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ABSTRACT
The worldwide rapid spread of the COVID-19 disease necessitates the search for fast and effective
treatments. The repurposing of existing drugs seems to be the best solution in this situation. In this
study, the molecular docking method was used to test 248 drugs against the receptor-binding domain
(RBD) of spike glycoprotein of SARS-CoV-2, which is responsible for viral entry into the host cell.
Among the top-ranked ligands are drugs that are used for hepatitis C virus (HCV) treatments (paritap-
revir, ledipasvir, simeprevir) and a natural biflavonoid amentoflavone. The binding sites of the HCV
drugs and amentoflavone are different. Therefore, the ternary complexes of the HCV drug, amentofla-
vone, and RBD can be created. For the 5 top-ranked ligands, the validating molecular dynamics simu-
lations of binary and ternary complexes with RBD were performed. According to the MMPBSA-binding
free energies, the HCV drugs ledipasvir and paritaprevir (in a neutral form) are the most efficient bind-
ers of the RBD when used in combination with amentoflavone.
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Introduction

Beginning in December 2019, the COVID-19 disease, which is
caused by the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), has been rapidly spreading around the
world. As of December 26th, there have been more than
79,860,000 cases and 1,750,900 deaths due to COVID-19
(https://coronavirus.jhu.edu/map.html). The phylogenetic ana-
lysis of SARS-CoV-2 revealed that it belongs to the
Betacoronavirus genus and is closely related to the bat coro-
naviruses and human SARS-CoV (Lu et al., 2020; Xu et al.,
2020). The genome of SARS-CoV-2 is a positive-sense single-
stranded RNA. It encodes four structural proteins (spike,
envelope, membrane, and nucleocapsid), 16 nonstructural
proteins (NSPs), and 9 accessory proteins (Gordon et al.,
2020). The NSPs are expressed as two large polyproteins that
are proteolytically cleaved into 16 smaller proteins (Arya
et al., 2021). To enter the host cell, SARS-CoV-2 uses its spike
glycoprotein to bind to the angiotensin-converting enzyme 2
(ACE2) receptor (Zhang et al., 2020). This makes the SARS-
CoV-2 spike glycoprotein an attractive target for drug devel-
opment; specifically, ligands that bind to the spike
glycoprotein–ACE2 contact surface could interfere with the
ACE2-spike interaction and prevent the penetration of the
virus into the cell. When considering that the development
of new drugs for COVID-19 could take years, the repurposing
of already existing drugs appears to be a good alternative.

Another possible drug targets of SARS-CoV-2 are the NSPs
that play an essential role in the virus replication cycle
(Rohaim et al., 2021). Among them are the main protease
(NSP5) and the papain-like protease (NSP3), which are
responsible for the cleavage of the polyproteins into the
mature NSP, the RNA-dependent RNA polymerase (NSP12),
the helicase-triphosphatase (NSP13), the 30-50-exoribonu-
clease (NSP14), the RNA uridylate-specific endoribonuclease
(NSP15), and N7- and 20-O-methyltransferases (NSP10 and
NSP16) (Arya et al., 2021). Due to the efforts of multiple
research groups, the structural information on the SARS-CoV-
2 proteins is rapidly increasing (Mariano et al., 2020).
Currently, there are more than 1000 entries of SARS-CoV-2
proteins deposited in the protein data bank (PDB) (Berman
et al., 2000, http://www.rcsb.org/). Recently, the CoV3D data-
base of high-resolution coronavirus protein structures was
created (Gowthaman et al., 2021). This provides opportunities
for structure-based drug design for COVID-19.

The modern drug discovery process relies on computer
simulation methods (Sliwoski et al., 2014). First, the 3D struc-
ture of the biological target is taken from the database
(PDB). Then the appropriate library of ligands is chosen, and
the virtual screening is performed by using the molecular
docking method (Pinzi & Rastelli, 2019). The structure of the
target is usually kept rigid during the docking simulation.
Sometimes the ensemble of target structures is used for
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docking. The hit ligands are filtered according to the speci-
fied criteria (Lipinski’s rule of five, ADMET properties)
(Lipinski et al., 2001; Jia et al., 2020). The docking complexes
of top ligands are further refined by molecular dynamics
(MD) simulation with explicit solvent (Ganesan et al., 2017).
During the MD simulation, both the target and ligand could
undergo conformational changes to better fit each other.
The intermolecular target–ligand interactions could be
tracked in real-time (Naqvi et al., 2018). The MD trajectory of
the complex can be also used to estimate the ligand-binding
free energy using the end-point methods MMPBSA or
MMGBSA (Genheden & Ryde, 2015). The results are known to
be strongly dependent on the simulation details (force field,
charge models, continuum solvation method, solute dielec-
tric constant, atomic radii set, method of entropy calculation,
sampling) and, generally, could not be directly compared to
the experimental values (Wang et al., 2019). At the same
time, the relative affinities of ligands to the same target are
usually well reproduced (Wang et al., 2016). Thus, the dock-
ing scoring can be improved using MD post-processing (Liu
et al., 2018).

Most of the molecular modeling studies against SARS-
CoV-2 use the main protease as a drug target (Aanouz et al.,
2020; Alamri et al., 2020; Badavath et al., 2020; Bhardwaj
et al., 2020, 2021; Ghosh et al., 2020; Jim�enez-Alberto et al.,
2020; Khan, Ali, et al., 2020; Kumar et al., 2020; Lokhande
et al., 2020; Mishra et al., 2020; Saravanan et al., 2020).
Perhaps this is because of the pivotal role of this enzyme in
the virus life cycle and the high conservation of its active
site (Ullrich & Nitsche, 2020). At the same time, MD simula-
tion studies reveal the high conformational flexibility of the
binding pocket of the main protease of SARS-CoV-2 (Bz�owka
et al., 2020; Grottesi et al., 2020). Thus, the use of a single
rigid target for docking could be not appropriate in the case
of the main protease.

