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A suite of recent studies has reported positive genetic correlations between autism

risk and measures of mental ability. These findings indicate that alleles for autism

overlap broadly with alleles for high intelligence, which appears paradoxical given

that autism is characterized, overall, by below-average IQ. This paradox can be

resolved under the hypothesis that autism etiology commonly involves enhanced, but

imbalanced, components of intelligence. This hypothesis is supported by convergent

evidence showing that autism and high IQ share a diverse set of convergent correlates,

including large brain size, fast brain growth, increased sensory and visual-spatial

abilities, enhanced synaptic functions, increased attentional focus, high socioeconomic

status, more deliberative decision-making, profession and occupational interests in

engineering and physical sciences, and high levels of positive assortative mating.

These findings help to provide an evolutionary basis to understanding autism risk as

underlain in part by dysregulation of intelligence, a core human-specific adaptation. In

turn, integration of studies on intelligence with studies of autism should provide novel

insights into the neurological and genetic causes of high mental abilities, with important

implications for cognitive enhancement, artificial intelligence, the relationship of autism

with schizophrenia, and the treatment of both autism and intellectual disability.
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INTRODUCTION

‘How wonderful that we have met with a paradox. Now we have some hope of making progress.’

Niels Bohr

Autism is conventionally regarded as a neurodevelopmental disorder that involves deficits in social
interaction and social communication, combined with restricted or repetitive patterns of behavior
and interests. However useful this definition may be for practical purposes, it also represents a
reified, more or less arbitrary, historical and societal construction that fits neither with Kanner’s
(1943) original description (Evans, 2013) nor with the standard medical model of disease whereby
maladaptive phenotypes must be understood in terms of alteration to specific adaptive systems
(Nesse and Stein, 2012; Crespi, 2016).

Autism may, alternatively, be regarded as a syndrome, a constellation of phenotypes, sets of
which tend to be found together relatively often, or sets of which when found together cause
particular problems for children, families, and communities (Happé et al., 2006). Any given
individual “with” autism will exhibit some more or less unique collection of such phenotypes
(e.g., van Os, 2009), which is due to their more or less unique genomic makeup and early
developmental environment. By this simple logic, any diagnoses of autism should be regarded
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not as any sort of endpoint, but as a rough, initial signpost toward
eventual determination of the genetic, developmental, hormonal,
neurological, psychological, and/or environmental causes of
each individual’s altered autism-related cognition, affect and
behavior.

The finding that autism has many causes (Happé and
Ronald, 2008) should direct attention to improved means of
differentially diagnosing its personalized bases. This process,
in turn, centers on determining what adaptive neural and
psychological systems has been altered, and how, to result in
some set of autistic traits in some individual. Autistic phenotypes
have been linked, for example, to increased protein synthesis
at synapses (Bourgeron, 2009), higher excitatory to inhibitory
neurotransmission (Rubenstein and Merzenich, 2003), enhanced
local compared to global processing and connectivity (Happé
and Frith, 2006), a bias toward systemizing over empathizing
(Baron-Cohen, 2009), and enhanced perceptual functioning
(Mottron et al., 2006). These patterns and theories are not
mutually exclusive, but none of them includes an explicit
evolutionary dimension, such that their proximate causes remain
ungrounded in the one discipline that unites across all biological-
psychological levels in the context of ultimate, long-term
determinants of psychological adaptation and maladaptation
(Crespi, 2016).

Risks for autism, like risks of cancer, diabetes, or arthritis, have
evolved along the human lineage (Crespi and Leach, 2016). As
such, evolutionary biology becomes a valuable conceptual and
analytic tool for connecting adaptive brain systems with the ways
in which they can become altered and maladaptive in psychiatric
disorders (Fjell et al., 2015). So what adaptive, evolved human
brain systems are changed, in what different ways, to produce
the phenotypes characteristic of autism? The most prominent
neurological change along the human lineage is, of course, the
tripling of brain size and associated changes in brain organization
and functions, and our concomitant tremendous increase in
intelligence compared to other great apes (Roth andDicke, 2005).
A notable set of “brain size genes” has been demonstrated to have
been subject to natural selection in humans and other mammals
(Montgomery and Mundy, 2014), and variation among extant
humans in intelligence is now known to be highly polygenic,
underlain by hundreds to thousands of alleles each of small effect
(e. g., Davies et al., 2011; Benyamin et al., 2014; Plomin and
Deary, 2015).

The genetical evolution of high intelligence in humans has
increased scope for two main forms of dysregulation. First,
the developmental and neural systems that connect genetic
variation and environments with intelligence may be subject
to maladaptive alterations by purely deleterious mutations,
maladapted genotypes, or harmful environments, that degrade
the “intelligence development” system. This route generally leads
to what we call intellectual disability (Vissers et al., 2016), with
overall reductions in intelligence and the functioning of its
physiological and neural subsystems. Second, the development
of intelligence can be affected, by genes or environments, in
the opposite direction, toward higher levels of functioning.
If this change results in balanced enhancements in all of
the components of high intellect, general intelligence will

be increased. However, if some, or most, but not all inter-
dependent general cognitive-intellectual functions are enhanced,
what would we observe?

Autism has long been characterized by relatively low
intelligence as measured by most standard tests (e. g., Hoekstra
et al., 2009). However, a suite of recent studies, described in more
detail below, has demonstrated that alleles “for” autism, that is,
common alleles that each contributes slightly to its risk, overlap
substantially and significantly with alleles “for” high intelligence
(Bulik-Sullivan et al., 2015; Clarke et al., 2015; Hill et al., 2015;
Hagenaars et al., 2016). To a notable, and well-replicated, degree,
then, many “autism” alleles are “high intelligence” alleles. How
can these paradoxical observations be reconciled?

In this article I describe and evaluate the hypothesis that
a substantial proportion of “autism risk” is underlain by high,
but more or less imbalanced, components of intelligence. First,
I provide a brief overview of the genetic, developmental and
neurological bases and correlates of human intelligence, from
research within this particular domain, and relate the structure of
intelligence in neurotypical individuals to the differences between
autistic individuals and neurotypical individuals. Second, I
compare the best-validated correlates of variation among
humans in intelligence with established characteristics of autistic
individuals, compared to controls. These two areas of study,
intelligence and autism, have thus far developed virtually
independently from one another; I thus integrate and synthesize
them in the context of testing the hypothesis addressed here.
In doing so, I also compare results for autism with those for
schizophrenia, the other primary human neurodevelopmental
disorder, in light of theories for how these two conditions
are related to one another (Crespi and Badcock, 2008; Crespi,
2016). Finally, I develop a framework for consilience of these
findings with previous theory on autism, and describe the
implications of the results, with regard to the causes, treatments,
and understanding of autism, and the structure and study of
human intelligence. The primary novelty and usefulness of this
synthesis is that it provides the first comprehensive connections
of the causes and symptoms of autism with alterations to a
specific human-elaborated adaptive system, intelligence, and
thereby generates new insights and research questions into
the natures and inter-relationships of intelligence, autism, and
schizophrenia.

