
EDITORIAL
Ferroxidases and Mammalian Iron Homeostasis: Novel Insight
Into a Physiological Phenomenon First Described More Than Half
a Century Ago
ntestinal iron absorption is a highly regulated physi-
Iological process that determines overall body iron
levels, because humans and other mammals cannot effi-
ciently excrete excess iron.1 Dietary iron is absorbed mainly
by duodenal enterocytes. Iron export by these cells is the
rate-limiting step in assimilation of dietary iron, which in-
volves ferrous iron export by ferroportin, followed by
oxidation to the ferric state. Ferric iron then binds to the
iron transport protein transferrin (TF) in the interstitial
fluids of the villus lamina propria for distribution to the
liver in the portal blood circulation. Iron oxidation is
mediated by ferroxidase (FOX) proteins, including
hephaestin (HEPH)2 and possibly ceruloplasmin (CP).3 The
HEPH protein is embedded in the exofacial aspect of the
basolateral membrane of duodenal enterocytes, whereas CP
is found in serum, and a membrane-anchored form is
expressed in various cell types (eg, hepatocytes, macro-
phages, astrocytes). Intestinal HEPH has been shown to be
necessary for optimal intestinal iron transport in mice,4 but
the influence of CP on this process has not been clarified.5

The current investigation by Fuqua et al6 in the current
issue of Cellular and Molecular Gastroenterology and Hep-
atology provides novel insight into molecular mechanisms
of intestinal iron absorption. The aim of this investigation
was to further clarify the physiological roles of the multi-
copper ferroxidase (MCF) proteins, HEPH and CP, in intes-
tinal iron transport. In this study, the authors tested the
hypothesis that iron oxidation by CP complements the FOX
activity of HEPH in the upper small intestine. The experi-
mental approach was to cross mice lacking HEPH globally
(Heph–/–), or only in the intestinal epithelium (Hephint/int),
with global CP knockout (KO) (Cp–/–) mice, thus generating
double MCF KO mice. The rationale was that it might not be
possible to directly assess CP function in the small intestine
in the presence of HEPH because both proteins oxidize
ferrous iron.

The authors noted that global KO of both MCF-encoding
genes (in Heph–/–Cp–/– mice) led to impaired post-natal
growth, splenomegaly and cardiomegaly, iron loading in
multiple tissues, depletion of serum iron, and severe hy-
pochromic, microcytic anemia. Some of these physiological
perturbations were likely a direct result of the severe
anemia (eg, spleen and heart enlargement, impaired
growth), whereas others specifically related to a lack of CP
FOX activity (eg, iron loading in liver and some other tis-
sues).7 Moreover, although no overt defect in intestinal
iron transport was noted in the absence of these FOXs,
evidence suggested that iron absorption in the double KO
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mice was inappropriately low given the degree of iron
deficiency. Also, stainable iron was detected in duodenal
enterocytes, indicating abnormal iron retention (or efflux).
The combined activity of these MCFs is thus required
for optimal intestinal iron transport. It was also noted
that distribution of dietary iron was altered in mice
with HEPH and CP ablation, with abnormal iron loading
being detected in numerous peripheral tissues. This
was most prominently exemplified by higher retention of
the orally administered, radiolabeled iron dose in the
livers of the double KO mice and the impairment of iron
delivery to the bone marrow to support erythropoiesis. In
contrast, intestine-specific HEPH KO in CP KO mice
(Hephint/intCp–/–) had a much less severe phenotype that
was essentially indistinguishable from the phenotype of
Cp–/– mice.

On the basis of these observations, the authors postu-
lated that lack of the MCFs prevents a fraction of iron
exported from the intestine from binding to TF in the
interstitial fluids. In this scenario, unbound ferrous iron (ie,
non–transferrin-bound iron [NTBI]) appears in the portal
circulation and is then taken up by hepatocytes in an un-
regulated, non-specific fashion (because the liver normally
acquires dietary iron from diferric TF). The authors further
postulate that HEPH and CP may be important in a variety of
cell types to ensure that exported iron is bound to TF,
enabling the released iron to be targeted to developing
erythroid cells rather than being taken up by other tissues
non-specifically as NTBI.

In summary, this investigation has demonstrated that
the MCFs HEPH and CP function in tandem to maintain in-
testinal and systemic iron homeostasis. Both proteins are
required to provide the necessary oxidizing equivalents to
permit efficient ferrous iron oxidation in the duodenal
epithelium. In their absence, as hypothesized by these au-
thors, NTBI appears in the portal circulation, and because
hepatocytes have evolved to specifically uptake iron from
diferric TF, hepatic iron homeostasis is perturbed. This
investigative team further postulates that HEPH has
important extraintestinal functions that facilitate iron de-
livery to the erythroid marrow. Overall, this study has
advanced our collective knowledge of the critical process of
intestinal iron absorption.
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