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Model-independent particle species 
disentanglement by X-ray cross-
correlation scattering
B. Pedrini1, A. Menzel1, V. A. Guzenko1, C. David1, R. Abela1 & C. Gutt2

Mixtures of different particle species are often investigated using the angular averages of the scattered 
X-ray intensity. The number of species is deduced by singular value decomposition methods. The full 
disentanglement of the data into per-species contributions requires additional knowledge about the 
system under investigation. We propose to exploit higher-order angular X-ray intensity correlations 
with a new computational protocol, which we apply to synchrotron data from two-species mixtures 
of two-dimensional static test nanoparticles. Without any other information besides the correlations, 
we demonstrate the assessment of particle species concentrations in the measured data sets, as well 
as the full ab initio reconstruction of both particle structures. The concept extends straightforwardly 
to more species and to the three-dimensional case, whereby the practical application will require the 
measurements to be performed at an X-ray free electron laser.

Structural features of particles whose orientation cannot be controlled experimentally can be studied by evalu-
ating the angular mean of the X-ray scattering signal, averaged on a large ensemble of random particle configu-
rations. For proteins in solution, for example, the signal at small angles encodes enough information to model 
molecular shapes with a precision of few nanometers1–3. It is often of interest to extend the perspective from pure 
samples to mixtures of more than one particle species or, similarly, of more configurations of the same particle. 
In case of dynamical studies, for instance, it is implicit that a number of data sets are collected at different time 
points, corresponding to different mixture compositions4–10. The angular means of the X-ray intensities can then 
be processed using the singular value decomposition algorithm11–13 (SVD), which serves as a noise filter and 
yields the number the particle species present in the system. Unfortunately, further processing to establish the 
particle species populations or their respective scattering intensities and structures needs additional prior knowl-
edge. For time-resolved studies, for example, one can fit the data to a known kinetics model11,14.

For the single-species case, already in 1977 Zvi Kam suggested to exploit higher-order angular correlations15 
of the scattered X-ray intensity, which contain a wealth of additional structural information with respect to the 
angular means. In the subsequent decades, the idea was further developed for other applications16–18, but consist-
ent interest in the X-ray community emerged only recently with the advent of X-ray free electron lasers19 (XFELs). 
The investigations on disordered systems reported by Wochner and coworkers20 in 2009 were followed by a cas-
cade of related theoretical21–26 and experimental proof-of-concept publications27–29. In contrast to the angular 
means, proper evaluation of the higher-order correlations requires that the randomly oriented particles do not 
rotate within an X-ray exposure. In addition, the figure of merit for the achievable signal-to-noise is given by the 
scattering strength per exposure of a single particle30, which is generally extremely weak for scientifically relevant 
samples such as macromolecules. The ultrashort length and ultrahigh intensity of XFEL pulses are precisely the 
two features necessary to overcome these obstacles.

In this paper, we investigate the application of the framework of higher-order angular correlations to the case of 
multiple particle species. This path was already followed by the authors of ref. 31 who attempted to disentangle the 
experimental correlations from mixtures into single-particle contributions. However, the proposed method relies 
fully on the prior knowledge of the species concentrations in all data sets, which represents a strong limitation 
for most applications. We present here a new computational protocol that achieves the disentanglement without 
any a priori knowledge. All intermediate steps are well-established procedures with the exception of the key step, 
for which the underlying concept is condensed in Eqs (13) and (20) for the two- respectively three-dimensional 
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case. These equations imply that the angular 2-point intensity correlations contain intrinsically the information 
necessary to perform the disentanglement. The protocol allows obtaining, in a model-independent fashion, the 
concentrations of the species as well as their individual structures.

We describe the protocol in the two-dimensional case, and illustrate in detail the results of the application of 
the protocol to experimental data measured at a synchrotron source on static test samples with two particle spe-
cies. We further address the generalization to more species, the implications for the three-dimensional case, and 
the possible implementation at XFELs.