THE ARCHITECTURE AND CORRELATES
OF HUMAN INTELLIGENCE

Human intelligence has been studied predominantly from
psychometric, genetic, neurological, and psychological
perspectives. Psychometric studies tracing back to Spearman
(1904) have demonstrated that virtually all measures of human
mental abilities are moderately to highly positively correlated
with one another, such that a common factor, typically called “g,”
underlies their joint co-variation. Between the general, primary
g factor, and the diverse, specific measures of mental abilities, is
a small set of secondary factors that each statistically accounts
for covariation among a larger set of functionally-similar
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abilities. The Verbal-Perceptual-Rotational (VPR) model of
Johnson and Bouchard (2005a,b, 2007; Figure 1), with three
such secondary factors, represents the currently best-supported
psychometric description of human intelligence structure. Under
this model, “Verbal” refers to verbal fluency and knowledge,
“Perceptual” refers to perceptual speed and mechanical and
spatial abilities other than mental rotation, and “Rotational”
refers to mental rotation, which involves mental movements of
imagined objects or persons, as in the classic Mental Rotation
test from Vandenberg and Kruse (1978; Johnson and Bouchard,
2005b; Major et al., 2012). The components of the VPR model
correspond on a broad scale with brain structural organization
in that verbal skills are relatively left-hemispheric, spatial and
non-verbal abilities are relatively right-hemispheric, and mental
rotation depends, in part, on strongly bihemispheric functions
associated with corpus callosum size (Johnson and Bouchard,
2005b; Karadi et al., 2006; Schoenemann, 2006).

In addition to its success in describing patterns of co-variation
among aspects of human intelligence, the VPR model also
demonstrates evidence of tradeoffs between sets of cognitive
abilities: when controlling for variation in g, image rotation
ability is inversely associated with verbal ability, and scores
on tests indicative of a strong focus of attention are inversely
associated with scores indicating diffuse focus (Johnson and

Bouchard, 2007; Figure 2). These two tradeoffs also exhibit sex
differences, with males over-represented at the high rotational-
strong focus pole, andmore females at the pole with higher verbal
abilities and more-diffuse focus (Johnson and Bouchard, 2007).
Such sex differences and negative correlations are important
given the strong male biases found in autism (Fombonne, 2009;
Baron-Cohen et al., 2011), the extensive data showing that autism
involves reductions in verbal skills but (1) increases in focus of
attention (e. g., Ploog, 2010; Sabatos-DeVito et al., 2016), (2)
enhanced perceptual and spatial abilities [as reflected in prowess,
for example, in Block Design and the Embedded Figures test
(EFT); Mottron et al., 2006; Muth et al., 2014], and (3) superior
ability in non-rotational (though not rotational) aspects of the
mental rotation task (Zapf et al., 2015). Considered together,
these findings provide evidence that the cognitive structure
of autism dovetails with the structure of the independently
derived best-supported model for the psychometric architecture
of human intelligence, but that it is characterized by increases
in some, specific, components of intelligence and decreases
in others, leading to a profile that is imbalanced and reflects
extremes of typical variation. As such, autism-related differences
in VPR-model structured intelligence appear to reflect its
evolutionary bases in altered expression of adaptive cognitive
variation (Crespi, 2016), with autistic cognition mediated by

FIGURE 1 | The VPR model of intelligence. Under this model, the higher-level architecture of human intelligence, as indicated by diverse mental-ability tasks,

involves one general factor, g, and three mid-level factors, Verbal, Perceptual, and image Rotation, that reflect variation among individuals in large-scale neural

structure and processing. Adapted from Johnson et al. (2007).
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FIGURE 2 | Two orthogonal dimensions of intelligence, which emerge

after the general factor g is statistically removed. Poles of each of the

two dimensions demonstrate inverse associations with one another, indicative

of neurally-based cognitive trade-offs. The psychotic-affective spectrum

includes mainly schizophrenia, bipolar disorder, depression, and borderline

personality disorder. Adapted from Johnson et al. (2007).

relative extremes of tradeoffs (Johnson and Bouchard, 2007,
2008). In contrast to autism, schizophrenia is characterized
by a focus of attention decreased relative to controls (e.g.,
Morris et al., 2013), notably-poor visual-spatial relative to verbal
abilities (Kravariti et al., 2006), and reduced ability in non-
rotational (though not in rotational) aspects of mental rotation
tasks (Thakkar and Park, 2010; Benson and Park, 2013). These
patterns of findings derive directly from the VPR model, and
indicate that its further application and extension will help to
clarify the psychometric structure of autistic, neurotypical, and
schizophrenia-associated cognition.

A second model for the higher-level psychometric structure
of intelligence is its division into a “fluid” component, reflecting
ability to solve novel problems, use logic, and identify patterns, in
ways that are independent of acquired and cultural knowledge,
and a “crystallized” component, indicative of ability to utilize
acquired and learned knowledge and experience (e. g., Nisbett
et al., 2012). This subdivision of intelligence fits less well than the
VPR model to patterns of covariation across mental ability tests
(Johnson and Bouchard, 2005a,b), but its validity and usefulness
are supported by the underpinning of fluid vs. crystallized
intelligence by distinct sets of genes (Christoforou et al., 2014),
their different patterns of change with age (with fluid changing
like physical traits, but crystallized showing little age-related
decline; Deary et al., 2010), and the primacy of social learning
in human cultural adaptation (Henrich, 2015). As for the VPR
model, the structure of intelligence in autism reflects the fluid-
crystallized dichotomy, in that fluid intelligence is relatively or
absolutely enhanced in autism, but crystallized intelligence is
reduced, compared to controls (Dawson et al., 2007; Hayashi
et al., 2008; see also Nader et al., 2016). This pattern again
indicates imbalance, and elevation, in components of intelligence
in autism that correspond to its evolved and psychometrically
characterized structure.

