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Abstract: Prime editing (PE), as a “search-and-replace” genome editing technology, has shown the
attractive potential of versatile genome editing ability, which is, in principle, currently superior to
other well-established genome-editing technologies in the all-in-one operation scope. However,
essential technological solutions of PE technology, such as the improvement of genome editing
efficiency, the inhibition of potential off-targets and intended edits accounting for unexpected side-
effects, and the development of effective delivery systems, are necessary to broaden its application.
Since the advent of PE, many optimizations have been performed on PE systems to improve their
performance, resulting in bright prospects for application in many fields. This review briefly discusses
the development of PE technology, including its functional principle, noteworthy barriers restraining
its application, current efforts in technical optimization, and its application directions and potential
risks. This review may provide a concise and informative insight into the burgeoning field of PE,
highlight the exciting prospects for this powerful tool, and provide clues for questions that may
propel the field forward.
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1. Introduction

The realization of gene manipulation has allowed rapid progress in biology in recent
years. Unlike early genetic engineering techniques, which can only randomly insert ex-
ogenous or endogenous DNA into the host genome, precise genome editing technologies
enable the specific editing of target genes, and it has been widely applied in genetic research,
gene therapy, and genetic improvement.

Scientists have found that some nucleases can be modified to identify specific sites
within the genome and create double-strand DNA breaks (DSBs) to induce DNA damage
repair, thus enabling the desired editing of the target genome. Genome editing techniques
using nucleases include zinc finger nuclease (ZFN), transcription activator-like effector
nuclease (TALEN), and CRISPR-Cas9 system [1]. ZFN and TALEN have highly repetitive
peptide motifs with complex protein structures, which make them time-consuming and
costly in terms of preparation and synthesis [2]. Furthermore, these techniques suffer from
several problems, such as high difficulty in expression, susceptibility, and difficulty in
protein spatial folding, when these motifs work in cells. In contrast, the CRISPR-Cas9
system relies on multiple sgRNAs for parallel locus editing, making it the most rapid
and cost-effective method of gene editing [3]. Conventional CRISPR-Cas9 systems have
expanded their repertoire of editing and perturbation modalities, including knockdown,
activation, and repression of gene expression. Moreover, to install or remove specific
sequences or bases from the target genome, the DSB introduced by CRISPR-Cas9 is parallel
to homology-directed repair (HDR), resulting from the presence of the exogenous DNA
template. However, this method is often inefficient in mammalian cells and prone to
unintended mutations [4,5]. Through the incorporation of different deaminases with
the CRISPR-Cas system, base tabliediting (BE) has been developed to overcome these
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deficiencies. Base editing enables four transition mutations (i.e., C→T, G→A, A→G and
T→C) without introducing DSBs, with very high efficiency (even up to 100% in cultured
mammalian cells), and a low off-target rate [6–8]. An exciting advancement could be
achieved if the utility and versatility of genome editing was enhanced by enabling all
types of edits. In 2019, Anzalone et al. coined prime editing (PE), a significant innovation
in genome editing technology that can perform all 12 possible base-to-base conversions,
insertions, and deletions [9]. PE has greater targeting flexibility, no bystander products and
a broader editing range than BE, highlighting the critical addition of programmable genome
editing technologies [9,10]. Although the editing efficiency of PE is not yet comparable to
that of BE, with continuous efforts, PE editing efficiency is now up to 53.2% and its unique
advantages make it promising for a wide range of applications [11]. The expansion of the
CRISRP-Cas9 genome toolkit has promoted the extensive application of this cutting-edge
technology, particularly in clinical medicine.

2. Origin of the PE System

The conventional CRISPR-Cas9 system consists of two main components: a Cas9
protein that performs a DNA double-stranded cleavage function, and a single guide RNA
(sgRNA) containing a sequence complementary to the target DNA sequence. This Cas9-
sgRNA complex binds to the target DNA by recognizing the protospacer-adjacent motif
(PAM) sequence and then generates a DSB, which prompts cells to perform DNA repair.
Precise editing of the target sequence is achieved by HDR, while another mechanism,
non-homologous end joining (NHEJ), randomly introduces insertions or deletions (indels)
into the edited DNA sequence [12].