X-ray intensity correlations based disentanglement in two dimensions
We consider the two-dimensional (2D) case, i.e. 2D particles on a plane perpendicular to the X-ray beam direc-
tion. For each of the ns particle species, labeled with a, we denote by

∑φ = φ−s q s q e( , ) ( )
(1)

a

k
k
a ik

the diffraction image generated by a single particle, where (q, φ) are polar coordinates in reciprocal space.
The input experimental data are arranged in a number nd of different data sets with label r. A data set consists 

of a large number of X-ray diffraction images φ = ∑ φ−I q I q e( , ) ( )r
k k

r ik  from randomly oriented and positioned 
particles in defined experimental conditions, which yield to data set specific average numbers of illuminated 
particles Na,r of species a. For each data set r, the angular averages, here denoted as 1-point correlations, are given 
by

=m q I q( ) ( ) (2)r r(1),
0

where 


 denotes the average over all the images in the data set. Similarly, the 2-point correlations are defined in 
terms of their angular Fourier components as

= ≠ .⁎m q q I q I q k( , ) ( ) ( ) ( 0) (3)k
r

k
r

k
r(2),

1 2 1 2

The single-particle correlations of each species are defined as

=c q s q( ) ( ) (4)a a(1),
0

and
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with κ(2) a constant X-ray beam shape factor27. For known single-particle correlations, these equations can be 
solved for the coefficients sk

a following an established protocol27, which finally yields the 2D charge density of the 
particle.

For mixtures with ns different species the single-particle 1-point correlations are related to the experimental 
1-point correlations by the linear equations
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while for the 2-point correlations we have
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Equality is approached in the limit of an infinite number of measured images, or, equivalently, of sampling all 
particle configurations. Both equalities (6) and (7) are a straightforward generalization of the single species 
case21,27,31. The experimental correlations are measured at nq discrete values of momentum transfers q. Therefore, 
the 1-point correlations can be grouped into an nq ×  1 dimensional matrix, while for each Fourier order k the 
2-point correlations can be grouped into an nq ×  nq dimensional Hermitian matrix. To simplify the notation, all 
experimental correlations of data set r are furthermore rearranged into a column Mr  of a nm ×  nd-dimensional 
matrix M (see Supplementary Figure S1). nm is the total number of measured correlations, given by sum of the 
number of 1-point correlations nq and the number of 2-point correlations n nq k

2 , with nk the number of considered 
Fourier components of the 2-point correlations. Similarly, the single-particle correlations of species a are rearranged 
into a column Ca of a nm ×  ns-dimensional matrix C. With this notation, equations (6) and (7) can be recast in 
compact matrix form as

= ⋅M C N , (8)

where N is the ns ×  nd-dimensional population matrix with entries Na,r.
Thus, disentangling the data into contributions from the individual species means finding the right matrices 

C and N which fulfill Eq. (8). In the framework considered in ref. 31, the population matrix N and therefore the 
number of species ns were assumed to be known. The single-particle correlations were then computed straightfor-
wardly by the matrix inversion = ⋅ −C M N 1. Without these assumptions, however, the problem is far from being 
trivial because Eq. (8) has not a unique solution. Without knowledge of ns, not even the dimensions of the 
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matrices N and C are defined. We propose here a new algorithm which serves to uniquely determine the right 
solution without any prior knowledge. The algorithm is illustrated in Fig. 1 and consists of three subsequent steps.