Intelligence, usually measured by strong correlates of g,
has a clear polygenic basis, as well as established connections

with neurological variation. Recent GWA studies have provided
evidence that many hundreds or thousands of alleles, each of very
small effect, underlie variation among individuals in g, although
only a fraction of its high heritability can be accounted for at
this point (Plomin and Deary, 2015). By contrast, data from
studies of the genetic basis of intellectual disability show that
it is due mainly to moderate or large effect de novo deleterious
alleles, rather than a concentration of weakly-deleterious, small-
effect, segregating alleles; these findings indicate that “high
intelligence requires that everything work right, including most
of the positive alleles and few of the negative alleles associated
with intelligence” (Plomin and Deary, 2015, p. 103; Franić et al.,
2015; Hill et al., 2015). Plomin andDeary (2015, p. 103) also point
out an important question regarding such “positive genetics” of
intelligence, for psychiatric disorders: if individuals at the positive
end of the polygenic distribution of “risk” simply have low risk, or
if they “have special powers.” In this article, I am evaluating the
hypothesis that such “special powers” indeed exist, in the contexts
of autism and intelligence, and in comparison to schizophrenia.
Finally, Plomin and Deary (2015) point out that assortative
mating is notably stronger (∼0.40) for intelligence than for most
other human traits, which maintains additive genetic variation
for this trait as well as generating more “extreme” intelligence
phenotypes than otherwise expected. Increased autism risk has
been attributed by Baron-Cohen et al. (2006) to assortative
mating between two individuals high in “systemizing,” and
assortative mating is much high among individuals diagnosed
with ASD than other disorders (Nordsletten et al., 2016); how
might intelligence variation play a role in this process and its
sequelae?

As described in detail below, the neurological basis of
intelligence has been well established for a suite of phenotypes,
including large brain size and high numbers of neurons,
large hippocampus size, high efficacy of working memory,
fast neuronal processing speed, neural efficiency, fast rates
of brain growth and pruning, and specific patterns of gray
matter and white matter distributions. Most broadly, high
intelligence appears to reflect high functionality, speed, and
integration of a fronto-parietal brain network that subserves
the sensory acquisition, abstraction, alternative model-testing,
and deployment of information (the Parieto-Frontal Integration
Theory; Jung and Haier, 2007; Colom et al., 2010; Figure 3).
This “intelligence network” overlaps substantially with the “task-
positive network,” whose activation is inversely associated with
that of the “default mode” or “task-negative” network (e.g.,
Uddin et al., 2009), as might be expected given that mental
abilities and intelligence are measured in the context of particular
tasks. The general and specific functioning of this distributed,
fronto-parietal network are highly compatible with the VPR
psychometric model described above (Deary et al., 2010), with
genetic bases to VPR abilities and fronto-parietal structure and
function (Johnson et al., 2007).

In addition to its substantial psychometric and genetic basis,
and neurological underpinnings, intelligence is also notably
associated with two additional factors that are relevant to the
autism spectrum: sensory abilities and socioeconomic status.
Positive correlations of g with sensory abilities in the auditory,
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FIGURE 3 | Brain regions, and temporal stages, representing the P-FIT (Parietal Frontal Integration Theory) model of intelligence. Postulated alterations

in autism, compared to control individuals, are shown along the periphery, and described in the text. Adapted from Colom et al. (2010).

visual, and tactile domains have been well documented and
replicated, across over a century of testing (Deary et al., 2004).
Such sensory tests include, for example, ability to discriminate
closely-similar stimuli, temporal information processing skill, or
sensitivity in stimulus detection, that apparently reflect aspects
of processing speed, focal-attentional abilities, and ability to
suppress irrelevant stimuli. As described further below, Galton
(1883) and Spearman (1904, pp. 268–272) indeed virtually
equated higher cognitive abilities with more-accurate sensory
discrimination, and postulated “general discrimination” skills
that underpinned sensory abilities across different modalities and
correlated near unity with general intelligence. Genetically-based
positive associations of intelligence with socioeconomic status, as
well as with education levels and occupational status, have also
been well documented (Marioni et al., 2014; Trzaskowski et al.,
2014; Krapohl and Plomin, 2016; review in Plomin and Deary,
2015). These findings indicate that the same alleles pleiotropically
mediate high intelligence and high socioeconomic status (vs. low
levels of both), again through many alleles of small effect that
account for a small, though statistically significant, proportion of
the variance in both traits.

The upshot of these considerations from psychometrics,
genetics, neuroscience, psychology, and sociology is that high
intelligence involves many beneficial alleles of small effect, an

absence of de novo deleterious mutations, high performance
with balanced integration of neural subsystems (as well as
large brain size and more neurons), enhanced sensory abilities,
high socioeconomic status, and a notable degree of assortative
mating. How, then, do these genetic and phenotypic correlates
of intelligence, and associated ones, relate to the genetic basis and
phenotypic correlates of autism?

GENETIC OVERLAP OF AUTISM WITH
INTELLIGENCE

Recent increases in sample sizes, extensions of target phenotypes
analyzed, and developments in analytic methods for genome-
wide association studies, have allowed the first robust tests
of the sign and magnitude of genetic correlations, due to
pleiotropy and linkage disequilibrium, between intelligence and
other traits including risk of psychiatric conditions. Four studies
have used data from the Psychiatric Genetics Consortium (PGC)
on polygenic risk for autism (Cross-Disorder Group of the
Psychiatric Genomics Consortium, 2013) to assess overlap of
autism risk alleles (identified from over 5000 cases) with alleles
for aspects of cognitive ability and intelligence. All four of these
studies, which used diverse, independent populations and tests
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(or correlates) of cognitive abilities, have reported significant,
substantial genetically-based positive associations of autism risk
with intelligence, notably including full-scale IQ and a PCA-
based measure of g (Clarke et al., 2015), childhood IQ, college
attendance, and years of education (Bulik-Sullivan et al., 2015),
cognitive function in childhood and educational attainment (Hill
et al., 2015), and verbal-numerical reasoning and educational
level reached (Hagenaars et al., 2016). These studies indicate that
polygenic, small-effect size alleles that increased risk of autism are
also associated with increased intelligence (and strong correlates
of intelligence, such as education level; Davies et al., 2016) among
neurotypical individuals.

In direct contrast to these findings for autism, genetic risk for
schizophrenia has been demonstrated to be negatively associated
with measures of cognitive ability and intelligence, across a broad
suite of studies (McIntosh et al., 2013; Lencz et al., 2014; Bulik-
Sullivan et al., 2015; Hill et al., 2015; Hagenaars et al., 2016;
Hubbard et al., 2016). These results indicate that a substantial
proportion of schizophrenia risk alleles also represent alleles “for”
lower intelligence. Such findings for schizophrenia accord well
with large bodies of research on cognitive deficits in first-degree
relatives of individuals with schizophrenia (Snitz et al., 2006),
and among children who are premorbid for schizophrenia (and
thus will develop it at or after adolescence; Woodberry et al.,
2008).

