to 
incorporate cross-talks between these pathways by using 
common signaling molecule pools (Figure 1C).

Simulation of lymphocytes with E2 enhanced cAMP, 
p-ERK, and p-CREB expression while adrenergic agonists, 
phenylephrine, clonidine, and terbutaline enhanced p-CREB 
and p-ERK expression alone (Figure 2A and 2B). However, 
E2 and adrenergic agonists together enhanced the expression 
of cAMP, suggesting that activation of cAMP may be crucial 
to E2-mediated override of adrenergic immunosuppression 
(Figure 2A and 2C).

Cytokines play a crucial role in influencing immune 
functions, thereby affecting survival/apoptosis. Previously 
we have shown that while activation of α1-ARs decrease 
IFN-γ and increase IL-2 production, α2- and β2-AR activation 
did not alter either IFN-γ and IL-2 production.17,18 However, 
treatment with E2 alone or E2 with adrenergic agonists 
significantly enhance IFN-γ production alone after 24 h of 
treatment. We have reported dose-dependent increase in 
IFN-γ production with E2 alone or co-treated with α1- and 
β2-AR agonists. In agreement with these findings, simulation 
of lymphocytes with α1-AR agonist, phenylephrine, showed 
increased sensitivity to IFN-γ and p-CREB expression 
(supplementary Figures 9 and 10) while β2-AR agonist 
terbutaline showed increased sensitivity to IFN-γ, p-ERK, 
and p-CREB expression (supplementary Figures 5 and 6). 
Interestingly, E2 signaling alone and in combination with 
adrenergic agonists showed increased sensitivity to IFN-γ 
and cAMP expression suggesting a probable cause in the 
dynamics of E2-mediated signals that predispose it to over-
ride adrenergic signals (supplementary Figures 1–28).

A significant role is played by compensatory mechanisms 
such as AOE apart from signaling molecules, to influence the 
proliferative/apoptotic milieu of a cell by balancing free 
radical load including O2- and peroxynitrites to name a few. 
These free radicals released as byproducts following immune 
responses or during neurotransmitter release in secondary 
lymphoid organs may accumulate over the years and 
contribute to the denervation of sympathetic NA fibers 
leading to impaired neuroendocrine-immune homeostasis, 
setting the stage for age-associated diseases.7 Studies from 
our lab and others have documented ER-subtype dependent 
increase in SOD and GPx activities in lymphocytes stimulated 
with E2.4,53–58 Adrenergic stimulation also enhanced SOD and 
catalase activities in vitro, which were suppressed upon 
coincubation with E2 indicating cross-talk between the two 
pathways leading to diminutive effects.18 Along these lines, 
previous studies have implicated the involvement of PKA and 
ERK pathways, which, when inhibited, reversed terbutaline-
mediated increase in SOD and CAT activities.4,17,18 It is 
possible that these signaling molecules play a regulatory role 
in the expression and activity of these enzymes, thereby 
exerting immunomodulatory effects.59,60 In our model, 
adrenergic activation, E2 treatment, and their co-treatment 
decrease O2- formation but enhance peroxynitrites, although 
E2 treatment, adrenergic simulation, or co-treatment similarly 
affected AOE activities (SOD and CAT; Figure 4).
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Figure 7. Docking of norepinephrine with 2-ERK: NE can bind to 2-ERK on the following possible binding sites shown below in the order 
of lowest Ki and binding energy Asp 147 and Glu 69 (7A), His 178 and Asp 177 (7B), Thr 179 and Tyr 203, Tyr 203 and Asp 177 (7C).

 In order to assess the likely effects of the signals and their 
cross-talks on proliferation, end-point signals were classified 
as either pro-apoptotic or survival signals. Plots obtained at 
the end of 72 h indicate that while adrenergic simulation was 
predominantly pro-apoptotic, E 2  signals were dose-
dependently pro-survival ( Figure 5 ). The dose-dependent role 
of E 2  could be seen by increasing the E 2  concentration by 
10-fold leading to further increase in proliferation signals 
reversing the balance in favor of proliferation over apoptosis 
after 72 h ( Figure 6 ). This is in accordance with the  in vitro
evidence generated in previous studies where all the 
adrenergic agonists decreased proliferation while E 2  played a 
dose-dependent role in increasing proliferation of 
lymphocytes. 