In the step 1, we establish the number of species ns and a pair of matrices Č Ň( , ) of dimensions nm ×  ns and 
ns ×  nd such that

= ⋅Č ŇM (9)

within small errors. Specifically, we follow a bootstrap approach by defining different matrices ′M , obtained 
choosing different rows from M (step 1A), and applying the SVD (step 1B) as in Eq. (23) in the Methods. For each 
choice the decomposition is different. However, the expected self consistency of the data must result in the same 
number of meaningful singular values to be retained, which corresponds to the number of species ns. 
Furthermore, the populations Ň  obtained after truncation to ns species must all be pairwise equivalent, meaning 
that for any pair Ň1 and Ň 2 resulting from different decompositions the relationship =Ň ŇB1 12 2 must hold upon 
small errors for some regular ns-dimensional matrix B12. If self-consistency is verified, we choose Ň  as the out-
come of one of the decompositions, and define = ⋅ −Č Ň ŇŇM ( )

T T 1 via pseudoinversion12 (step 1C).
The key procedure of disentangling the individual species takes place in step 2. We seek for a regular 

ns-dimensional matrix A which mediates the transformation

= −Č Ň~ ~C N A A( , ) ( , ) (10)1

that obviously preserves (9),

= ⋅~ ~M C N , (11)

in such a way that the correlations encoded in each column C
a
 of the matrix C is compatible with coming from a 

single particle. We impose this condition by making use of information which is intrinsically contained in the 
2-point correlations. Indeed, Eq. (5) implies that for each column a the corresponding 2-point correlation matri-
ces of each Fourier order k must be of the form
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Figure 1. Algorithm for species disentanglement. Graphical illustration of the three-step algorithm used to 
determine the final single-particle correlations C and populations N from the experimental correlations M. Step 
1: SVD-based determination of the pair Č Ň( , ); 1A consists in defining a subset of experimental correlations, 1B 
is the singular value decomposition step thereof, followed by the truncation to the significant non-vanishing 
singular values, and 1C is the pseudoinversion of M with Ň . Step 2: particle species disentanglement mediated 
by the regular matrix A via = −Č Ň~ ~C N A A( , ) ( , )1 . Step 3: per-species renormalization of correlations and 
populations mediated by the diagonal matrix D via = −~ ~C N CD D N( , ) ( , )1 .
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for some column vector s̃k
a. This requirement is equivalent to

∈c̃rank [ ] {1, 0}, (13)k
a

eff
(2),

where the effective rank rankeff is the number of significant non-vanishing eigenvalues. The exceptional case 
=c̃rank [ ] 0a

keff
(2),  occurs if and only if the species lacks the sk

a-component in its diffraction pattern. To determine 
the matrix A we therefore apply a procedure that analyzes the behavior of the eigenvalues of the Hermitian matri-
ces c̃k

a(2), , which is described in the Methods and explained in detail in the Results section for the special case 
ns =  2.

Step 3 of the procedure is the same per-species renormalization of the Fourier components as in the 
single-species case (see Methods). The transformation is of the form

= −~ ~C N CD D N( , ) ( , ) (14)1

with D a diagonal matrix, yielding final single-particle correlations and populations in agreement with the exper-
imental data by

= ⋅M C N , (15)

upon small errors.

Results from the proof-of-concept experiment
For the proof-of-concept experiment, we considered the two-species case (ns =  2) with four- and three-fold sym-
metric 2D particles (Fig. 2(b)). The high symmetry of the particles used in the experiment did not represent a 
simplification but rather a complication, since the number of non-vanishing Fourier components of the 2-point 
correlations is reduced. Six different samples were measured. Each sample consisted of a thin membrane with a 
large number of gold nanostructures, anchored in random position and random orientation with respect to the 
axis perpendicular to the membrane (Fig. 2(b)). The total average surface density was the same in all samples, but 
the relative concentration was sample specific. The six sample membranes were scanned with the X-ray beam 
perpendicular to the surface, and thousands of snapshot diffraction images were recorded by illuminating each 
time different small areas including tens of nanostructures in random configuration (Fig. 2(a)). This resulted in 
six data sets (nd =  6) characterized by well-defined species populations. Figure 2(c) shows an example of a col-
lected diffraction image. The experimental correlations were calculated as described in the Methods, retaining 
Fourier coefficients of the 2-point correlation up to order k =  40, and were rearranged in the matrix C, with each 
of the six columns r =  1..6 corresponding to a data set (see Supplementary Figure S1).