The question of whether intelligence, or any of its
components, are elevated, compared to controls, among
parents, siblings, or higher-order relatives of individuals with
autism has yet to be investigated systematically, although this
pattern is predicted by the positive genetic correlations of autism
risk with measures of IQ. Tests conducted thus far have yielded
diverse results, but individuals with autism clearly exhibit a
similar cognitive profile to their sibs across WAIS subtests,
with high scores on Block Design and Object Assembly, and
low scores on Comprehension and Coding, relative to controls
(Gizzonio et al., 2014). Similarly, siblings of individuals with
autism have shown better working memory (for non-social
targets) than control individuals (Noland et al., 2010) and higher
visual-motion sensitivity (McCleery et al., 2007), and parents
of individuals with autism are faster than controls at the EFT
(Baron-Cohen and Hammer, 1997). Kanner (1943) and Rimland
(1964, pp. 29–30) believed that parents of individuals with
autism were of higher intelligence than control parents (see
Levine and Olson, 1968), but their hypotheses have apparently
not been subject to robust empirical testing, with most such
studies of parents focusing on social deficits and alterations. By
contrast, as described above, there is clear evidence for relatively
low IQ, on average, among individuals with autism, at least as
measured by most standardized tests.

How can this paradox of low IQ, but positive genetic
correlations of autism risk with intelligence, be resolved?
None of the papers on genetic correlations of autism with
intelligence discuss possible explanations, or ways to investigate
the conundrum further. I have proposed here the hypothesis
that autism involves high but imbalanced intelligence, such that
some or many genetically-based components of intelligence are
enhanced, but imbalance across components increases risk and

patterns of expression for autistic phenotypes, and for diagnoses.
By this hypothesis, higher intelligence may co-occur with higher
risk for imbalance and cognitive and affective consequences
from it, given that the components of cognitive ability are
expected to interact strongly and may do so to a greater degree
at the higher end of ability. The “high intelligence imbalance”
hypothesis is useful because it makes clear predictions, and thus
directs attention toward specific forms of existing data and new,
informative future data to collect.

AUTISM AND THE CORRELATES OF
INTELLIGENCE

The “high intelligence imbalance” hypothesis predicts that autism
should be associated, at a phenotypic level, with substantiated
correlates of intelligence. I elaborate here on the most-
notable joint correlates of intelligence and autism, focusing on
phenotypes that are associated with intelligence and that are
over-developed or over-expressed in autism.

Brain Size and Growth
Large brain size and head circumference, especially in childhood
but also adulthood, represent some of the best-substantiated
phenotypic correlates of autism (e.g., Fukumoto et al., 2011;
Foster et al., 2015; meta-analysis in Sacco et al., 2015). Autism-
linked increases in brain size have been shown to involve higher
numbers of neurons (Courchesne et al., 2013), a thicker cortex
(Hardan et al., 2006; Karama et al., 2011; Ecker et al., 2013;
Smith et al., 2016), increased hippocampus volume (Barnea-
Goraly et al., 2014; Maier et al., 2015), increased brain growth
rates in early childhood (Campbell et al., 2014), increased rate of
cortical thinning in adolescence (Hardan et al., 2009; Mak-Fan
et al., 2012), a combination of “accelerated expansion in early
childhood” with “accelerated thinning in in later childhood and
adolescence” (Zielinski et al., 2014), and increased processing of
more-local, detailed information (White et al., 2009).

Faster increase in cortical thickness between ages 6 and
12, followed by faster cortical thickness deceleration between
ages 12 and 18 (indicative of neuronal and synaptic pruning),
has been linked with higher intelligence in typically-developing
children (Shaw et al., 2006). These findings provide evidence
that trajectories of brain growth rate during middle childhood
to adolescence are notably associated with IQ, with an overall
pattern of accelerated growth and accelerated pruning that
matches trajectories reported in autism, though with different
timings of growth in early childhood. Within humans (e.g.,
Ivanovic et al., 2004; Witelson et al., 2006; Menary et al., 2013),
and among non-human primates (Deaner et al., 2007) species,
brain size (and cortical thickness, for humans) are also positively
correlated with measures of intelligence, an effect that appears to
be mediated predominantly by numbers of neurons (Roth and
Dicke, 2005; Dicke and Roth, 2016).

In contrast to these patterns in autism, brain size,
hippocampus size, and cortical thickness are reduced among
individuals with schizophrenia, including at first episode
(e.g., Steen et al., 2006; Rais et al., 2012; Rimol et al., 2012;
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Oertel-Knöchel et al., 2013). These reductions appear to be
associated with reduced brain growth rates in late childhood and
early adolescence (Gogtay et al., 2008), followed by increased
gray matter loss in adolescence and early adulthood (e.g., Pantelis
et al., 2005; Rapoport and Gogtay, 2011).

The genetic bases of brain size and growth, and intelligence, in
relation to autism and schizophrenia, remain largely unknown.
However, as one example of such inter-relations, numbers of
repeat units of a protein domain referred to as DUF1220 have
been positively associated with a suite of characters including:
(1) brain size (within humans, and across species of anthropoid
primates; Dumas et al., 2012; Keeney et al., 2014), (2) IQ and
mathematical aptitude (Davis et al., 2015), and (3) the severity
of autism (Davis et al., 2014); by contrast, DUF1220 repeat
numbers are inversely associated with positive-symptom (though
not negative-symptom) severity in schizophrenia (Quick et al.,
2015). These findings indicate strongly pleiotropic effects of
this molecular domain on brain size, intelligence, autism, and
schizophrenia, whereby autism is linked with large brain size and
high IQ, but positive symptom schizophrenia shows a diametric
result.

Brain Connectivity
Low global, relative to local, structural and functional
connectivity of the brain has been demonstrated in autism
by a large suite of studies (reviews in Courchesne and Pierce,
2005; Maximo et al., 2014), and it follows in part, presumably,
from increased brain size itself. Under the P-FIT model of
intelligence (Figure 3), effective long-range connectivity is
required for the integration of parietal and frontal brain regions
that underlies IQ (Jung and Haier, 2007); “efficient” patterns
of brain connectivity involving small-world network-level
organization (with an optimal mix of short and long-rage
connections) have thus, for example, been positively associated
with measures of intelligence (van den Heuvel et al., 2009;
Koenis et al., 2015; Kim et al., 2016). These findings suggest that
relative reductions in long-range connectivity may represent an
important constraint on general intelligence among individuals
with autism, contributing to imbalances between its constituent
parts. Testing of this hypothesis will, however, require analyses
of local and global brain connectivity patterns in relation to
both autism (compared to controls) and variation in intelligence
(in each group) using the same methodology, to determine the
degree to which the long-range connectivity pathways central to
the P-FIT model (e.g., the arcuate fasciculus, and connections to
the lateral prefrontal cortex; Jung and Haier, 2007; Cole et al.,
2012) are differentially reduced in efficiency among individuals
with autism.