In addition to its nuclease activity, Cas9 can recruit proteins and RNAs to target DNA
sites, and it thus has a strong potential to become a powerful tool for regulating sequence-
specific genes. Mutations in the two nuclease domains of Cas9 result in dead Cas9 (dCas9),
which retains the ability to bind DNA guided by RNA but loses its nuclease activity such
that it cannot cut DNA strands [13]. The transcriptional repressor or activation domain is
fused with dCas9, and the complex can efficiently interfere with or activate gene expression;
this is called CRISPR interference (CRISPRi) or CRISPR activation (CRISPRa) [14]. However,
these techniques are ineffective in correcting point mutations in genetic diseases; therefore,
BE technology was spawned. Liu et al. adopted the CRISPR-Cas9 system by fusing dCas9
with different types of deaminases, allowing for four transition mutations (i.e., C→T, G→A,
A→G and T→C) without producing DSBs [6,15]. However, BE can only perform two
transversion mutations (C→G and C→A); for example, the T·A-to-A·T mutation in the
sixth codon of the HBB gene, which is common in sickle cell disease, cannot be corrected
by BE [6,16]. In addition to this deficiency, BE can lead to bystander editing, resulting in
undesired byproducts [17]. To fill these gaps, PE, a state-of-the-art genome editing tool,
was developed.

3. Principle of the PE System

The prime editor is composed of two parts (Figure 1): a reverse transcriptase (RT)
that incorporates a Cas9 nickase (H840A mutation), which can only produce single-strand
breaks, and a 3′-extended sgRNA containing a primer binding site (PBS) and a RT template
and is referred to as pegRNA. When the PE system binds to the target DNA through
the guidance of pegRNA, Cas9 nickase cleaves the strand containing the PAM, exposes
its 3′ end hydroxyl group, and binds to the PBS on the pegRNA, and the prime reverse
transcription of the new DNA containing the target edit is performed according to the RT
template. At the end of this step, the edited DNA strand has two redundant overhangs:
one unmodified 5′ flap and one purposed 3′ flap. In this case, the 3′ flap can be retained
and the other can be discarded. Later, the overhang containing the edit integrated into the
desired site through a cellular DNA repair system [9,18].
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Figure 1. Principle of the PE system. dCas9 binds the target DNA under the guidance of pegRNA
and nicks the PAM-containing strand. The hybridization of the exposed 3′ end to the PBS primes
the reverse transcription of the nicked DNA strand for the desired edit. Given the preference for the
3′ flap, the 5′ flap cleavages and DNA repair installs the desired edit.

The PE system can mediate the full range of point mutations, insertions, and deletions
of small fragments and has greater targeting flexibility than BE in the distance between
the PAM and the editing site without resulting in bystander editing. These advances have
rendered PE a universally precise genome editing tool.

4. Improvements in Prime Editors

Although PE has overcome the limitations of previous gene editing technologies, its
practical application has many shortcomings. First, the available genomic scope that the
PE system can target is constrained by the PAM-sequence-dependent recognition of Cas9
nickase; second, the editing efficiency of the PE system varies unpredictably among different
cell types due to the differences in target sites and editing types, and the performance of
PE in many organisms is still unknown; and third, the original PE enzyme is too large to
be loaded using traditional delivery tools. To make the PE system truly effective in broad
applications, efforts have been made to address many of the most noteworthy barriers
(Figure 2).
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the development of PE in many ways.

4.1. Relaxed PAM Restriction for PE

Before proceeding to clinical treatment, improving the PAM coverage of PE systems
is essential for installing genome-wide editing for all loci. Extending the editing range
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of PE systems depends mainly on Cas9 enzymes that can recognize PAM. The current
PE system relies heavily on SpCas9 enzyme, which requires NGG PAM sequences that
occur on average once in every 16 randomly selected genomic loci, greatly limiting the
range of targets for gene editing [19,20]. Thus, researchers have long worked to discover
and engineer upgraded Cas9 enzymes to expand their compatibility with various PAMs.
In 2015, Keith lab developed two SpCas9 variants, SpCas9-VRQR and SpCas9-VRER,
which recognize NGA and NGCG, respectively [21]. Three years later, Hu et al. used
the phage-assisted continuous evolution (PACE) strategy to construct xCas9-3.7 variants
that recognize the PAMs of NG, GAA and GAT [20]. In the same year, Nishmasu et al.
reported NG-recognizable SpCas9-NG variants [22]. Furthermore, similar to PACE, Liu
et al. developed three newly evolved SpCas9 variants, expanding the targetable PAM to
NRNH (H: A/C/T) [23]. Immediately afterward, Russell et al. upgraded SpCas9 strongly
to obtain the SpRY variant recognizable PAM covering NRN and NYN (Y: C/T), almost
completely free from the limitation of PAM, which is currently the most compatible SpCas9
variant for PAM [24]. Based on the evolution of the Cas9 variants described above, these
variants have been modified to obtain the corresponding nickase, some of which have
been used in PE systems to considerably extend the editing range; however, extensive
experiments are still needed to verify the effectiveness of PE using these optimized variants
for genome editing [25].