Within step 1 of our protocol, we applied the SVD to seven correlation subsets ′M  of the measured correla-
tions M . The resulting singular values are plotted in decreasing order in Fig. 3. We observe a marked drop in 
magnitude between the second and third singular value, pointing towards the presence of ns =  2 particle species 
in the mixtures. This is confirmed by the fact that only by retaining two singular values the decompositions are 
mutually self-consistent. The population matrix Ň  resulting from the decomposition performed on all measured 
correlations was used to calculate via pseudoinversion the matrix Č.

In step 2, the 2-dimensional invertible matrix A appearing in Eq. (10) and leading to Eq. (13) was determined 
as follows. From each column a =  1, 2 of Č we extracted the 2-point correlation matrices čk

a(2),  (see Supplemntary 
Figure S1), defined the 2-point correlation matrices

α α α= ⋅ + ⋅č čc̃ ( ) cos sin , (16)k k k
(2) (2),1 (2),2

and studied the behavior of the two largest eigenvalues as a function of the parameter α, shown in Fig. 4 for n =  4, 
6, 12. Indicated are the two values α ⁎

1  and α ⁎
2  of the parameter at which the effective rank of the matrix αč ⁎( )n

(2)  is 
either 1 or 0. For k =  12, |λ1| and |λ2| vary as a function of α, a clear signature of the contribution from two dis-
tinct particle species. The requirement =c̃rank [ ] 1a

eff 12
(2),  is fulfilled at the local minima of |λ2|. Differently, for 

k =  4, 6 |λ2| is small and almost constant, which is the signature of resulting from noise. Only a single species 
contributes, and the disentangling points are located at the local minima of |λ1|, where =c̃rank [ ] 0a

eff 4,6
(2), . As 

expected for consistency, α ⁎
1  and α ⁎

2  take the same value for all orders k. The matrix A is defined as

α α
α α
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where the signs − η( 1) 1,2 are to be chosen such that λ α >⁎( ) 01 1,2 , and is used to set the matrix pair ~ ~C N( , ) accord-
ing to (10). This ensures that the 2-point correlations in the two columns of C, given by α˜ ⁎c ( )k

(2)
1  and α˜ ⁎c ( )k

(2)
2 , 

fulfill Eq. (13).
In the final step 3, we renormalized single-particle correlations and populations to final values represented by 

the matrices (C, N) with Eq. (14), and in parallel determined the single particle diffraction pattern of both particle 
species (see Methods). Examples of the Fourier coefficients sk

a for both particle species are shown in Fig. 5. The 
coefficients s a

6  for a =  1 and sa
4  for a =  2 turn out to vanish, which is in line with the four- and three-fold symmetry 

of the two species. The patterns s(q, φ) are shown in Fig. 6(a,b), from which we reconstructed the 2D charge 
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density by phase retrieval. The obtained shapes are shown in Fig. 6(c,d) and agree very well with the shapes 
observed in the SEM images. The final population matrix is

= . ⋅ . . . . . .
. . . . . .

.( )N 62 5 0 002 0 178 0 419 0 554 0 821 0 999
0 997 0 711 0 551 0 316 0 182 0 003 (18)

(a)

(c)

(b)

q

sample
membrane

detector
X-ray
beam

φ

Figure 2. Data acquisition and cross-correlation calculations. (a) Experimental setup of the proof-of-concept 
experiment: the membrane is scanned through the beam, and a large number of diffraction images is acquired 
from different membrane positions. (b) SEM image of a portion of one of the six sample membranes measured 
during the experiment, which shows the two species with four- respectively three-fold symmetry. In this sample, 
the concentration ratio was 0.4/0.6. The yellow bar in the lower left corner corresponds to 2 μm. (c) Example 
of an acquired diffraction image I(q, φ), with graphical illustration of the radial and azimuthal reciprocal space 
coordinates q and φ. The red scale bar corresponds to 0.1 nm−1.
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The first and second rows of (18) correspond to the four- and three-fold symmetric particles, respectively, and the 
six columns are related to the six recorded data sets. The relative populations agree reasonably with the nominal 
values reported in the Methods. We attribute the discrepancies to slight differences in the nanostructure height 
in the different samples.