In contrast to reduced long-range brain connectivity,
increased local connectivity has been linked with enhanced
ability in some domains, such as auditory pitch perception (Loui
et al., 2011), which shows a notable association with the autism
spectrum (Stanutz et al., 2014). Increased local connectivity,
especially of the prefrontal cortex, also characterizes the valproic
acid animalmodel of autism (Rinaldi et al., 2008) and the “intense
world” theory of autism etiology (Markram andMarkram, 2010),

which involves perception, attention, and memory that are
enhanced to levels that interfere with social functioning.

Higher local connectivity in sensory regions of the brain
has been suggested as the basis for sensory hyper-sensitivities
in autism (Belmonte et al., 2004) as well as hyper-developed
attention to detail and systemizing (Baron-Cohen et al., 2009).
Considered together, these findings suggest that increased local
brain connectivity in autism is linked with specific enhanced
abilities or interests, such that components or facets of general
intelligence are increased whereas g itself is reduced. These brain
network alterations in autism can be described most simply as
involving increased brain modularity and parallel processing,
which may enhance region-specific functions (such as sensory
abilities and visual-spatial skills) but also lead to reduced general
intelligence due to under-developed long-range connectivities.

Decreased local and increased long-range connectivity have
been described in childhood-onset schizophrenia (Baribeau and
Anagnostou, 2013), and increased connectivity has also been
found within the default mode in schizophrenia across multiple
studies (Whitfield-Gabrieli et al., 2009; Tang et al., 2013),
with several reviews pointing out the opposite nature of this
pattern compared to that found in autism (Broyd et al., 2009;
Karbasforoushan andWoodward, 2012). However, robust tests of
this hypothesis require joint connectivity analysis of individuals
with autism and schizophrenia using the same protocols.

Neuronal Function
Synaptic plasticity represents a core component of brain
function, and, in principle, it underlies on a neuronal scale
the long-term macroscopic changes in cortical thickness
across childhood and adolescence that have been linked with
intelligence (e.g., Shaw et al., 2006). Protein synthesis in dendritic
spines mediates synaptic plasticity, and has been associated with
diverse aspects of cognition, learning and memory (Sutton and
Schuman, 2006; Kasai et al., 2010). Evidence of exaggerated
protein synthesis at dendrites has been reported in human
syndromic autism and in multiple animal models of autism
(Kelleher and Bear, 2008; Bourgeron, 2009; Gkogkas et al., 2013;
Santini et al., 2013; Santini and Klann, 2014; review in Mottron
et al., 2014), indicating that gains of function or expression
in key molecular mediators of cognition may characterize the
autism spectrum (e.g., Figure 1 in Kulkarni and Firestein, 2012).
Increased levels of neuronal plasticity and synaptic remodeling
likewise characterize some theory for autism and animal models
(Markram and Markram, 2010; Isshiki et al., 2014; Oberman and
Pascual-Leone, 2014).

The degree to which neuronal functions such as synaptic
plasticity, dendritic spine protein synthesis levels, and dendrite
dynamics including flexibility and stability influence variation in
general intelligence remains unclear. However, a recent GWA
study found that the strongest functional enrichment for genes
linked with fluid intelligence was synaptic “efficiency,” whereas
for crystallized intelligence it was synaptic depression and LTD
(long-term depression; Christoforou et al., 2014). These findings
suggest strong associations of neuronal and synaptic function
with intelligence, such that autism may commonly involve
dysregulation of intelligence-associated neuronal processes
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toward hyper-functional dynamics. The gene CYFIP1 represents
an apparent example of a locus that mediates such effects: high
expression of this gene, which coordinates mRNA translation at
dendrites, has been associated with autism (Oguro-Ando et al.,
2015; Wang et al., 2015); by contrast, deletions that reduce its
expression have been strongly linked with risk of schizophrenia,
as well as with aspects of impaired cognition (especially dyslexia
and dyscalculia) among otherwise-neurotypical individuals
(Stefansson et al., 2008, 2014; Tam et al., 2010).

Sensory Functions, Attention, and Special
Abilities
As noted above, Galton (1883) and Spearman (1904) first
described hypotheses and psychometric evidence that sensory
abilities and sensory discrimination skills were strongly positively
associated with high intelligence. A resurgence of interest in
this phenomenon has led to consistent and diverse evidence
for small to moderate links of specific sensory discrimination
abilities with intelligence, but strong correlations (e.g., 0.68
and 0.92 in Deary et al., 2004) of intelligence with latent
factors that integrate sensory ability variation across domains
(Meyer et al., 2010). The causes of correlations between general
intelligence and sensory discrimination abilities remain largely
unknown, but they appear to be related to: (a) ability to focus
intensely while ignoring irrelevant stimuli (Melnick et al., 2013);
(b) a strong positive genetic correlation between intelligence
and sensory-neural processing speed (Lee et al., 2012); (c)
speed of neural oscillations, which may underlie both sensory
discrimination skills and intelligence (Troche and Rammsayer,
2009a,b; Troche et al., 2009); (d) white matter structure and
integrity, which are positively associated with neural processing
speed (e.g., Turken et al., 2008; Kerchner et al., 2012); (e)
regional or global increases in gray matter (e.g., Deary et al.,
2010; Hyde et al., 2010), and (f) the role of sensory input
as a limiting step in general cognitive ability, upon which all
further neurological components of intelligence depend. Further
evaluation of these hypotheses, through GWAS-based tests for
genetic correlation and neurological studies that jointly address
sensory discrimination and intelligence, are required to evaluate
their robustness and generality.