A large number of drug-repurposing studies are focused
on the spike–ACE2 interaction surface (Alazmi & Motwalli,
2020; Awad et al., 2020; de Oliveira et al., 2020; Deganutti
et al., 2021; Hakmi et al., 2020; Tao et al., 2021; Trezza et al.,
2020; Unni et al., 2020; Wei et al., 2020). There are also stud-
ies searching for inhibitors for RNA-dependent RNA polymer-
ase (Elfiky, 2020), papain-like protease (Ibrahim et al., 2020),
and RNA endoribonuclease (Khan, Jha, Singh, et al., 2020;
Sharma et al., 2021). In many works, a multitarget approach
was used (Albohy et al., 2020; Chikhale et al., 2020; Khan,
Jha, Amera, et al., 2020; Maffucci & Contini, 2020; Mishra
et al., 2021; Patil et al., 2021; Puttaswamy et al., 2020;
Rameshkumar et al., 2021; Swargiary et al., 2020). Despite the
large number of drug-repurposing studies against SARS-CoV-
2, there is little agreement about the identified hit candi-
dates and almost no experimental validation of the results
(Dotolo et al., 2021). Therefore, additional molecular model-
ing studies are needed to obtain the consensus results which
can be further verified in clinical trials.

The aim of this study was to find the potential inhibitor
for the spike glycoprotein that binds in the ACE2-binding
region by computer simulation methods. We used the
molecular docking method to test the list of 248 BLDpharm

drugs against the spike glycoprotein of SARS-CoV-2. This list
includes compounds with antiviral activity. Among them are
FDA-approved drugs and natural substances used in trad-
itional medicine. All these compounds can be freely purchas-
able. For the 5 top-ranked drugs, the 120 ns MD simulations
of complexes with explicit solvent were performed and
MMPBSA-binding free energies were calculated. The binding
sites of ligands and the interactions with the spike glycopro-
tein were analyzed in detail.

Computational methods

Preparation of the receptor and ligand structures

The receptor-binding domain (RBD) of the spike glycoprotein
of SARS-CoV-2 was chosen as a docking target. Its coordi-
nates were taken from the cryo-EM structure of the RBD/
ACE2-B0AT1 complex deposited in the PDB (PDB ID 6M17,
chain E, resolution 2.9 Å) (Yan et al., 2020). The advantage of
the cryo-EM structures, compared to the X-ray structures, is
that the fast freezing of the biological sample directly from
the solution maintains the macromolecule in its closer-to-
native state (Wang & Wang, 2017). The protonation state of
the residues at pH ¼ 7 was checked by using the PROPKA3.1
software (Olsson et al., 2011; Søndergaard et al., 2011), and
the missing hydrogens were added by using the LEaP mod-
ule in AmberTools19 (Case et al., 2019). Subsequently, the
pdbqt-file of the protein target was prepared in
AutoDockTools 1.5.6 (Sanner, 1999). The interactions
between the RBD and the ACE2 were determined using the
coordinates of ACE2 from the PDB entry 6M17 (chain B).

The 248 BLDPharm drugs that are related to the virus
research (Supplementary Table S1) were searched by using
their BD codes or CAS numbers in the ZINC15 database
(Sterling & Irwin, 2015) or the PubChem database (Kim et al.,
2019). Files in mol2 or sdf formats were downloaded. For
some of the drugs, there were several stereoisomers in
ZINC15; therefore, the total number of ligand files was
increased to 327. The files in sdf format were converted to
the mol2 format by using Open Babel 2.4.1 (O’Boyle et al.,
2011). Finally, the pdbqt ligand files were prepared from the
mol2 files by using the prepare_ligand4.py script of
AutoDockTools 1.5.6 (Sanner, 1999).

Molecular docking

The molecular docking procedure was performed in
AutoDock Vina 1.1.2 (Trott & Olson, 2010). The search space
was a rectangular box 40 Å � 40Å � 28Å that was centered
at (170, 117, 240). In the PDB ID 6M17 complex, this box cov-
ers all of the ACE2 heavy atoms that are within 6 Å of the
RBD (Figure 1). Due to the large size of the search space, the
exhaustiveness parameter of AutoDock Vina was increased
to 50.

The 20 top-ranked ligands were then subjected to the
blind docking to check whether the ACE2 contact surface is
their preferred binding site on RBD. The search space for the
blind docking was a rectangular box 70 Å � 70Å � 80Å
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that was centered at the geometric center of the RBD (175.7,
108.4, 252.5) (Figure 1).

The visualization of the docking results was performed in
VMD-1.9.3 (Humphrey et al., 1996). The 3D and 2D contact
maps between the ligands and the binding site residues of
the RBD were built in the PLIP tool (Salentin et al., 2015) and
ligplotþ (Laskowski & Swindells, 2011), respectively. The max-
imum acceptable distance between the hydrogen bond (HB)
acceptor (A) and the donor (D) was set at 3.35 Å. The min-
imum HB angle (D–H���A) was equal to 90�. The hydrophobic
interactions were defined for the hydrophobic atoms (C or S)
that were within 3.9 Å of each other.

Molecular dynamics simulations

To validate the docking results, the explicit solvent MD simu-
lations for 5 top docking candidates (paritaprevir, ledipasvir,
simeprevir ZINC150656835, simeprevir ZINC85540268, and
amentoflavone) were performed using AMBER18 software
(Case et al., 2019). For paritaprevir, an additional simulation
with the neutral form of the ligand was done. Since the
binding site of amentoflavone did not overlap with the bind-
ing sites of paritaprevir (anion and neutral), ledipasvir, and
stereoisomers of simeprevir, the ternary complexes of RBD
and two ligands (one of which was amentoflavone) were
built and the MD simulations of them were also performed.
A total of 12 systems were studied by MD: 6 binary
ligand–RBD complexes, 5 ternary ligand–amentoflavone–RBD
complexes, and the free RBD (Supplementary Table S2). The
partial charges of ligands were calculated using the RESP
methodology in the REDIII package (Dupradeau et al., 2010).
The FF14SB (Maier et al., 2015) and GAFF2 (second gener-
ation of GAFF; Wang et al., 2004, version 2.11, 2016) force
fields were used for the protein and ligands, correspondingly.