To ensure that the obtained results are not biased by including the pure data sets (r =  1, 6) in the analysis, we 
applied the whole protocol to the other four mixed data sets, and obtained, within the experimental uncertainty, 
the same particle populations and the same single particle structures.

Discussion
The results from the proof-of-concept experiment demonstrate that the proposed protocol is effectively capable of 
full disentanglement of the two particle species from data acquired on unknown admixtures. For more than two 
particle species, the computational part is obviously more elaborated but conceptually the same (see Methods). 
The crucial aspect is to exploit the 2-point correlations with Eq. (13). The conceptual and experimental boundary 
conditions are almost the same as for the single-species case: The diffraction images must be snapshots from 
particles in random position and in random orientation with respect to the X-ray beam axis. Additionally, each 
species must exhibit non-vanishing 2-point correlations, i.e. cannot be rotation symmetric. In practice, this is 
assessed by verifying that the number of relevant SVD singular values from 1-point correlations and from 2-point 
correlations are the same.

1 2 i3 4 5 6
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10-2
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σ
i /

 (Σ
 σ

j2 )1/
2

Figure 3. Singular values. Singular values resulting from the SVD applied to seven different subsets M′  of 
experimental 1- and 2-point correlations. The singular values σ1 to σ6 are shown in decreasing order on the 
y-axis, rescaled according to σ σ∑/i j j
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Figure 4. 2-point correlation matrix eigenvalues. The two largest eigenvalues λ1 (blue graphs) and λ2 (red 
graphs) of the 2-point correlation matrices αč ( )k

(2)  (see text) are displayed as a function of the parameter α for 
the Fourier coefficient orders k =  4, 6, 12. The vertical dashed lines mark the disentangling points α ⁎

1  and α ⁎
2 .
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We can take the point of view of the reported measurements exemplifying a time-resolved experiment which 
monitors a structural process taking place in the liquid or gas phase. Each image is an X-ray snapshot of a particle 
arrangement at a given time delay after the transformation has been initiated. Different data sets correspond to 
different evolution times. The reaction consists in a four-fold symmetric particle transforming itself with a certain 
transition rate into a three-fold symmetric one (or vice-versa). The transformation is instantaneous in the sense 
that the probability of observing any particle in a transition state is negligible. The evaluation is not biased by any 
assumption about time-evolution and/or stochiometry of the process. For instance, from Eq. (18) we deduce that 
the total number of particles N1,r +  N2,r in each data set r is almost constant, pointing towards a 1:1 stochiometry.

We have addressed the 2D case because it is more suitable for a proof-of-concept experiment. However, the 
relevant application is in three dimensions (3D), meaning that the particles have full SO(3) rotational freedom, as 
well as three instead of two translational degrees of freedom. The experimental 1- and 2-point angular correla-
tions are calculated in the same way as for the 2D case from a large set of multi-particle X-ray diffraction images, 
with the only difference being that the 2-point correlations in the 3D version are obtained by inverse Fourier 
transformation followed by Legendre transformation of the definition of Eq. (3), i. e. = −L Fm m[ ( )]k D k,3

(2) 1 (2) 15. The 
3D equivalent of Eq. (5) then becomes15,17

∑ κ= ⋅ ≠
=−

⁎c q q s q s q k( , ) ( ) ( ) ( 0),
(19)k D
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m k

k
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,3
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1 2 1 2
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Figure 5. Single-particle diffraction pattern Fourier coefficients. The left and right columns are for the four- 
respectively three-fold symmetric particle species. The plots show the φ-Fourier components sk(q) of the single-
particle diffraction image S(q, φ). (a,b) s0 displayed as a function of the momentum transfer q. (c–h) Amplitudes 
of sk as a function of q, after normalization with s0, for k =  4, 6, 12. (i,j) Phases of s12 as a function of q.
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where s q( )km
a

1  are the spherical harmonic components of the 3D diffraction intensity I(q, θ, φ). From Eq. (19) it 
follows that the 3D analog of Eq. (13) is

∈ + … .č k krank {2 1, 2 , , 1, 0} (20)k D
a

eff ,3
(2),

In the general case, = +č krank 2 1k Deff ,3
(2) . A smaller value of rankeff is distinctive of symmetries of the particle. 