A large body of evidence has shown that sensory
discrimination and sensory acuity abilities are commonly
enhanced in autism compared to controls, across auditory
(O’Riordan and Passetti, 2006; Heaton et al., 2008; Eigsti
and Fein, 2013; Stanutz et al., 2014), visual (Ashwin et al.,
2009; Brosnan et al., 2012; Falter et al., 2012), and tactile
(Blakemore et al., 2006; Cascio et al., 2008; Nakano et al.,
2012) domains. As for the links with IQ, causation remains
largely obscure. However, Blaser et al. (2014) demonstrate that
the autism-associated advantage in visual search is associated
with stronger phasic pupillary response, which is indicative of
stronger attentional focus and implicates the locus coeruleus-
norepinephrine system in (at least) visual discrimination
proficiency. This finding is of especially notable interest given
that autism is characterized, on a general diagnostic basis, by
increased attention to detail, difficulties in switching of attention,

and attentional stimulus “overselectivity” on specific aspects of
the physical environment (Murray et al., 2005; Ploog, 2010).
High attention to detail on the Autism Quotient test, high
intelligence, and high rates of autism in family members have
also been reported among child prodigies (children who display
highly-advanced abilities in fields such as music, mathematics,
chess, or art; Ruthsatz and Urbach, 2012). Baron-Cohen et al.
(2009) describe evidence that such high attention to detail in
autism is a consequence of enhanced sensory abilities, and also
leads to high levels of an analytical, “systemizing” cognition.
Finally, Sabatos-DeVito et al. (2016) describe experiments
that link atypical sensory processing in autism to attentional
engagement, suggesting that these two facets of autism share
neurological and psychological links.

One visual-spatial test, the embedded-figures test (EFT),
represents a paradigmatic task showing superiority in autism
for speed, accuracy, or both (Happé and Frith, 2006; Muth
et al., 2014; Horlin et al., 2016). This test has traditionally
been considered as indicative of a local cognitive “style,”
but three sets of findings: (a) high positive correlations of
EFT performance with measures of fluid intelligence (e, g.,
McKenna et al., 1986; McKenna, 1990), (b) demonstration by
Khodadady and Tafaghodi (2013) that EFT performance is
strongly, positively linked with intelligence, and (c) the visual-
spatial search and discrimination nature of the task, suggest that
it can also be interpreted as a metric of visual sensory ability and
discrimination that is, like other such metrics, highly associated
with intelligence, especially fluid intelligence that is often not
matched in autism-control comparison studies. In contrast to the
patterns of EFT enhancement found for autism, meta-analysis
indicates that EFT performance is significantly and substantially
reduced in schizophrenia (Panton et al., 2016). Indeed, more
generally, sensory discrimination and abilities are consistently
reduced in schizophrenia (Bates, 2005; Force et al., 2008; Javitt,
2009a,b), as expected under the hypothesis that they represent
psychologically-diametric conditions (Crespi and Badcock, 2008;
Crespi, 2016).

Considered together, these findings suggest that increased
sensory discrimination ability in autism represents a component
or strong correlate of intelligence that is frequently enhanced to
the point of imbalance with other aspects of IQ. Indeed, under
the P-FIT model (Figure 3), sensory abilities are represented
by the first, sensory processing stage of intelligence circuitry:
data acquisition and coding mainly via occipital and parietal
regions of the brain. Hyper-functioning of these regions
may thus result in imbalanced intelligence, whereby efficient
integration with downstream regions, especially parietal regions
that subserve symbolism, abstraction and categorization of
sensory information, becomes dysregulated (e.g., Froehlich et al.,
2012; Church et al., 2015; Eduardo Mercado et al., 2015;
Figure 3). The gene GABRB3, which codes for a GABA receptor,
represents a possible example of a locus that is pleiotropically
linked to sensory sensitivity, autism risk, and components of
intelligence, given that SNPs in this gene have been linked with
tactile sensitivity, risk of Asperger syndrome, and scores on the
embedded figures andmental rotation tests (Tavassoli et al., 2012;
Warrier et al., 2013).
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Finally, autism is the only psychiatric condition characterized
by notable rates of savant skills, which in this context represent
highly-structured, rule-based abilities largely restricted to a few
spheres of mental ability: calendar calculating, rote memory,
mathematical computation, musical memory, and realistic
drawing (Howlin et al., 2009; Snyder, 2009; Treffert, 2014;
Meilleur et al., 2015). Savantism appears to represent an extreme
of imbalanced components of mental ability in autism, given
its highly limited range of enhancements and apparent negative
associations of special skills with verbal and social abilities
(Crespi and Leach, 2016).

Decision-Making
Decision making, or “response selection,” mediated by the
anterior cingulate cortex, represents the fourth stage in the P-
FIT model of intelligence (Jung and Haier, 2007; Figure 3).
Autism has been characterized, in a recent suite of studies, by
more “deliberative” decision making (compared to controls),
that tends to reduce biases and errors associated with fast and
intuitive, but often “irrational,” decision-making (De Martino
et al., 2008; Brosnan et al., 2014, 2016; South et al., 2014). Given
that susceptibilities to cognitive biases are negatively associated
with measures of intelligence, weakly though significantly (e.g.,
Teovanović et al., 2015), these findings suggest that this
component of intelligence is enhanced in autism, at least in some
contexts. More-deliberative decision making in autism may be
associated, and underpinned, by enhanced explanatory drive to
seek information in ambiguous circumstances, with regard to
physical (rather than social) problems (Rutherford and Subiaul,
2015).

In contrast to these results for autism, some cognitive
biases, such as “jumping to conclusions,” and “bias against
disconfirmatory evidence” are increased in schizophrenia
compared to controls (Woodward et al., 2006; Dudley et al.,
2016). Similarly, performance on the Iowa Gambling task
of decision-making ability is reduced in schizophrenia (Sevy
et al., 2007; Adida et al., 2011) but increased in autism (South
et al., 2014), in each case compared to controls. Despite such
findings, the degree to which more-deliberative or enhanced
decision-making is more intelligent per se, and does not itself
entail costs, remains unclear; for example, faster, more-intuitive
decision-making may be favored in many social situations
(South et al., 2014), and rationality appears to be at least partially
dissociable from intelligence (Stanovich and West, 2014).

Socioeconomic Status
Socioeconomic status, intelligence, and education level achieved
have been demonstrated to exhibit strong positive correlations
amongst themselves, although the reasons for these associations
have remained unspecified (Deary and Johnson, 2010). A recent
suite of studies has shown that such links are substantially
genetically based, indicating that a large number of alleles
pleiotropically affect socioeconomic status, intelligence, and
educational achievement (Marioni et al., 2014; Trzaskowski et al.,
2014; Krapohl and Plomin, 2016). These findings are of interest
in the context of autism because autism also shows significant,
positive genetic correlations with educational attainment, which

is strongly positively associated with socioeconomic status as well
(Bulik-Sullivan et al., 2015; Hill et al., 2015; Hagenaars et al.,
2016).