Each complex was put in a truncated octahedral periodic
box with TIP3P (Jorgensen et al., 1983) waters (the thickness
of the water shell around the solute was 15Å). The chlorine
ions were added to neutralize the system. The electrostatic
interactions were treated using the particle-mesh Ewald
method (Darden et al., 1993) with a direct space cutoff of
9 Å. The SHAKE method (Ryckaert et al., 1977) was applied to
constrain all bonds involving hydrogen atoms. A 2 fs time
integration step was used. The system was equilibrated using
a multistage protocol (Supplementary Table S3). The last
stage of the equilibration was a 10 ns NPT MD (T¼ 300 K,
p¼ 1 bar) without restraints using the Langevin thermostat
(Loncharich et al., 1992) with a collision frequency of 2 ps�1

and the Berendsen barostat (Berendsen et al., 1984) with a
relaxation time of 5 ps. It was followed by a 120 ns NPT MD
production run with the same parameters. The snapshots
were saved at every 5 ps giving a total of 24,000 frames in
the MD trajectory. The analysis of the MD trajectories was
done in the CPPTRAJ module of the AmberTools 19 package
(Case et al., 2019). HBs were determined using the following
geometric criteria: the donor–acceptor distance should be
less than 3.2 Å and the donor–hydrogen–acceptor angle
more than 120�. Only heteroatoms were considered as HB
donors and acceptors.

To identify the most significant structures, a cluster ana-
lysis of trajectories was performed. A hierarchical agglomera-
tive algorithm with a 5Å tolerance criterion was used. For
the representative structure of the largest cluster, 3D and 2D
contact maps were built using the PLIP tool and
ligplotþ software.

MMPBSA-binding free energy estimates

For the largest cluster of each MD trajectory, the binding
free energy of ligands to the RBD was computed using the
MMPBSA methodology (Miller et al., 2012). Energies were cal-
culated for every 50th frame of the largest cluster trajectory
(the minimum time distance between the used frames was
250 ps). The polar part of the solvation-free energy was com-
puted using the linear Poisson-Boltzmann equation. The non-
polar part was calculated proportionally to the solvent
accessible surface area. The PARSE radii (Sitkoff et al., 1994)
were used and the surface tension and the offset parameters
were set to 0.00542 kcal/(mol�Å2) and 0.92 kcal/mol, respect-
ively. Genheden’s protocol (Genheden & Ryde, 2015) was
used to calculate the entropy contribution: the entropy was
calculated by a normal-mode analysis; the system for the
minimization consisted of a ligand, as well as water mole-
cules and protein residues within 12 Å of the ligand; all water
molecules and protein residues at distances between 8 and
12Å from the ligand were fixed in the minimization process
and their contributions to the entropy were not taken
into account.

Multiple independent MD simulations

To reduce the error of the MMPBSA-binding free energies,
multiple independent MD simulations were performed for

Figure 1. The location of the AutoDock Vina search boxes. The RBD is shown
with a blue color. ACE2 is red. The atoms of ACE2 that are within 6 Å of the
RBD are shown with red van der Waals spheres. The search space in the ACE2-
binding region is indicated by a black rectangular box. The search space for the
blind docking is indicated by a blue rectangular box.
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several systems. The snapshots from the trajectory of the
largest cluster taken at a 1 ns time interval were used as
starting structures for the new simulations. The initial veloc-
ities were assigned randomly according to the Maxwell distri-
bution at a given temperature (300 K). After a short
equilibration protocol (Supplementary Table S4), a 4 ns NPT
production phase was used to calculate the energies by the
MMPBSA method: the energies were calculated at every
100 ps, for a total of 40 frames. The obtained results were
averaged over all independent MD trajectories of
the complex.

Results and discussion

Molecular docking

At the first stage of the study, the targeted docking was per-
formed to find the ligands, which block the ACE2-binding

site on the RBD. The 20 top-ranked ligands are listed in
Table 1. The free energies of binding for the ligands (per-
formed via AutoDock Vina) were in a range of �8.5 to
�7.4 kcal/mol. Most of the top-ranked ligands are large
hydrophobic molecules. The molecular weights are greater
than 700 g/mol for 8 of the first 10 top-ranked ligands, with
the exception of amentoflavone (M¼ 538 g/mol) and sotras-
taurin (M¼ 438 g/mol).

To check whether the ACE2-binding region on RBD is the
preferred binding site for the ligands, the blind docking was
performed for the 20 top-ranked ligands. The results of the
blind docking are given in Table 2. The binding free energies
ranged from �9.6 to �7.2 kcal/mol. For most ligands, more
favorable binding free energies were obtained indicating
that the small search space was not enough to find the most
favorable position on the RBD. At the same time, 7 of the 20
top-ranked ligands (glecaprevir, a-glycyrrhizin, SC75741, bic-
tegravir, montelukast, rilpivirine, grazoprevir) were bound
outside of the ACE2-binding site on the RBD.

Nine of the 13 top-ranked ligands that were still bound in
the ACE2 binding region are drugs used for hepatitis C virus
(HCV) treatments. Paritaprevir (rank 1) and simeprevir (rank4,
rank 3 [stereoisomer ZINC150656835] and rank 12 [stereoiso-
mer ZINC253632968]) inhibit the HCV protease complex that
is comprised of NSP 3 and 4A (NS3/NS4A) (McCauley & Rudd,
2016). Ledipasvir (rank 2), velpatasvir (rank 6), elbasvir (rank
8), pibrentasvir (rank 13), and daclatasvir (rank 14) are inhibi-
tors of the NS5A protein of HCV (Gottwein et al., 2018). For
all of these drugs, the successful docking results against one
or several SARS-CoV-2 proteins have been previously
reported in the literature (Alamri et al., 2020; Anwar et al.,
2020; Balasubramaniam & Shmookler Reis, 2020; Chen,
Zhang, et al., 2020; Hosseini & Amanlou, 2020; Khan, Jha,
Amera, et al., 2020; Khan, Jha, Singh, et al., 2020; Maffucci &
Contini, 2020; Mevada et al., 2020; Trezza et al., 2020).
Several clinical trials of the combination of daclatasvir and
sofosbuvir in the treatment of COVID-19 patients have been
registered in Iran (Abbaspour, 2020; Foroughi, 2020;

Table 1. Top-ranked ligands of the targeted docking to the RBD.