For example, axial symmetry results in rankeff =  1 for all even orders k because skm ≡  0 for m ≠  0. Eq. (20) can be 
used to disentangle the data along the same lines described in the previous sections for the 2D case exploiting 
Eq. (13). We briefly describe the concept for the case of two particle species, both devoid of any symmetry. It is 
convenient to consider the lowest order k =  2, for which Eq. (20) becomes =črank 5Deff 2,3

(2) . The search of the 
disentangling parameter is performed analogously as shown in Fig. 4 but monitoring the behaviour of the six (or 
more) dominant eigenvalues of αc̃ ( )k D,3

(2) , instead of 2 (or more). A disentangling point α* is characterized by the 
sixth (and higher) eigenvalues dropping towards zero, as does the second eigenvalue in Fig. 4 for k =  12.

Scientifically interesting objects may be biological macromolecules or even smaller organic and inorganic 
molecules, showing structural dynamics among different conformations. For the experiments, the particles are 
most likely in the gas phase or in solution. Application of higher-order angular X-ray intensity correlation meth-
ods on these systems is favorable with respect to other approaches32 because it requires the control of the aver-
age number of particles exposed to the X-rays (species populations), but not of the number in each exposure. 
Furthermore, studying these systems requires the measurements to be performed at an XFEL. The two reasons are 
the same as in the case of a single particle species30. First, the particle tumbling timescales are in the picosecond to 
nanosecond regime, and the femtosecond XFEL pulses are short enough to freeze the rotational motion. Second, 
the particles may exhibit an extremely weak X-ray diffracting power, which is accentuated by the required short 

0.0

0.6

a.u.

1.0

100

10-2

10-4

ph /
pix(a) (b)

(c) (d)

Figure 6. Two-dimensional structures. The left and right columns are for the four- respectively three-fold 
symmetric particle species. (a,b) Single-particle diffraction patterns s(q, φ) in reciprocal space. The color 
coding corresponds to a logarthimic scale for the number of diffracted photons per detector pixel. The red 
scale bars correspond to 0.1 nm−1. (c,d) Two-dimensional single-particle charge density, calculated from (a,b), 
respectively, by applying a phase retrieval algorithm. The dashed box in cyan corresponds to the imposed 
compact support. The yellow scale bars correspond to 100 nm.
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X-ray exposure times. The ultraintense and ultrashort XFEL pulses maximize the number of diffracted photons 
exploiting the diffract-before-destroy data collection mode33–35. However, even with XFELs the limited number 
of diffracted photons per particle remains the major limitation, which can be counteracted only by acquiring a 
sufficiently large number of diffraction images. The signal to noise ratio (SNR) that can be obtained in the 2-point 
angular correlations is here the figure of merit to evaluate the feasibility of the experiment. The authors of ref. 30 
have proven that the SNR scales with the square root of the number of images used to calculate the correlations 
and is proportional to the number of scattered photon per particle at the considered resolution. Using realistic 
XFEL parameters (1012 1.5 Å photons focused in a 100 nm spot36), the reported number of images necessary to 
achieve a SNR of 2 at 1 nm resolution on a typical biological macromolecule is 107. With the frame acquisition 
rate of the order of 104 frames per second, achievable at the European XFEL37 which is foreseen to start operation 
in 2017, a dataset could therefore be measured within less than an hour.