The hypothesis that autism risk in offspring is positively
associated with high parental intelligence, and high
socioeconomic status, traces to Kanner (1943, p. 248), who
stated, referring to autistic children, that “they all come of highly
intelligent families,” at high levels of educational, socioeconomic
and occupational achievement (Kanner and Lesser, 1958;
Rimland, 1964). King (1975) reviewed a set of demographic
studies motivated by these findings, and reported strong support
for the pattern of high socioeconomic status linked with autism,
including support from studies (e.g., Lotter, 1966, 1967) that
checked all young children (of 8–10 years) in a given geographic
area for infantile autism, and thus should be largely independent
of confounding ascertainment or help-seeking biases, variation
in access to relevant health care, or variation in parental
awareness.

Recent studies of socioeconomic correlates of autism have
generated variable results, most of which, however, find that
autism is positively related to indicators or strong correlates
of high socioeconomic status (Durkin et al., 2010; Van Meter
et al., 2010; King and Bearman, 2011; Leonard et al., 2011;
Thomas et al., 2012; Bakian et al., 2015); other studies report
links with low socioeconomic conditions, or no associations (Rai
et al., 2012; Sun et al., 2014). The degree to which biases and
confounding factors mediate the positive associations remains
largely unknown, although it is noteworthy that both mild to
moderate intellectual disability, and schizophrenia, show notable
patterns of association with measures of low socioeconomic
status (Werner et al., 2007; Leonard et al., 2011; Emerson, 2012;
Zheng et al., 2012).

Given that autism risk shows strong genetic correlations
with intelligence and years of education, and that these two
variables are strongly linked with higher socioeconomic status in
a demographic context, the findings described above suggest that
autism risk and high socioeconomic status are also expected to
show a basis in pleiotropy as demonstrated by positive genetic
correlation. However, this hypothesis requires direct genetic tests
that take account of known confounding factors and inter-
correlated traits (King and Bearman, 2011), as well as analyzing
hypotheses for the causal underpinnings of the genetic and
phenotypic associations.

Profession
Profession, occupation, and vocational interests have been
associated with autism in the context of Baron-Cohen’s theory
that the autism spectrum is mediated by high “systemizing”
(drive to understand non-social, mechanistic and rule-based
systems) combined with low “empathizing” (drive to understand
and connect with people, socially and emotionally; Baron-Cohen,
2009). Under this systemizing-empathizing theory, persons
expressing high levels of autism spectrum psychological traits
are predicted to engage in, or plan to enter, professions that
involve systemizing, especially engineering and the physical,
mathematical and technical sciences. This prediction of the
theory has received considerable, though not fully unequivocal,
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support (Baron-Cohen et al., 1997, 1998, 2007; Windham et al.,
2009; Campbell and Wang, 2012; Roelfsema et al., 2012; Spek
and Velderman, 2013; Wei et al., 2013). In contrast to these
results, schizophrenia and mood disorders are associated with
professions in the arts and humanities, across a diverse array of
studies (Nettle, 2006; Kyaga et al., 2011; Campbell and Wang,
2012; Crespi et al., 2016).

Associations of autism with technical professions, in the
context of autism’s links with intelligence, raise the issue of
whether intelligence, as measured by tests of IQ, varies in relation
to profession. This controversial topic has been addressed in
a suite of studies, all of which report that more-technical
professions or occupational plans, especially in engineering,
the physical sciences, and mathematics, are associated with
relatively high IQs or strong correlates of IQ (Wolfle and Oxtoby,
1952; Hauser, 2002; Wai et al., 2009; Eysenck, 2012 p. xi).
The psychological, sociological, and economic causes of these
findings are ambiguous, but the results, taken at face value and
in conjunction with the vocational correlates of autism, support
the hypothesis that the autism spectrum is associated in some
manner with relatively high intelligence.

In the context of Baron-Cohen’s systemizing-empathizing
hypothesis, these findings appear somewhat problematic,
because systemizing, as measured by the Systemizing Quotient
questionnaire, appears to be uncorrelated with IQ (Ling et al.,
2009). Given the diversity of causes of autism, this condition
may, however, certainly be associated with both systemizing and
high, imbalanced intelligence, even if the two are not connected
in simple or direct and causal ways.

Assortative Mating
Positive assortative mating, the mating between individuals who
are relatively-similar for a given phenotype or genotype, results
in a disproportionate concentration of the relevant alleles among
offspring, an increase in additive genetic variance for the trait,
and a concomitant rise in heritability (Plomin and Deary, 2015).
Humans mate positively assortatively for a wide variety of
phenotypes, with intelligence as one of the traits exhibiting the
highest correlation between mates, on the order of 0.40–0.60
(Escorial and Martín-Buro, 2012; Plomin and Deary, 2015). To
the extent that high intelligence potentiates imbalance in the
components of intelligence due to either increases or reductions
in its parts, strong assortative mating for intelligence is expected
to intensify its effects.

Is there also assortative mating for autism or autism spectrum
traits? Baron-Cohen et al. (2006) describe evidence of assortative
mating between couples who are both high in the autism-
associated psychological trait of systemizing. This hypothesis is
supported, for example, by findings that both fathers andmothers
of children with ASD exhibit elevated rates of systemizing-related
occupations in their fathers (Baron-Cohen et al., 1997), as well
as both showing high performance on the EFT (Baron-Cohen
and Hammer, 1997). The most direct evidence for assortative
mating for autistic phenotypes comes from Nordsletten et al.
(2016), who reported much higher rates of assortative mating
by psychiatric diagnosis for adults with ASDs (0.45–0.48), than
for any other of a large set of disorders. To the extent that

autism is genetically correlated with metrics of high intelligence
(as described above), these findings indicate that humans mate
positively assortatively not just for intelligence, but also for
the autism-associated genetic underpinnings of intelligence.
Genetic consequences for offspring would thus include both
high intelligence and elevated risk of autism, provided that,
under the intelligence-imbalance hypothesis addressed here,
this process also involved dysregulation of one or more of its
components. Further evaluation of this hypothesis would benefit
from determining the degree to which positive assortative mating
also occurs for autism-related cognitive phenotypes in non-
clinical populations, data which would indicate the generality and
strength of any such effects.

DISCUSSION

Risk and expression of autism is mediated by alterations to
adaptive, evolved cognitive systems, and human intelligence
represents one of the most important and pervasive changes
along the human lineage and a principal source of cognitive
variation among individuals. In this article, I have described the
novel paradox that autism is positively genetically correlated with
high intelligence, even though individuals with autism tend to
have substantially lower IQs than controls. I then evaluated the
idea that the paradox can be resolved under the hypothesis that
autism involves high yet imbalanced intelligence, such that some
or most components of intelligence are increased, but in such a
way that overall performance is often reduced. This hypothesis
extends previous studies of intelligence in relation to autism (e.g.,
Dawson et al., 2007; Hayashi et al., 2008; Nader et al., 2016)
by providing the first comprehensive integration of the study of
intelligence with the study of this condition, in the context of
a novel “high and imbalanced intelligence” model that provides
specific predictions and guidance for future work. The primary
conclusions and implications from testing the hypothesis are
four-fold.