4.2. Improvement of the Editing Efficiency

Researchers are currently most concerned about the editing efficiency of PE, which
is criticized for its low efficiency at specific loci or certain types of editing compared with
BE [18,26]. According to a seminal article reporting PE, scientists have been trying to
improve its efficiency. The primitive PE system, PE1, was developed by fusing Moloney
murine leukemia virus (M-MLV) RT to the C-terminus of Cas9 (H840A) nickase. The
pegRNA used was an extension of either end of sgRNA with a PBS sequence (5–6-nt) and
an RT template (7–22-nt) [9]. It achieved a maximum editing efficiency of 0.7–5.5% for
introducing transversion point mutations and 4–17% for targeted insertions and deletions
at different loci. Building on PE1, Liu et al. proposed the idea of improving the efficiency of
prime editing by modifying RT. They tried multiple mutants of M-MLV RT and eventually
found that RT with the introduction of M3(D200N, L603W, and T330P), T306K and W31S
worked best, resulting in a PE system called PE2. Compared to PE1, PE2 increases the
efficiency of harboring point mutations by 1.6- to 5.1-fold on average, exhibits a higher
editing efficiency in indels, and is compatible with short PBS, according to the testing of
various RT mutations. Furthermore, Liu et al. investigated the relationship between the
pegRNA structure and the efficiency of PE2 and, on the basis of the experimental results,
recommended optimizing the PBS length starting from 13-nt, RT template length starting
from 10 to 16-nt, and designing the pegRNA 3′ extension without the first base of C [9].
Moreover, they were inspired by their former work on optimizing the BE design to propose
the strategy of adding a sgRNA to make a non-edited strand break. The newly obtained
prime editor is called PE3, and it has approximately three times the editing efficiency of
PE2 but introduces a higher level of indels.

Inspired by the secondary structure of pegRNA, Wang et al. proposed that the PBS
at the 3′ end of pegRNA is complementary to the part of the spacer at the 5′ end, which
may lead to cyclization of pegRNA during annealing and thus hamper the function of
PE [27]. To prevent pegRNA cyclization, they fused a 20-nt Csy4 recognition site to the
3′ end of pegRNA, which can form a hairpin structure, and fused Csy4-T2A (Csy RNase)
with Cas9 nickase and the RT complex to obtain a PE3-based enhanced PE system (ePE).
Their experiments verified that ePE improves the efficiency of target editing compared to
the PE system using canonical pegRNA but results in more indels.

Liu et al. also developed the idea of modifying pegRNA [28]. Their study pointed out
that the 3′ extension of pegRNA is susceptible to exonucleolytic degradation when exposed to
cells, poisoning the activity of prime editors and thus reducing editing efficiency. This finding
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suggested that the stability of pegRNA affects the editing efficiency of the PE system. Then,
they came up with a solution of adding structured RNA motifs to the 3′ end of pegRNA to
improve the stability of pegRNA and prevent degradation of the 3′ extension. A minimal class
of naturally obtained RNA structural sequences with a well-defined tertiary structure, that
is, a modified prequeosine1-1 riboswitch aptamer (evopreQ1, 42-nt in length) was selected
because it can be easily obtained through chemical synthesis [29,30]. The pegRNAs obtained
by adding this pseudoknot are called epegRNAs. Moreover, to reduce the possibility of the
aptamer interfering with pegRNA function during prime editing, an 8-nt linker was attached
between the 3′ end of the PBS of epegRNA and evopreQ1. The results showed that optimization
of pegRNA resulted in a 3–4-fold increase in efficiency in several cell lines (HeLa, U2OS, K562,
and primary human fibroblasts) with no increase in off-target effects.