Rank ZINC_ID Vina energy, kcal/mol Name BD index M, g/mol logP

1 ZINC3984030 �8.5 Amentoflavone BD113814 538.464 5.134
2 ZINC150338819 �8.4 Ledipasvir BD290997 889.017 8.607
3 ZINC197964623 �8.3 Paritaprevir BD304034 765.893 3.637
4 ZINC150588351 �8.2 Elbasvir BD630189 882.035 8.116
5 ZINC85540268 �7.9 Simeprevir BD306053 749.956 6.094
6 ZINC253632968 �7.9 Simeprevir stereoisomer 1 BD306053 749.956 5.254
7 ZINC203686879 �7.9 Velpatasvir BD629142 883.019 7.732
8 ZINC150656835 �7.9 Simeprevir stereoisomer 2 BD306053 749.956 5.254
9 ZINC3973984 �7.9 Sotrastaurin BD559085 438.491 2.43
10 ZINC936069565 �7.8 Glecaprevir BD768426 838.878 3.857
11 ZINC254124762 �7.7 a-Glycyrrhizin BD56100 822.942 2.246
12 NO ZINC ID �7.7 Pibrentasvir BD766533 1113.2 7.4
13 ZINC100386805 �7.6 Montelukast analog 1

(same CAS number)
BD140209 572.17 8.7

14 ZINC28824700 �7.6 SC75741 BD764821 565.684 5.891
15 ZINC61389370 �7.5 Montelukast analog 2

(same CAS number)
BD140209 572.17 8.7

16 ZINC68204830 �7.5 Daclatasvir BD217334 738.89 6.222
17 ZINC220174552 �7.5 Bictegravir BD767657 449.385 1.634
18 ZINC95551509 �7.5 Grazoprevir, MK-5172 BD293153 766.918 4.142
19 ZINC1554274 �7.4 Rilpivirine BD211947 366.428 4.989
20 ZINC3831151 �7.4 Montelukast BD140209 586.197 8.948

LogP – the logarithm of the octanol-water partition coefficient. This value is a measure of the hydrophobicity of a compound.

Table 2. Blind-docking-rescored 20 top-ranked ligands.

Rank Vina energy, kcal/mol Name

1 �9.6 Paritaprevir (anion)
2 �9.2 Ledipasvir
3 �9.1 Simeprevir stereoisomer 2
4 �8.5 Simeprevir
5 �8.5 Amentoflavone
6 �8.5 Velpatasvir
7 �8.4 Glecaprevir
8 �8.4 Elbasvir
9 �8.3 a-Glycyrrhizin
10 �8.2 SC75741
11 �8.0 Sotrastaurin
12 �7.8 Simeprevir stereoisomer 1
13 �7.8 Pibrentasvir
14 �7.7 Daclatasvir
15 �7.6 Bictegravir
16 �7.5 Montelukast
17 �7.5 Montelukast analog 2 (same CAS number)
18 �7.4 Rilpivirine
19 �7.4 Montelukast analog 1 (same CAS number)
20 �7.2 Grazoprevir, MK-5172

The ligands that were bound outside the ACE2-binding region are italicized.
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Mobarak, 2020; Roozbeh, 2020; Sadeghi, 2020). Two clinical
trials using the sofosbuvir/ledipasvir combination for the
treatment of COVID-19 have been completed in Egypt but
no results have been posted yet (El-Gohary, 2020; Medhat
et al., 2020). There has also been one clinical study in which
the HCV drug danoprevir was used in combination with
ritonavir for the treatment of a small group of COVID-19
patients (11 people), and all of the patients recovered (Chen,
Yiu, et al., 2020). These results are encouraging for the use of
HCV drugs in the treatment of COVID-19.

Amentoflavone (rank 5) is a biflavonoid found in many
plants including Ginkgo biloba and Hypericum perforatum,
which possesses antioxidant, antivirus, and anti-inflammatory
properties and is broadly used in traditional medicine (Yu

et al., 2017). It is known to be an inhibitor of CYP3A4,
CYP2C9 (Kimura et al., 2010), and human cathepsin B (Pan
et al., 2005). Besides, amentoflavone is an effective inhibitor
(IC50 ¼ 8.3 mM) of the SARS-CoV main protease (Ryu et al.,
2010). In the recent in silico studies (Ghosh et al., 2020;
Lokhande et al., 2020; Mishra et al., 2020; Patil et al., 2021;
Peterson, 2020; Puttaswamy et al., 2020; Saravanan et al.,
2020; Swargiary et al., 2020), amentoflavone has been
reported to bind tightly to the main protease of SARS-CoV-2.
There are also three docking studies targeting spike glyco-
protein of SARS-CoV-2, in which amentoflavone was found
among the hit compounds with the binding energies:
�7.6 kcal/mol (Wei et al., 2020), �8.7 kcal/mol (Puttaswamy
et al., 2020), and �10.2 kcal/mol (Rameshkumar et al., 2021).
However, the binding site of amentoflavone was different in
these studies. Wei and Rameshkumar obtained binding of
amentoflavone outside of the ACE2-binding region. In the
work of Puttaswamy et al., amentoflavone was bound in the
ACE2-binding region, as well as in our study, and their result
(�8.7 kcal/mol) is in good agreement with the �8.5 kcal/mol
obtained for amentoflavone in this study.