First, the psychometric structure of human intelligence, as
encompassed by the VPR model and the fluid/crystallized
dichotomy, corresponds well with the differences in cognitive
profiles between individual with autism and controls. Autism
thus involves absolutely or relatively enhanced abilities in
the Perceptual domain, but reduced or preserved Verbal and
Rotation skills, and absolutely or relatively enhanced fluid
intelligence, but reduced or preserved crystallized intelligence.
Given that Perceptual domain tasks and tests quantify visual-
spatial, sensory discrimination, mechanistic, scientific, and
attentional abilities and motivations (Johnson and Deary, 2011),
such enhancements are consistent with a large body of previous
work on autism but can serve to unify and connect such
skills with their neurological and genetic bases. The VPR
model can also help to explain the male bias in autism
as related to increased focus of attention, reduced verbal
skills, and enhanced image rotation ability (or components
thereof), given that these patterns emerge from the VPR model
once the effects of g are controlled. Considered together,
these results imply that although major aspects of intelligence
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differ between individuals with autism and controls, the
differences align with the evolved, neurologically-based axes
of cognitive architecture that underlie human mental abilities.
Finally, this model may help to frame hypotheses for the
autism-related co-variation in perceptual abilities described
by Meilleur et al. (2014), perhaps as a manifestation of the
increased importance of this facet of intelligence in autistic
cognition.

The main implications of these results are that they provide a
non-arbitrary, well-validated context (the theory of intelligence)
for the interpretation of differences between individuals with
and without autism, and they should motivate novel and
comprehensive integration of the study of intelligence with the
study of autism. With regard to treatments for autism, such
integration is useful because it indicates that imbalances in
components of intelligence, and their neural underpinnings,
may represent novel and malleable targets for individualized
therapies that seek to increase the degree of balance, thereby
reducing autism symptoms and enhancing everyday social and
non-social functioning and well-being. In both phenotypic and
genetic contexts, future studies of intelligence in autism might
usefully focus on individuals with autism that is apparently
mediated by polygenic (rather than monogenic, oligogenic,
or syndromic) effects, given that only such causes of autism
are expected to be directly relevant to its positive genetic
correlation with intelligence. Do such individuals have “too
many,” or a biased neurological-associated set, of alleles for high
intelligence? What developmental and molecular pathways are
affected by such sets of genes, and can they also serve as foci for
therapies?

Second, a broad swath of correlates of autism, including large
brain size, fast brain growth, increased sensory and visual-spatial
abilities, enhanced synaptic functions, increased attentional
focus, high socioeconomic status, more deliberative decision-
making, profession and occupational interests in engineering
and physical sciences, and high levels of positive assortative
mating, also represent strong correlates of intelligence (Figure 4).
These findings broadly support the high, imbalanced intelligence
hypothesis, although targeted tests are required for more-robust
evaluation. Future studies can usefully focus on how these
joint correlates of autism and intelligence are related to one
another, especially across levels from genes to neurobiology and
psychological traits.

Third, the theory and results described here are largely
consilient with three of the major psychological theories of
autism, systemizing-empathizing bias (Baron-Cohen, 2009),
enhanced perceptual function (Mottron et al., 2006), and the
intense world (Markram and Markram, 2010), although they
ground the patterns supporting each theory in a specific domain
of human adaptation, intelligence. This compatibility of theories
need not imply that autism has one or few specific causes
at the genetic, neurological, and psychological levels—it has
many—but it focuses attention on what information will be
most useful to collect, to differentially diagnose the causes of
autism for each specific individual. What alleles are related to
what components of intelligence under the VPR model, and
what is their overlap with alleles underlying different phenotypes

FIGURE 4 | Autism and intelligence are genetically correlated with one

another, indicative of a shared genetic basis, and they share

phenotypic correlations or associations with a broad suite of traits.

These patterns suggest that autism risk is mediated in part by high, but

imbalanced, components of intelligence.

found in autism? What neurological processes underlie negative
associations between focal and diffuse attention, and verbal vs.
rotational abilities (Johnson et al., 2008), and how do they relate
to neurological differences among individuals with autism?More
generally, what developmental and neurological components of
intelligence are altered in autism, and how? And how can the
genes, neurodevelopment, and psychology of each individual
with autism, or subsets of individuals, be fit within these
frameworks?

Fourth, comparisons of autism with schizophrenia for the
genetic and phenotypic correlates of intelligence described here
support the hypothesis that these two sets of conditions can
be regarded as psychiatric, psychological, neurological and
genetic “opposites,” especially as evidenced by consistent negative
genetic correlations of schizophrenia risk with measures of
intelligence. Jung (2014) indeed contrasts intelligence and the
autism spectrum as diametric to creativity and the schizophrenia
spectrum (see also Figure 1 in Crespi et al., 2016; Krapohl
and Plomin, 2016), as two major, inversely-associated domains
of human cognition. Inverse associations of intelligence with
personality correlates of imagination (Openness and apophenia,
defined as seeing pattern where none exists) are also supported
by factor-analytic studies of personality structure, and by
studies that relate working memory, white matter tract integrity,
and dopaminergic neurotransmission to both intelligence and
imagination (DeYoung et al., 2012). To the extent that autism
represents most broadly a disorder of high intelligence (and low
imagination), and schizophrenia a disorder of high imagination
(and low intelligence), studying these psychiatric conditions will
also provide novel insights into variation among neurotypical
individuals, and human cognitive architecture, at their largest
and smallest scales, with important implications for such
fields as artificial intelligence and cognitive enhancement (e.g.,
Minzenberg et al., 2008; Blaser et al., 2014).

The primary limitations of the hypotheses and predictions
evaluated here are that intelligence, as measured in most
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standardized tests, does not quantify aspects of social and
emotional phenotypes that are also highly relevant to disorders
such as autism and schizophrenia. Moreover, some key questions
remain unresolved, such as how and why especially-high
intelligence in one domain would tend to reduce intelligence
test scores overall, how and why systemizing and empathizing
are related to intelligence and its components (as well as
genetic underpinnings), and how autism risk is mediated by
polygenic effects, many of which apparently involve alleles for
high intelligence, as well as by monogenic or oligogenic effects,
which are expected to be deleterious and cause dysfunctions.
Addressing these and other questions will require integration
of data from evolutionary biology, genetics, the study of
intelligence, and autism, and testing of hypotheses that involves
spanning across these levels of analysis and theory.
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