Similarly, Li et al. stabilized pegRNA by inserting a C/G pair or changing each non-
C/G pair to a C/G pair in the small hairpin of pegRNA(apegRNA), resulting in an average
2.77-fold improvement in indel-editing efficiency when applied it to PE3 [31]. They also
adopted the second strategy: introducing same-sense mutations at appropriate positions in
the RT template portion of pegRNA (spegRNA), which increased the base-editing efficiency
by an average of 353-fold. Zhang et al. resisted pegRNA degradation by appending a
viral exoribonuclease-resistant RNA motif (xrRNA) to the 3′ end extension of pegRNA,
and the resulting xrPE had 3.1-, 2.5-, and 4.5-fold enhancements, respectively, for base
conversions, small insertions, and small deletions in a variety of cell lines compared to
PE3 [32]. Recent studies have also reported the modification of pegRNA with a human
telomerase RNA (hTR) G-quadruplex (G3N1-3G3N1-3G3N1-3G3) to improve the stability of
pegRNA, resulting in G-PE with editing efficiency similar to that of the PE system using
evopreQ1, while the G-quadruplex is shorter than evopreQ1 and xrRNA [33].

In addition to the above-mentioned improvements in the pegRNA structure, David
Liu’s group explored the intracellular determinants that are particularly related to DNA
mismatch repair (MMR), which may hinder PE function and cause unintended indels,
using Repair-Seq, a high-throughput pooled genetic screening approach that can mea-
sure the effects of various loss-of-function genomic perturbations on the outcomes of PE
function [34,35]. Inspired by the finding that cellular pretreatment with siRNAs targeting
MMR enhances the editing efficiency of PE, a strategy for the simultaneous delivery of
prime editors and MMR repressor units was proposed. After continuous attempts and
improvements, the transient expression of the MMR repressor protein MLH1d in the PE2
and PE3 systems, which are called PE4 and PE5, respectively, significantly enhanced editing
efficiency. Moreover, the study also engineered the PE2 protein and found a new PE struc-
ture (PEmax) that uses a human codon-optimized RT, a 34-aa linker that includes a bipartite
SV40 NLS, an added C-terminal c-myc NLS, and R221K N394K mutations in SpCas9 [36–38].
Furthermore, the combination of the two enhancements produced PE4max and PE5max,
which were then used together with the previous epegRNA to significantly improve the
performance of PE [28]. Among the different combinations of these optimizations, PE5max
with epegRNA exhibited the best performance and is recommended for most applications
with PE. Gao’s group adopted a double pegRNA strategy that dramatically improved PE
editing efficiency by using two trans-pegRNAs to simultaneously edit both strands of DNA
to achieve the same mutation [39]. They then modified the RT enzyme structure to improve
enzyme activity and DNA synthesis efficiency, which they believed was related to the PE
efficiency [40]. They tried two strategies: one was to remove the RNase H domain of RT
and the other was to incorporate a viral nucleocapsid protein with nucleic acid chaperone
activity. Both strategies independently increased the editing efficiency of prime editing
in plant cells by approximately 1.8 to 3.4-fold. The two modifications were then used in
combination to increase the editing efficiency by an average of 5.8-fold compared to the
original plant PE system (see Section 5.2 Agriculture).

After the above refinement (Table 1), the highest editing efficiency that can be achieved
by the PE system reached approximately 50%, which is a 10-fold improvement compared
to the first generation of PE system [10]. However, PE is outperformed by BE in most of the
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mutations that BE can realize. Editing efficiency remains a significant challenge for PE in
the future. Further pegRNA engineering should remain the main method to improve PE
editing efficiency in the future. A more in-depth study of the mechanism of PE can also
help provide new ideas for improving editing efficiency.

Table 1. Summarization for the refinement in PE.