 Finally, docking studies show that apart from modulating 
signaling mechanisms, NE can directly inhibit ERK and E 2
can directly bind to key residues on β 2 -AR, inhibiting its 
subsequent signal transduction processes. The structure of 

2-ERK shows that the phosphorylation lip contains two 
phosphorylation sites, Thr 183 and Tyr 185, and an essential 
phosphate binding residue,  Lys 52 . The active site is held 
open by the interaction of the C-helix and the conserved 
glycine of the  Asp-Phe-Gly  sequence  (165 – 167) . N terminal 
of the C-helix lies on top of Gly 167. Arg 65 points toward the 
active site and Gly 167 interdigitates with Arg 65 and Gln 64. 
The interdigitation of the Asp-Phe-Gly sequence with Arg 65 
may be responsible for domain motions providing a switch 
that can support a closed active conformation of the molecule 
or an open inactive conformation, thereby playing a role in 
regulation. The C-terminal domain has two putative catalytic 
bases,  Asp 147  and the Mg2+ binding  Asp 165.  The 
H-bonding network of  Asp 147, Asp 165,  Asn 152, Lys 149, 
and Thr 188 is vital for catalytic function. 61  ERK (PDB ID: 
2ERK;  Rattus rattus);  was inhibited by NE by binding to the 
catalytic residue  Asp 147  and Glu 69—the residue that forms 
an ion pair with  Lys 52  in the phosphate binding site of ERK 

7C
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with a Ki=207.69 µM, bond distance of 2A, and an energy of 
–5.02Kcal/mol ( Figure 7A ) —and to Asp 177, which is close 
to the catalytic pocket with a Ki = 365.7µM and an energy of 
–4.69Kcal/mol ( Figure 7B ). NE also inhibits  Asp 177
(binding energy = –4.47Kcal/mol and Ki = 528.44) and  Thr 
179 ( binding energy = –4.48Kcal/mol and Ki = 523.7) in the 
β9 ribbon of the domain interface close to the active site (7C). 
However, it is important to note that µM concentrations of 
adrenergic agonists are not physiologically or 
pharmacologically achievable. 

 The β2-AR structure comprises of cytoplasmic (CP), 
transmembrane (TM), and extracellular (EC) domains. The 
CP domain of β2-AR containing the three CP loops (CL1–
CL3) and the EC domain consisting of the N-terminus and 
three interhelical extracellular loops (EC1–EC3) connect the 

TM domain containing a bundle of seven helices (H1–H7). 
EC2 (between H4 and H5) contains a short helix at a position 
above the ligand binding cavity at the TM region. The 
aspartate residue at position 79 within the second putative 
transmembrane segment of the human β2-AR is part of a 
conserved sequence domain in all GPCRs and has been 
identified as the key NE binding site in β2-adrenoceptor. 62  In 
the CP loop of β2-AR, E 2  binds to  Met 61  residue with a Ki = 
11.0 µMand an energy of –6.76Kcal/mol ( Figure 8B ), 
indicating potent inhibitory effect at physiological levels. 
Also, E 2  binds to β2-AR receptor at the  Asp 173  residue in 
EC2 close to the ligand binding cavity (Ki = 22.09 µM, bond 
distance = 1.99 Ȧ and energy = –6.35Kcal/mol;  Figure 8C ). 
Met 61  residue falls in the first CP loop in the transmembrane 
receptor, while  Asp 173  falls within the extracellular loop-2. 

Figure 8. Docking of 17β-estradiol with β2-AR: E2 can bind to β2-AR on the following possible binding sites shown below in the order 
lowest Ki and binding energy Arg 314 (8A), Met 61 (8B), and Asp 173 (8C)

8C
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The most probable binding site is with the Arg 314 residue 
with the lowest Ki = 8.77 µM and an energy of –6.9Kcal/mol 
(Figure 8A). Arg 314 falls within the seventh transmembrane 
helix close to the orthosteric binding site consisting of Asn312 
that binds salmeterol (within a bond distance of 3.5A) and 
epinephrine.63 There is a highly rigid hydrogen bond network 
among helixes 1, 2, and 7 on the CP side, because of the water 
molecules that exist between the (Asn-Asp) N-D pair and the 
conserved NPXXY motif on H7. Tyr 326 and Asn 322 in H7 
are connected to Asn51 on H1 and Asp 79 at H2 through four 
water molecules located in the cavity between H1, H2, and 
H7, forming the network that is crucial for β2-AR function.63,64 
It is possible that estrogen may inhibit β2-AR through 
noncompetitive or uncompetitive inhibition, although further 
studies are required to delineate the functional implications of 
these binding sites.

Previously published in vitro studies from our lab show 
that NE-mediated immunosuppression is reversed upon 
treatment with E2 in peripheral blood mono-nuclear cells 
(PBMCs).4,17,18 Concomitantly, our findings indicate that E2 
at physiological levels can potently inhibit an β2-AR 
receptor by directly binding to it, apart from the dose-
dependent effects of E2 on the signaling network. E2-
mediated reversal of adrenergic immunosuppression may 
also be mediated through cAMP-dependent signaling 
cascades which needs to be explored further.

Conclusion

Age associated decline in the number of sympathetic NA 
fibers, NE availability, reproductive age- associated 
increase, and decline in E2 levels, all contribute to 
immunosenescence—the progression and onset of age- 
related diseases. Modeling E2 and adrenergic stimulation- 
mediated signals will help us to understand variations in the 
expression of downstream molecular markers with age- and 
disease-associated variations in kinetic parameters and 
concentrations, hereby providing an effective tool for 
understanding the alterations in the cross talk between the 
pathways in health, aging, and diseases.
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