In summary, we have presented a new analysis protocol for X-ray diffraction data from diluted, disordered 
mixtures of different particle species. As demonstrated with the proof-of-concept experiment, a proper evaluation 
of the angular 2-point X-ray intensity correlations permits the problem to be disentangled into single-species sets 
of correlations and in parallel the species populations to be deduced, without relying on any information other 
than that contained in the X-ray data themselves. For practical applications, the obstacles are the same as for a 
single species and may be overcome in the close future thanks to the ultrashort and ultraintense X-ray pulses 
delivered by free electron lasers.

Methods
Samples. The samples were fabricated as described in refs 38 and 39. The gold nanoparticles were grown on 
a 200 nm thick Si3N4 membrane coated with a gold seed layer. Each nanoparticle’s orientation and position were 
selected randomly and mutually independently from uniform distributions over the [0, 2π] angle range and over 
the 800 ×  800 μm2 sample area, respectively. The only inter-particle correlation resulted from the requirement 
of a minimum distance between neighboring particles of 500 nm, imposed in order to avoid particle overlap. 
The measurements were performed on six different samples containing two different particle species with the 
following concentration ratios: 0.0/1.0, 0.2/0.8, 0.4/0.6, 0.6/0.4, 0.8/0.2 and 1.0/0.0. All samples had the same total 
average particle surface density of 10 particles per 100 μm2 area.

Beamline setup and data acquisition. The measurements were performed at the cSAXS beamline of 
the Swiss Light Source. The photon energy was 6.2 keV, and the relative bandwidth approximately 10−4. The 
X-ray focus was on the sample membrane with a footprint of about 35(h) ×  15(v) μm FWHM, and the transverse 
coherence length was larger than the size of one particle in both directions. At 7.2 m from the sample position, a 
Pilatus 2 M detector40 was placed after an evacuated flight tube. For each sample, 5151 exposures were taken by 
scanning the membrane on a rectangular grid. Each exposure lasted one second, with about 1011 X-ray photons 
illuminating the sample.

Calculation of the angular correlations. The experimental correlations were calculated for each data set 
r as described in ref. 27. The intensity Ir(q, φ) of each Pilatus 2 M pixel image was averaged in bins corresponding 
to a polar discretization of the 2D reciprocal space. We used 128 sectors in the azimuthal φ-direction and 160 
equally sized sectors in the radial direction in the q-range 0.009–0.24 nm−1, resulting in a q-spacing of 
0.0015 nm−1 that corresponds to two detector pixels. The Fourier components I q( )k

r  were computed via discrete 
Fourier transform in the φ-direction.

Singular value decomposition. All experimental correlations measured in the nd datasets are rearranged 
in a nm ×  nd-dimensional real matrix M with nm >  nd. Its singular value decomposition (SVD) is11,12

= ⋅ ⋅ ⁎M U S V , (21)

where U and V are real nm ×  nd- and nd ×  nd-dimensional matrices, respectively, while S is a real 
nd ×  nd-dimensional diagonal matrix with the singular values σ σ≥ … ≥ ≥ 0n1 d

 on the diagonal. From their 
inspection, the number ns of relevant components, corresponding to the number of particle species, can be estab-
lished11,12. The matrix S is then truncated to the matrix σ σ= … Diag( , , )n1 s

, and in parallel U and V are 

shrinked to 
∨
U and 

∨
V  by keeping the first ns columns, thus obtaining nm ×  ns- and ns ×  ns-dimensional matrices. Up 

to small errors due to the truncation, the above SVD of M becomes

= ⋅ ⋅ = ⋅̌ ̌ ̌ ̌ ̌⁎
M U S V C N , (22)

whereby the splitting into the nm ×  ns- and ns ×  nd-dimensional matrices Č and Ň  is not unique, as remarked 
throughout this article. For example, one possibility is to set

= = ⋅ .̌ ̌ ̌ ̌ ̌ ⁎C U N S V, (23)