Designation of
PE Systems

Components of PE
Efficiency

Cas9 Nickcase Reverse Transcriptase pegRNA

PE1

Cas9(H840A) nickase

M-MLV RT the original pegRNA 0.2–17%

PE2

M-MLV RT
(D200N/L603W/

T330P/T306K/W31S)

1.6–5.1-fold

PE3 + a sgRNA for nicking the
non-edited strand 3-fold compared to PE2

ePE fusing
Csy-T2A

+ a sgRNA
& fusing a Csy4

recognition site into the
3′ end

1.9-fold *

unnamed

Cas9(H840A) nickase

epegRNA: incorporating
evopreQ1 3–4-fold *

aPE

apegRNA: inserting a
C/G pair or changing

each non-C/G pair to a
C/G pair

2.77-fold in indel-editing *

sPE spegRNA: introducing
same-sense mutations 353-fold in base-editing *

x rPE
xr-pegRNA: appending a

viral exoribonuclease-
resistant RNA motif

3.1-fold in base conversion *

G-PE incorporating a hTR
G-quadruplex similar to using epegRNA

PE4/PE5 same as PE2 but transient expressing MLH1d
epegRNA

7.7-fold compared to PE2/
2.0-fold *

PE4max/PE5max based on PE4/PE5, using a human codon-optimized
RT/adding a linker higher than PE2/PE3

unnamed based on PPE (similar to PE2)
PBS with a melting

temperature of 30°C and
using dual pegRNAs

at least 2.9-fold
compared to PPE

ePPE based on PPE but removing RT’s RNase H domain and
incorporating a viral nucleocapsid protein the original pegRNA 5.8-fold compared to PPE

+: adding to PE1; *: compared to PE3.

4.3. Delivery of PE Agents

Apart from editing efficiency, successful genome editing depends on the efficiency
of the editing tools that can be delivered to the target. The large size of genome editing
machines and the need to simultaneously deliver multiple macromolecules into cells,
tissues, or organs pose a significant challenge. There are wo main types of delivery methods
for genome-editing systems: virus-based delivery and non-viral delivery. A range of viral
vectors have been used to deliver genome editing tools, including adeno-associated viral
(AAV), lentiviral, retroviral, adenoviral, and baculoviral vectors. AAV and lentiviral vectors
have been used in most studies [41].

The AAV vector has clinically advantageous features, such as replication incompetence,
low immunogenicity, different serotypes, and tissue specificity [41,42]. Two types of AAV
vectors have been approved by the US Food and Drug Administration (FDA) for use in
the treatment of retinal degenerative disease and spinal muscular atrophy type 1 [43]. The
AAV vector can only pack up a gene cargo within ~4.7 kb [44]. The prime editor includes
dCas9 (~4.2 kb), a reverse transcriptase domain (~2.0 kb), promoters, and other essential
components. Thus, the length of the prime editor clearly exceeds the packaging capacity of
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the AAV vector. The prime editors can be split such that the size of each part is within the
vector capacity. The researchers used a dual AAV approach: the prime editor N-terminal
and C-terminal expression cassettes were delivered in two separate AAV vectors and then
delivered into the adult mouse retina, which also achieved editing of the target site [45–47].
However, split-PE may have lower efficiency in vivo than intact PE because of imperfect
construction of the spatial structure [48,49]. In addition, the choice of split sites for the
split-PE system is limited. To overcome this limitation, Zheng et al. used truncated RT
to further reduce the size of PE and improve intracellular safety [50]. They developed a
compact PE that did not contain the RNase H domain of RT, increasing flexibility in the
selection of split sites, while maintaining editing efficiency.

To meet the requirement of AAV vector-based delivery for the full-length prime editor,
reducing the size of Cas9 nickase could be an alternative optimization strategy. Several
common and current miniaturized Cas9 variants are listed in Table 2, predicting the size
of prime editors composed of these variants and showing which variants constitute the
PE systems expected to be delivered by AAV vectors [51–59]. SaCas9 was engineered to
construct adenine base editors (ABEs), allowing Cas9-ABEs to be delivered by AAV vectors
with increased on-target DNA editing [60]. Meanwhile, experiments on the modification of
Cas9 enzymes are being conducted, but optimized Cas9 variants have not been used in the
PE system. Further attempts should be made to observe the outcomes of PE incorporation
with different Cas9 variants.

Table 2. Prediction of PE size with various Cas enzymes.