To analyze the specific forces that contribute to ligand–re-
ceptor affinity, the 3D and 2D contact maps were built in
PLIP tool and ligplotþ for the 5 blind top-ranked ligands,
which were bound in the ACE2-binding region
(Supplementary Figure S2–S6d,g, S8a, and S9a). The interac-
tions are summarized in Table 3. Since PLIP and lig-
plotþdetermine HBs and hydrophobic interactions
differently, two sets of values are provided. It can be
observed that ligand–RBD complexes are stabilized due to
hydrophobic interactions, HBs, and p-stacking. PHE490 or
TYR505 residues of the RBD are typically involved in p-stack-
ing interactions with ligands. For most ligands, the number
of hydrophobic contacts is greater or comparable to the
number of HBs.

The number of the RBD residues that interacted with the
ligands varied from 5 to 12, according to the ligplotþ data
(Table 3). To compare the binding sites of the ligands with
the ACE2-binding site on the RBD (Figure 2), we built the 2D
contact map of the RBD and ACE2 by using the coordinates
of PDBID 6m17 (Yan et al., 2020) (Figure 3). One can observe

Table 3. The contacts between the ligands and the RBD in the blind-docking top-ranked complexes.

Rank Ligand
NHB

plip/ligplotþ
Np-stacking

plip
Nhydrophobic

plip/ligplotþ
Nbind. site res

plip/ligplotþ
RBD-binding site residues

plip/ligplotþ
RBD-binding site
residues ligplotþ

1 Paritaprevir 4/4 1 5/22 6/7 LEU452, LEU455, VAL483,
GLU484, PHE490, GLN493

LEU452, LEU455, VAL483,
GLU484, TYR489,
PHE490, GLN493

2 Ledipasvir 2/3 0 8/34 8/12 ARG346, ALA348, TYR351,
LEU452, GLU484, TYR489,
PHE490, GLN493

ARG346, ALA348, SER349,
TYR351, ALA352, ASN450,
LEU452, PHE456, GLU484,
TYR489, PHE490, GLN493

3 ZINC150656835
(Simeprevir
stereoisomer)

2/1 2 6/32 5/6 LEU452, PHE456, TYR489,
PHE490, GLN493

LEU452, PHE456, TYR489,
PHE490, GLN493, SER494

4 Simeprevir
ZINC85540268

1/1 2 5/29 5/5 LEU452, PHE456, TYR489,
PHE490, GLN493

LEU452, PHE456, TYR489,
PHE490, GLN493

5 Amentoflavone 5/5 1 3/22 5/7 TYR453, GLY496, GLN498,
ASN501, TYR505

ARG403, TYR453, TYR495,
GLY496, GLN498,
ASN501, TYR505

The RBD residues that have contact with ACE2 are marked red.

Figure 2. The interaction of the spike glycoprotein RBD (blueþ yellow) with
ACE2 (magenta). The residues of the RBD that are in contact with ACE2 are
shown in yellow. The coordinates were taken from the PDB ID 6m17.
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that ACE2 interacts with seven residues of the RBD via two
HBs (with RBD residues GLN493 and GLY502) and hydropho-
bic contacts (with RBD residues GLY476, PHE486, TYR489,

GLN498 and TYR505). None of the top-ranked ligands could
overlap all of the residues of the ACE2-binding site on
the RBD.

Most of the top-ranked ligands could occupy two residues
of the RBD, which ACE2 binds to (Table 3). It is interesting
that the HCV drugs (paritaprevir, ledipasvir, simeprevir ster-
eoisomers) and amentoflavone have different binding sites
on the RBD and block different residues of the ACE2-binding
site (Table 3, Figure 4). The HCV drugs interact via HBs with
GLN493 and via hydrophobic interactions with TYR489.
Amentoflavone makes hydrophobic contacts with GLN498
and TYR505. Thus, their combined use is possible. Besides,
when considering that amentoflavone is a CYP3A4 and
CYP2C9 inhibitor, its use in combination with the HCV drugs
could increase their plasma concentration.

In agreement with our results, two different binding sites
for ligands were identified on RBD in the ACE2 contact
region in several other studies (Hakmi et al., 2020; Maffucci &
Contini, 2020). The first binding site is composed of LEU455,
PHE456, PHY486, ASN487, TYR489 and GLY493 RBD residues
and corresponds to the HCV drug-binding site in our case.
The second site (formed by Tyr449, GLY496, GLN498,
THR500, ASN501, GLY502 and Tyr505 residues) is the binding
region of amentoflavone.

Using the blind docking poses of the 5 top-ranked ligands
we built the ternary complexes of the RBD, amentoflavone,
and the HCV drugs (Figure 4, Supplementary Figure S1). For
paritaprevir, the neutral form of the ligand was also consid-
ered. The blind docking pose of the neutral paritaprevir was
similar to the anion pose (Supplementary Figures S1b,c). The
result of the blind docking for the neutral form of paritapre-
vir was �9.2 kcal/mol.

Molecular dynamics simulations

To check the stability of the docking complexes, the MD sim-
ulations of the binary and ternary ligands–RBD complexes

Figure 3. The 2D contact map of the spike glycoprotein RBD (chain E, bottom part of the figure) and ACE2 (chain B, upper part of the figure) was built in ligplotþ.
The coordinates were taken from the PDB ID 6m17.

Figure 4. The ternary complex of the spike glycoprotein RBD (blue) with pari-
taprevir (red) and amentoflavone (yellow).
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were performed. Table 4 shows the root-mean-square devia-
tions (RMSD) for the MD trajectories of the complexes calcu-
lated relative to the starting (docking) structures as well as
to the average MD structures. The RMSDs of the RBD back-
bone with respect to the average structures did not exceed
2.1 Å, which indicates that the protein structure was relatively
stable during the MD simulations. At the same time, the
RMSDs of the RBD backbone relative to the starting structure
of the protein (PDBID 6m17) ranged from 2.7 to 5.0 Å for the
trajectories of different complexes (3.3 Å for the RBD trajec-
tory without ligands). It is a sign of protein conformational
changes during the MD simulation. The analysis of the root-
mean-square fluctuations (RMSF) of the RBD residues showed
that the most mobile was the RBD loop formed by residues
474–487 (Supplementary Figure S10).