Search of the disentangling matrix. Let čk
a(2),  be the 2-point correlation matrices from column a of the 

matrix Č and A be a matrix that mediates the transformation (10). Requirement (13) means that for each column 
index a and Fourier order k the following must hold:
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where the matrix A[1a] is obtained by permuting the first column with the a-th column of the matrix A. As stated 
by Iwasawa41, A[1a] can then be decomposed as

= ⋅A K R (25)a a a[1 ] [ ] [ ]

with K[a] ∈  SO(ns) an ns-dimensional orthogonal matrix and R[a] an upper triangular matrix. It follows that 
Eq. (24) is equivalent to

∑










 ∈č Krank {1, 0},

(26)b
k

b
a
b

eff
(2),

[ ]
1

and therefore the parameter search can be restricted to α ∈��K SO n( ) ( )s , where α�� is a collective label for the 
ns(ns −  1)/2 parameters. In practice, one has to find the ns parameter values α α…�� ��⁎ ⁎, , n1 s

 which satisfy the 
requirement

α ∈��˜ ⁎crank ( ) {1, 0}, (27)k aeff
(2)

where

∑α α= .�� ��čc̃ K( ) ( )
(28)k

b
k

b b(2) (2), 1

Finally, one sets

α= ⋅ − η��⁎A K ( ) ( 1) (29)ba
a

b1 a

where the sign − η( 1) a is chosen to ensure that α��˜ ⁎c ( )k a
(2)  is positive definite. For ns =  2, Eq. (28) corresponds to 

Eq. (16), and Eqs (29) to (17).

Final renormalization of correlations and populations, single-particle diffraction pattern deter-
mination. Let c̃k

a(2),  be the 2-point correlation matrices from column a of the matrix C, corresponding to the 
particle species a. Moreover, let D be the diagonal matrix that mediates the transformation (14), with δa the 
species-specific renormalization parameters on the diagonal entries. From Eqs (6) and (7) it follows that the 
expression of the single-particle diffraction intensity (1) of species a takes the form

∑φ δ
κ

δ= + ⋅ φ

≠

−
� ���� ����

� ������� �������
˜ ˜s q c q s q e( , ) ( ) 1 ( ) ,

(30)

a a a

s q k

a
k
a

s q

ik(1),

( ) 0 2

( )

a

k
a

0

where, for k ≠  0, s̃k
a are the eigenvectors to the dominant eigenvalue of the matrix ck

a(2),  as expressed by Eq. (12). 
The overall phase of the ̃sk

a can be determined using the information from the 3-point correlations27, which can be 
disentangled from the experimental values in the different data sets into species-specific values in the same way 
as done for 1- and 2-point correlations. To asses the value of the parameters δa, we required the diffraction inten-
sity of each single particle (30) to be positive with isolated zeros. In practice, we increased their value from zero 
until small regions of negative intensity appeared (see ref. 27). Within this procedure, κ2 remains an unknown 
overall beam shape parameter, which we set to the same value κ2 =  0.25 used in ref. 27. Modification of the 
parameter κ2 →  κ2

′ is equivalent to a global rescaling Ca →  ζ−1 · Ca, S(a) →  ζ−1 · S(a) and Na,r →  ζ · Na,r, with 
ζ κ κ= ′/2 2.

Charge density reconstruction by phase retrieval. For the reconstruction of the structures, the 
obtained expression (1) in polar coordinates (q, φ) was interpolated onto a Cartesian grid (qx, qy), suitable for the 
fast Fourier transformation of the phase retrieval algorithm. A rectangular support region of the 2D electron den-
sity was determined from the charge density autocorrelation, calculated as the inverse Fourier transform of the 
single-particle diffraction image. The region served as real-space constraint for the iterative transform algorithm. 
More precisely, the procedure42 consisted of a series of 40 hybrid input-output43 (HIO) iterations followed by 10 
error-reduction steps, repeated until a total of 1000 iterations was reached. The reconstructions were repeated 
with 20 different random starting phases, registered within a fraction of a pixel44, and averaged to obtain the final 
2D structure.
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