Ca9 Variants & Others Cas Size (kb) Predicted PE Size (kb) AAV Delivery Reference

SpCas9 4.2 6.2 [10]
St1Cas9 3.3 5.3 [23]
SaCas9 3.2 5.2

√
[6]

SauriCas9 3.1 5.3 [18]
NmeCas9 3.2 5.3 [16]
CjCas9 3.0 5.0

√
[17]

CdCas9 3.3 5.3 [19]
Casφ 2.1~2.4 4.1~4.4

√
[20]

Cas12f 1.2~1.8 3.2~3.8
√

[21]
CasX <3.0 <5.0

√
[22]

The prediction is based on the size of Cas9 variants and orthologs, the common RT and pegRNA in Anzalone et al. [8].

In addition to the AAV vector, another commonly used delivery method, the lentivi-
ral vector (LVV), can theoretically carry ~8 kb of insert fragments composed of a ~2 kb
intrinsic sequence carrying a genomic RNA and a chromosomal integration constitute and
a ~6 kb programmable fragment, making the delivery of PE systems with LVVs a common
choice for many researchers performing cellular experiments in vivo [61,62]. Nevertheless,
considering biosafety issues, the potential for insertion of target exogenous genes into the
host genome by LVVs makes their clinical application controversial, and doctors take a
conservative approach to this delivery method [63]. Moreover, LVV can target a more
limited number of cell types, has less tissue specificity, and is less efficient in vivo than the
AAV vector [64–66]. In addition to the two viral vectors mentioned above, the recently
developed retrovirus-like protein PEG10 packages and engineered DNA-free virus-like
particles, which can further reduce immunogenicity, are also expected to be used for the
delivery of PE systems [67,68].

Non-viral delivery has the advantage of being suitable for the transient expression of
genome editing tools with low DNA toxicity [41,69]. Most importantly, non-viral platforms
are expected to pack PE agents because they can be delivered without packing capacity
limitations [70]. Cas9 ribonucleoprotein (RNP), which is a popular non-viral platform,
has been directly adapted for delivering PE. Yeh et al. successfully achieved wide-scale
editing of target sites by delivering PE RNP directly into zebrafish embryos, which may
further improve the editing efficiency of PE because RNP minimizes the time of exposure
to the editing unit [71]. Other forms of non-viral delivery, such as lipid nanoparticles and
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cell-penetrating peptides, offer the advantages of low immunogenicity and broad targeting
range and have potential applications in the delivery of PE systems [72].

4.4. Algorism Development for the Design of pegRNA

During the exploration of the diversity of PE applicability in species, tools for PE sys-
tem design and the prediction of editing effects were merged to facilitate the experiments.
pegRNA design tools, such as pegFinder, PE-Designer, Prime Induced Nucleotide Engi-
neering Creator of New Edits, PrimeDesign, and PnB Designer, require only the wildtype
or reference DNA sequence of the target site and the edited/desired DNA sequence and the
sequence and related detailed information of the pegRNA and sgRNA(if using PE3) that
meet the requirements (specific length of RT, PBS, etc.) [73–77]. Several algorithmic models
are debugged to select the target sequence that obtains the highest efficiency based on the
predicted results. To quickly obtain a picture of the editing of the target region, Hwang
et al. invented a PE-Analyzer, which can easily analyze the PE high-throughput sequencing
results of cells that have undergone PE, providing information, such as the distribution
and specific values of each type of mutation [74]. To demonstrate the utility of these tools,
developers also implemented gene mutations in human cells using software-designed
pegRNAs and ngRNAs [73,75,76]. Studies of these tools have facilitated PE experiments
and inspired new perspectives for prime editor design improvements.

Many elaborate efforts have been made to achieve substantial progress in the utiliza-
tion of PE systems in clinics and research. However, more comprehensive and delicate
optimizations are necessary because current strategies often account for only one aspect of
the difficulties encountered by the PE system. For example, split-PEs are available for AAV
packaging but underperform full-length PE in terms of efficacy. Meanwhile, this progress
has inspired researchers to take a multi-faceted approach to enhance PE, which can be
unified with the powerful CRISPR screening technology to explore the factors affecting PE
performance at a deeper and a broader scale and thus improve the prime editors.