The RMSDs of ligands calculated with respect to their
positions in the starting docking complexes were greater
than 8Å for all complexes, except for the complexes of the
neutral form of paritaprevir. This means that the structure of
the docking complexes changed significantly during the MD
simulation. However, in most cases, ligands remained bound
to the RBD. The dissociation of ligands was observed only in
the MD trajectory of the ternary complex of the anionic form
of paritaprevir, amentoflavone and RBD. The HCV drugs (the
neutral form of paritaprevir, ledipasvir, and both stereoisom-
ers of simeprevir) had lower RMSF values in the ternary com-
plexes compared to the binary complexes, meaning that
they were less mobile in the ternary complexes. According
to the RMSD and RMSF data, the complexes of the neutral
form of paritaprevir were the most stable: they were charac-
terized by the lowest RMSF (2.5 Å and 2.0 Å) and RMSDlig

dock

(3.9 Å and 5.8 Å) values (Table 4).
Due to the relatively flat RBD–ACE2-binding surface, it is

challenging to find ligands that will remain tightly bound to
it during the MD simulation. In several other MD studies of
ligand–RBD complexes, the dissociation or migration of
ligands to the other binding sites was observed in the course

of the simulation (Chikhale et al., 2020; Deganutti et al.,
2021; Maffucci & Contini, 2020; Unni et al., 2020).

Analysis of contacts between the ligands and the RBD
in the MD trajectories

Given the mobility of ligands in complexes during the MD
simulation, a cluster analysis of trajectories was performed to
identify the most significant structures. The representative
structures of the main MD cluster for each complex are
shown in Supplementary Figures S2–S6b,c and S7. For the
representative structures, the analysis of contacts between
the ligand and the RBD was performed (Table 5,
Supplementary Figures S2–S6e,f,h,i, S8, and S9). The stabiliza-
tion of complexes was due to the HBs and hydrophobic
interactions. In the binary ligand–RBD complexes, most
ligands (the neutral form of paritaprevir, ledipasvir, both
simeprevir stereoisomers) remained bound in the region of
the ACE2-binding site during the MD simulation and inter-
acted with the RBD residues GLN493 and TYR489. At the
same time, amentoflavone and the anion form of paritaprevir
moved along the RBD to the new binding sites that did not
overlap with the ACE2-binding site. Interestingly, in most
ternary complexes, amentoflavone, due to the interaction
with the second ligand, remained within the ACE2-binding
region during MD and blocked TYR505 and GLN498 residues
of the RBD (which bind to ACE2). This gives evidence in favor
of the combined use of the HCV drugs and amentoflavone
to block the binding of ACE2 to RBD.

The dynamics of the intermolecular HBs in the
ligands–RBD complexes was analyzed using the MD trajecto-
ries (Supplementary Table S5). The average number of HB
between the ligand and the RBD during the MD simulation
ranged from 0 to 3. The highest average number of the
intermolecular HB was observed for ledipasvir (2.8) in the
binary complex and the neutral form of paritaprevir in the
ternary complex (3.0) (Supplementary Figures S11 and S12,

Table 4. The root-mean-square deviations for the complexes of the RBD and ligands observed in the MD simulations.

Complex of RBD with ligand/ligands RMSDbackbone
dock, Å RMSDbackbone

av, Å RMSDlig
dock, Å RMSDlig

av, Å RMSFlig, Å

Binary complexes Paritaprevir (anion) ZINC197964623 4.0 ± 0.3 1.4 ± 0.4 12.1 ± 1.1 3.5 ± 2.4 4.1
Paritaprevir (neutral) 3.7 ± 0.5 1.9 ± 0.3 3.9 ± 0.7 2.4 ± 0.8 2.5
Ledipasvir ZINC150338819 5.0 ± 0.5 2.1 ± 0.6 11.8 ± 3.5 6.6 ± 3.1 7.4
Simeprevir ZINC150656835 3.7 ± 0.3 1.4 ± 0.3 10.2 ± 3.0 6.4 ± 2.0 6.6
Simeprevir ZINC85540268 2.7 ± 0.2 1.2 ± 0.3 8.8 ± 2.7 4.5 ± 2.0 4.9
Amentoflavone ZINC3984030 3.1 ± 0.3 1.5 ± 0.3 12.8 ± 2.7 5.4 ± 3.5 6.4

Ternary complexes Paritaprevir (anion) ZINC197964623 þ 3.8 ± 0.5 2.0 ± 0.5 14.5 ± 8.9 9.0 ± 6.7 11.2
Amentoflavone ZINC3984030 28.6 ± 12.9 23.7 ± 12.4 26.8
Paritaprevir (neutral) þ 2.9 ± 0.4 1.6 ± 0.3 5.8 ± 1.0 2.0 ± 0.7 2.0
Amentoflavone ZINC3984030 5.6 ± 1.2 3.1 ± 0.9 3.2
Ledipasvir ZINC150338819 þ 2.8 ± 0.3 1.7 ± 0.3 9.1 ± 2.6 4.9 ± 1.2 4.7
Amentoflavone ZINC3984030 10.9 ± 2.0 5.5 ± 2.3 5.9
Simeprevir ZINC150656835 þ 3.7 ± 0.2 1.7 ± 0.3 10.7 ± 3.8 6.0 ± 2.9 6.4
Amentoflavone ZINC3984030 11.0 ± 3.2 8.7 ± 2.1 8.8
Simeprevir ZINC85540268 þ 3.3 ± 0.3 1.9 ± 0.3 8.3 ± 0.9 2.7 ± 0.9 2.7
Amentoflavone ZINC3984030 10.5 ± 5.5 9.0 ± 2.0 8.9

RMSDbackbone
dock – the RMSD of the RBD backbone heavy atoms with respect to the starting (PDB) structure.

RMSDbackbone
av – the RMSD of the RBD backbone heavy atoms with respect to the average MD structure.