5. Applications of PE

Given the revolutionary potential of PE in life sciences as a versatile genetic modifier,
it is now an exciting time for researchers to test its transformative applications in various
fields, such as medicine, agriculture, and other biotechnologies in various species (Figure 3
and Table 3).
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5.1. Medicine

The leading application field of the PE system is clinical medicine, which is currently
expected to be employed mainly for the treatment of genetic diseases. Anzalone et al.
validated in HEK293T cells that PE can correct the major mutations that cause sickle cell
disease (SCD) and Tay-Sachs disease [9]. The first generation of targeted base conversion
mutations in animals with the PE system was demonstrated by Smith et al., validating the
efficacy of PE in mice [78]. According to Schene, PE can achieve the functional repair of
intestinal organoids with DGAT1 defects and liver organoids with Wilson disease (ATP7B),
demonstrating that PE can be applied to precisely edit not only two-dimensional growth
cell lines but also three-dimensional organoids [79]. Jang et al. utilized PE to successfully
repair disease-causing mutations in mice with genetic liver disease, hereditary tyrosinemia,
genetic eye disease, and Leber congenital amaurosis [80]. These studies raise the possibility
of using PE as a therapy for multiple diseases. Meanwhile, many studies have applied PE
in various single-base editing, insertion, and deletion attempts on a variety of mammalian
cells and organisms, generating models of genetic mutation diseases and providing a
convenient tool for mechanistic studies and drug screening [26,81,82]. Considering the
huge potential of PE in future therapeutic applications, David Liu and Andrew Anzalone
recently founded Prime Medicine, which specializes in the commercial development of PE
technology for gene therapy, and the company raised $315 million within a short period of
time. This initiative is expected to accelerate the application of PE in clinical settings.

5.2. Agriculture

Given that genome editing is one of the most important strategies in plant biology,
and PE is rising in popularity among gene editing tools, many researchers expect to
apply PE in plants to improve yield and insect and disease resistance. Recently, several
groups have independently developed plant PE systems in rice, which are representative
of monocotyledonous plants with high economic value [83–88]. According to the data they
obtained, although various versions of PE agents have been tested and some measures
have been taken to optimize the codon, promoter, or select Cas9 and RT variants, PE editing
in rice currently exhibits low efficiency.

Table 3. An overview of some representative PE applications.

Fields Targets Details References

Applications
of
PE Medicine

HEK293T cells

correcting the mutant HBB allele to
wild-type HBB,

T•A to A•T
(Sickle cell disease)

[9]

deleting a 4-bp insertion in HEXA
(Tay-Sachs disease)

mouse
neuro-2a (N2a) cells/mouse embryos

generating base conversion in Ar gene
and Hoxd13 gene [78]

liver- and intestine-derived organoid
cells/HEK293T cells/Caco-2 cells

promoting a biallelic 3-bp deletion in
DGAT1, creating in-frame deletions in

CTNNB1 (liver cancer) and
repairing a 1-bp duplication in ATP7B

(Wilson disease)

[79]

Fahmut/mut

mice

rescuing a homozygous G-to-A point
mutation in Fah gene (hereditary

tyrosinemia type 1) and correcting a
C-to-T transition in RPE65 gene (Leber

congenital amaurosis)

[80]

mouse N2a cells installing a G-deletion mutation in
Crygc gene (cataract disorder) [81]

human induced pluripotent stem cells (iPSC)
repairing a missense mutation in

SAMHD1 gene (Aicardi–
Goutières syndrome)

[82]

Fah−/− mouse primary hepatocytes correcting a Fah mutation (Hereditary
tyrosinemia type 1) [26]
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Table 3. Cont.

Fields Targets Details References

Agriculture

rice (Oryza sativa)
editing the OsALS (herbicide

resistance), OsIPA (rice yield) and
OsTB1 gene (lateral braching)

[86]

the Japonica rice (Oryza sativa) variety
Zhonghua11 and the winter wheat variety

Kenong199 protoplasts

producing a wide variety of edits at
genomic sites

(including C-to-T, G-to-T, A-to-G,
G-to-A, T-to-A, and C-to-A

substitutions in rice; including A-to-T,
C-to-G, G-to-C, T-to-G, and C-to-A

substitutions in wheat)

[89]

tomato GAI, ALS2 and PDS1 [90]

maize
introducing W542L and S621I double
mutations in ZmALS1 and ZmALS2

(herbicide resistance)
[11]

The content in brackets complements the disease or its function associated with the gene.