RMSDlig
dock – the RMSD of the ligand heavy atoms calculated with respect to the position of ligand in the docking complex, the structures of complexes were

superimposed using the protein backbone heavy atoms.
RMSDlig

av – the RMSD of the ligand heavy atoms with respect to the position of ligand in the average MD structure, the structures of complexes were superim-
posed using the protein backbone heavy atoms.
RMSFig – the root-mean-square fluctuations of the ligand heavy atoms in the MD trajectory.
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Supplementary Table S5). Since the binding sites of the HCV
drugs and amentoflavone were different, they formed HB
with the different residues of the RBD. The functional groups
of the HCV drugs that participated in hydrogen bonding
with the RBD during the MD simulation included: carboxa-
mide groups (ledipasvir, paritaprevir, simeprevir), sulfonamide
group (simeprevir, paritaprevir), benzimidazole and imidazole
rings (ledipasvir), methoxy group (ledipasvir), and fluorine
(ledipasvir). Most ligands (HCV drugs) formed HB with the
GLN493 residue of the RBD, which interacts via HB with
ACE2 (Figure 3). The other RBD residues that were in contact
via HB with the HCV drugs were: ARG403, TYR453, GLU471,
GLY485, ASN487, CYS488, PHE490, LEU492, and SER494.

Amentoflavone formed HB with the RBD via hydroxyl
groups. In the trajectory of its binary complex, the HB con-
tacts with the RBD residues GLY404 and GLY504 were
detected. In the ternary complexes, amentoflavone partici-
pated in hydrogen bonding most frequently with the
ASN501 residue of RBD, among other residues were ASP405,
TYR449, SER494, TYR495, GLY496, GLN498, GLY502. Many of
these residues are important for the RBD–ACE2 interaction
(Yan et al., 2020).

The average lifetime of the intermolecular HB in the
ligands–RBD complexes was 10–100 ps.

MMPBSA-binding free energy estimates

To estimate the binding affinities of ligands to the RBD, the
MMPBSA-binding free energies were calculated for the main
MD clusters of the trajectories of complexes (Table 6). In the
binary ligand–RBD complexes, the negative (favorable) bind-
ing free energy was obtained only for ledipasvir (�5.9 kcal/
mol). The complexes were stabilized by van der Waals, elec-
trostatic and nonpolar solvation contributions, whereas polar
solvation and entropy terms were unfavorable. The analysis
of the entropy components (Supplementary Table S6)
showed that the main unfavorable contributions come from
the loss of translational and rotational degrees of freedom of
the ligand. For all the ligands, this penalty is circa 25 kcal/
mol. The entropy term seems to be the most challenging in
the MMPBSA calculation and many studies ignore it. At the
same time, the omitting of the entropy contribution could
worsen the results (Genheden et al., 2012). In this study, the
translational and rotational entropy terms were calculated
using standard statistical mechanics formulas for rigid rotor-
harmonic oscillator-ideal gas approximation (McQuarrie,
1976). This approach is known to overestimate the transla-
tional entropy loss in the case of the liquid phase (Mammen
et al., 1998). So, the calculated entropy penalty is probably
overestimated, which resulted in the positive binding free
energies for several ligands. Still, we suppose that the rela-
tive ranking of ligands was not affected. It should be noted
that all the ligands had favorable enthalpies of binding, con-
firming their possible interaction with RBD.

In the ternary complexes, all ligands had the negative
binding free energies except for the anion form of paritapre-
vir and amentoflavone (which was present in each ternary
complex as the second ligand). The affinity of ligands to the

RBD in the ternary complexes decreases in a row: ledipasvir
(�9.1 kcal/mol) > neutral form of paritaprevir (�8.4 kcal/mol)
> simeprevir ZINC85540268 (�2.9 kcal/mol) > simeprevir
ZINC150656835 (�1.6 kcal/mol). Based on the MMPBSA
energy estimates, it can be concluded that ledipasvir is the
best candidate for binding to the RBD. Although amentofla-
vone displays weak binding to the RBD, its presence pro-
motes the stronger binding of other ligands (HCV drugs) in
the ternary complexes.

To increase the precision of the MMPBSA-binding free
energies, additional independent MD simulations were per-
formed for the ledipasvir–RBD, ledipasvir–amentoflavone–
RBD, and neutral paritaprevir–amentoflavone–RBD com-
plexes. The standard deviations of the binding free energies
were reduced by 1.5–2 times (Table 7). The relative affinities
of ligands for the RBD remained unchanged: in the
ligand–amentoflavone–RBD ternary complexes, the binding
free energy of ledipasvir (�9.5 kcal/mol) was more favorable
than the binding free energy of the neutral form of paritap-
revir (�5.8 kcal/mol). A comparison of the binary and ternary
complexes of ledipasvir shows that the presence of amento-
flavone leads to the formation of a stronger complex of ledi-
pasvir with RBD: the binding free energy of ledipasvir is 2
times larger in the ternary complex.

The comparison of the MMPBSA-binding energies with
the literature data is difficult because the results strongly
depend on the parameters and details of the simulation
(Wang et al., 2019). The choice of the polar solvation energy
calculation method has a significant impact on the results:
the MMGBSA-binding free energies are too negative com-
pared to the MMPBSA ones. Due to the fact that in many
studies the entropy contribution is neglected, we compared
the enthalpy, which was calculated as the sum of the van
der Waals, electrostatic, polar (PB), and nonpolar (SASA) solv-
ation energy terms, with the binding energies reported in
the literature. The enthalpies for the ligand–RBD binary com-
plexes obtained in this study varied from �32.9 to
�17.1 kcal/mol (Table 6). Our results compare well with the
reported �18.4 kcal/mol for paromycin–RBD complex (Tariq
et al., 2020), �19.6 kcal/mol for apigenin-7-O-rutinoside
(Albohy et al., 2020), �17.9 kcal/mol for vancomycin and
�20.9 kcal/mol for teicoplanin (Tao et al., 2021), and
�15.6 kcal/mol for digitoxin (Wei et al., 2020). de Oliveira
et al. (2020) obtained slightly more favorable energies for
theaflavin digallate and suramin: �38.5 kcal/mol and
�40.4 kcal/mol, respectively. In the study of Trezza et al.
(2020), a stable MD trajectory was obtained for
simeprevir–RBD complex. They calculated the
simeprevir–RBD interaction energy as a sum of short-range
electrostatic and van der Waals terms and got �18 kcal/mol.