Attempts on other species are also underway. Lin et al. established plant PE (PPE) for
wheat to perform diverse edits at target sites [89]. Jiang et al. pioneered the editing of two
non-allelic targets with prime editors in maize, and confirmed the hypothesis that enhanced
pegRNA expression could improve editing efficiency [11]. Lu et al. employed PE in
tomato, a representative dicotyledonous plant, to achieve precise genome modifications [90].
These studies raise the possibility that PE systems have broad application prospects in the
plant world. However, the relatively low editing efficiency of PE in plants poses a major
barrier for plant biotechnology and agricultural applications. Currently, the highest editing
efficiency achieved in plants using the PE system is 53.2%, which was obtained when the
W542L and S621I double mutations were respectively generated in ZmALS1 and ZmALS2
in maize [11]. However, on average, the editing efficiency of PE on average in plants is
relatively lower than in human cells (20%–50%) [91]. Therefore, efforts should be made
to improve the performance of PE in plants through rational strategies, including protein
structural evolution, pegRNA optimization, system redesign, and/or cellular determinant
screening. The differences in cellular structure and genome composition between plants
and animals also account for the required suitability test in plants before applying emerging
advances in PE from animal models. Nevertheless, the versatility of PPE makes it potentially
advanced for the domestication of wild plants, plant breeding, drug plant production, etc.

5.3. Biotechnological Applications in Different Species

In addition to mammalian and higher plant models, PE also offers desired biotechno-
logical applications in various organisms, such as lower vertebrates and micro-organisms.
Justin et al. experimented with PE for the first time in a non-mammal (i.e., Drosophila) and
reported the installation of PE in the fly germline [92]. Karl introduced somatic mutations
in zebrafish embryos with a 30% editing frequency and reproductive transfer [71]. Qian
et al. subsequently reported the use of the PE system in rabbits to efficiently and precisely
produce the Tay-Sachs disease model [93,94]. Attempts have been made in the field of
microbiology. Tong et al. successfully performed large fragment deletions (up to 97 bp) and
insertions (up to 33 bp) in Escherichia coli, revealing the industrial application potential of
PE in microbial cell factories [95]. The successful employment of PE for precision editing
among different species is encouraging and reveals that PE can be applied to generate
purposeful editing in a wide range of organisms; however, such interspecies compatibility
requires urgent verification through experiments.

6. Conclusions

PE technology has been demonstrated to be a powerful and versatile genomic manip-
ulator in terms of precision, attracting tremendous attention for its development. However,
like any new tool in its early stage of development, PE has various problems. Extensive
efforts have been made to address these problems and promote transformative technologies
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for good use. Notably, regardless of the application scenario, safety is the main concern,
particularly in clinical use, and it has garnered the most attention worldwide. Off-target ef-
fects are a common pitfall of gene editing, and PE is no exception [96,97]. Liu et al. showed
that prime editing results in far less off-target editing than Cas9 at known Cas9 off-target
sites because PE requires two additional hybridization events: the complementation of
the target DNA with the PBS region of the pegRNA to initiate reverse transcription and
the complementation of the target DNA with the RT product for flap resolution. Many
subsequent studies have demonstrated that the off-target rate of PE is relatively low in
different species and under various system designs [9,87,98,99]. It should be noted that
indels still happen in prime editing, but the frequency is less than 1% in most cases. How-
ever, when using PE3, the indel frequency is generally less than 10% [9]. However, a
small off-target possibility does not ensure that deleterious mutations can be avoided,
and their occurrence leads to unpredictable and even fatal consequences. Although some
experimental data have shown that the frequency of off-target editing is very low or even
undetectable [9,89,98], this is likely due to the low expression of prime editors in vivo or
site-specificity [99]. In particular, the potential of off-target editing to induce oncogenic
mutations remains an ongoing problem in the clinical approval of PE-based medicine or
other applications. Further high-throughput investigations of whole genomic mutations
caused by PE editing should be carried out in different organisms, developing phases,
and/or physiological states to verify real off-target effect and prove the reliable clinical
relevance of this tool. Nevertheless, the feasibility of PE as a potent tool capable of editing
in numerous species suggests its popularity in future research, and the early application of
PE in genomic therapy for the benefit of humanity is something to look forward to.
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