The reported in the literature MMGBSA energies for
ligand–RBD complexes are, in general, more negative:
�89.4 kcal/mol for withanoside X (Chikhale et al., 2020),
�52.1 kcal/mol for the top-ranked ligand 5960 in the study
of Hakmi et al. (2020); �53.2 kcal/mol for nilotinib (Deganutti
et al., 2021). Maffucci used 60 explicit water molecules dur-
ing the calculation of the MMGBSA energies for ligand–RBD
complexes (Maffucci & Contini, 2020). They obtained
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�164.3 kcal/mol for the top-ranked ligand polymyxin B and
�60.8 kcal/mol for ledipasvir, which was among the top 2%
of compounds.

Thus, the literature data confirm our results on the stabil-
ity of the ledipasvir–RBD and simeprevir–RBD complexes. To
the best of our knowledge, there are no other MD simula-
tions of paritaprevir–RBD and amentoflavone–RBD com-
plexes. But, there are many stable MD simulations of the
amentoflavone complex with the main protease (Ghosh
et al., 2020; Lokhande et al., 2020; Mishra et al., 2020; Patil
et al., 2021; Saravanan et al., 2020; Swargiary et al., 2020).
For paritaprevir and simeprevir, stable MD simulations with
the main protease and the uridylate-specific endoribonu-
clease (NSP15) have been obtained (Alamri et al., 2020; Khan,
Jha, Amera, et al., 2020; Khan, Jha, Singh, et al., 2020).
Ledipasvir has been also shown to bind to the main prote-
ase, in addition to the spike RBD (Maffucci & Contini, 2020).
So, for all of our top-ranked ligands, the activity against
other SARS-CoV-2 protein targets has been reported in
the literature.

Summarizing the MMPBSA results of this study, ledipasvir
and the neutral form of paritaprevir when used in combin-
ation with amentoflavone are the most efficient RBD binders.
The representative structures of the main MD clusters of the
ternary complexes of ledipasvir and the neutral form of pari-
taprevir are shown in Figures 5 and 6, correspondingly.

Conclusions

Due to the fast and uncontrolled spread of the COVID-19 dis-
ease caused by the SARS-CoV-2 virus, there is a need to find
a safe and effective treatment. Since the virus penetrates in

the host cell with the help of spike glycoprotein, this protein
represents an attractive target for drug repurposing. We per-
formed the molecular docking of 248 drugs against the RBD
of the spike glycoprotein of SARS-CoV-2. Most of the top-
ranked ligands are the FDA-approved HCV drugs: paritapre-
vir, ledipasvir, simeprevir. In the top 5, there is also a natural
product, the biflavonoid amentoflavone. The HCV drugs and
amentoflavone have different binding sites on the RBD, thus,
the ternary complexes of two ligands and RBD can
be created.

To validate the docking results, the binary and ternary
ligands–RBD complexes were studied by MD simulation with
explicit solvent for 120 ns. The structure of the docking com-
plexes changed during the simulation, but in most cases,
ligands remained within the ACE2-binding region. The small-
est structural changes relative to the starting docking config-
uration were observed for the complexes of the neutral form
of paritaprevir.

According to the MMPBSA-binding free energy estimates,
ledipasvir (�4.7 ± 4.0 kcal/mol) has the best result in the bin-
ary ligand–RBD complexes. The HCV drugs display stronger
binding in the ternary complexes (HCV
drug–amentoflavone–RBD complexes) compared to the bin-
ary complexes. The most stable ternary complexes with RBD
are formed by ledipasvir (�9.5 ± 4.4 kcal/mol) and the neutral
form of paritaprevir (�5.8 ± 2.6 kcal/mol).

The ligands–RBD complexes are stabilized by HBs and
hydrophobic interactions. The detailed analysis of the inter-
molecular HBs in complexes during MD simulations showed
that most HCV drugs form HBs with the RBD residue
GLN493, which interacts via hydrogen bonding with ACE2. In

Figure 5. The representative structure of the main MD cluster of the
ledipasvir–amentoflavone–RBD complex.

Figure 6. The representative structure of the main MD cluster of the neutral
paritaprevir–amentoflavone–RBD complex.

Table 7. The MMPBSA-binding free energies calculated from the multiple independent simulations.

Ligand
Number of
simulations dH, kcal/mol �TdS,kcal/mol dG, kcal/mol

Binary complex Ledipasvir 56 �32.6 ± 3.7 27.9 ± 1.5 �4.7 ± 4.0
Ternary complexes Ledipasvirþ 55 �37.0 ± 4.3 27.5 ± 1.1 �9.5 ± 4.4

Amentoflavone �12.4 ± 1.4 18.9 ± 1.0 6.5 ± 1.7
Paritaprevir neutralþ 120 �31.6 ± 2.2 25.8 ± 1.3 �5.8 ± 2.6
Amentoflavone �12.9 ± 2.5 19.5 ± 1.3 6.6 ± 2.8
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the ternary complexes, amentoflavone remains in the ACE2-
binding region during the MD simulation and forms a HB
with the ASN501 residue of RBD. The MD simulations of tern-
ary complexes confirm that simultaneous binding of the HCV
drug and amentoflavone to RBD in the ACE2-binding region
is possible, but experimental validation is required.

According to the literature data, the top-ranked ligands
defined in this study display also activity against other pro-
teins of SARS-CoV-2 (main protease, NSP15).

The results of our study suggest that the HCV drugs ledi-
pasvir and paritaprevir (in a neutral form) in combination
with a natural biflavonoid amentoflavone are the most prom-
ising candidates to block the binding site of ACE2 on RBD.
However, one must keep in mind that the presence of the
ACE2 could influence the affinity of ligands to the RBD. The
next steps should be the simulation of the interaction
between the ligands–RBD ternary complex and ACE2 and the
validation of the results through the experimental
investigations.
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