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Introduction
Building sophisticated and dynamic macromolecular machines is 
a hallmark of cellular life. In eukaryotic cells, one such highly 
complex multiprotein assembly is the nuclear pore complex 
(NPC). NPCs, which mediate bidirectional exchanges of mole-
cules between the nucleus and the cytoplasm, are embedded 
within the nuclear envelope (NE) at fusion points between the  
inner and the outer nuclear membranes (for review see Tran and 
Wente, 2006). Proteomic and genetic analyses of budding yeast 
and mammalian NPCs have detailed their protein composition 
(Rout et al., 2000; Cronshaw et al., 2002; for review see D’Angelo 
and Hetzer, 2008). NPCs are composed of multiple copies of 
30 proteins, called nucleoporins (Nups), most of which can be 
biochemically isolated as subcomplexes. Knowledge on the spatial 

organization of NPC components has recently been refined by the 
computational integration of biochemical data into a map of the 
yeast NPC (Alber et al., 2007a,b) and by the availability of 3D 
structures for an increasing number of Nups (for review see 
Brohawn et al., 2009).

Over the last several years, major insights have also been 
gained into the mechanisms of NPC assembly. In organisms that 
undergo an open mitosis in which the NE breaks down and NPCs 
dismantle, nuclear pore assembly can follow two pathways: de novo 
NPC biogenesis that allows the insertion of new NPCs into an  
intact NE during interphase, and postmitotic NPC reassembly 
that is tightly coordinated with NE reformation (for review see 
Fernandez-Martinez and Rout, 2009). The latter process has been 
extensively studied, and the chronological recruitment of differ-
ent factors is now well established. At an early step, ELYS/MEL-28 
binds to chromatin and recruits the Nup107-160 subcomplex, 

The biogenesis of nuclear pore complexes (NPCs)  
represents a paradigm for the assembly of high- 
complexity macromolecular structures. So far, only 

three integral pore membrane proteins are known to func-
tion redundantly in NPC anchoring within the nuclear  
envelope. Here, we describe the identification and functional 
characterization of Pom33, a novel transmembrane protein 
dynamically associated with budding yeast NPCs. Pom33 
becomes critical for yeast viability in the absence of a func-
tional Nup84 complex or Ndc1 interaction network, which 
are two core NPC subcomplexes, and associates with the 

reticulon Rtn1. Moreover, POM33 loss of function impairs 
NPC distribution, a readout for a subset of genes required 
for pore biogenesis, including members of the Nup84 com-
plex and RTN1. Consistently, we show that Pom33 is re-
quired for normal NPC density in the daughter nucleus and 
for proper NPC biogenesis and/or stability in the absence 
of Nup170. We hypothesize that, by modifying or stabiliz-
ing the nuclear envelope–NPC interface, Pom33 may con-
tribute to proper distribution and/or efficient assembly of 
nuclear pores.
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of this complex, we previously undertook a systematic synthetic 
lethal screening of the collection of nonessential gene deletions 
using as bait a strain lacking one of the Nup84 complex subunits, 
Nup133 (Loeillet et al., 2005). Among the candidate genes of  
unknown function identified in the screen, three encoded proteins 
reportedly localized at the NE or ER according to the systematic 
annotation of the localization of GFP-tagged yeast proteins (Huh 
et al., 2003). One of them was Apq12, which was demonstrated 
in the meantime to be a transmembrane NE/ER protein function-
ally linked to nuclear pores (Scarcelli et al., 2007), whereas  
the second one, renamed Pml39, is associated with NPCs and 
functions in mRNA quality control before export (Palancade  
et al., 2005).

In this study, we have characterized the third NE-associated 
protein identified in our genetic screen. We show that this protein, 
renamed Pom33 (pore membrane protein, 33 kD), is an evolu-
tionarily conserved membrane protein that is functionally linked 
to NPC components and required for proper NPC assembly and/or  
stability in S. cerevisiae.

Results
POM33 displays genetic interaction with 
NUP133 and encodes a previously 
uncharacterized transmembrane protein 
localized at NPCs
Systematic synthetic lethal screening of the collection of non
essential gene deletions using the nup133 mutant as bait iden-
tified the YLL023c open reading frame (ORF), which encodes a 
33 kD protein with several putative transmembrane helixes 
(subsequently termed Pom33, see the following paragraph).  
Although deletion of YLL023c/POM33 did not impair growth at 
any temperature, its genetic interaction with NUP133 was con-
firmed by the enhanced growth defect of yll023c nup133 
mutant cells as compared with nup133, which was recorded at 
all temperatures tested (see Fig. 4 A).

Fluorescence microscopy analysis of Yll023c C-terminally 
tagged at its genomic locus with GFP revealed a punctuate  
labeling at the NE (Fig. 1 A). The genetic interaction of YLL023c 
with NUP133 prompted us to analyze whether Yll023c was 
associated with nuclear pores. For this purpose, Yll023c was 
assayed for colocalization with clustered NPCs in nup133 
mutant cells. Unlike yll023c, YLL023c-GFP did not enhance 
the growth defect of nup133 cells (unpublished data), which 
suggests that the Yll023c-GFP fusion protein is functional. In 
nup133 cells, all the NE-associated Yll023-GFP relocalized in 
foci coinciding with Nup49-mCherry clusters (Fig. 1 A), which 
indicates that Yll023c specifically associates with NPCs. Be-
cause this protein contains transmembrane helixes (Fig. S1 C 
and the following section), YLL023c was subsequently desig-
nated POM33 (pore membrane protein, 33 kD).

To further characterize the localization of Pom33, immuno
gold labeling on cryosections of Pom33-GFP cells was per-
formed using polyclonal anti-GFP antibodies and the mAb414 
antibody that labels yeast NPCs (Aris and Blobel, 1989).  
In control cells, anti-GFP–bound gold particles were rarely de-
tected at the NE and never at NPCs (Fig. 1 C, b). In contrast, a 

in a Ran-dependent manner, to form pre-pore structures to which 
membrane vesicles or sheets containing the pore membrane pro-
teins Pom121 and Ndc1 subsequently associate. The sequential 
recruitment of the remaining soluble pore subcomplexes then  
allows completion of NPC assembly (for review see Antonin et al., 
2008; Kutay and Hetzer, 2008).

Much less is known about the molecular mechanisms in-
volved in de novo NPC biogenesis, the only process accounting for 
NPC assembly in yeasts that undergo a closed mitosis. A genetic 
screen for Saccharomyces cerevisiae NPC assembly mutants ini-
tially revealed the contribution of the Ran GTPase cycle to this 
process (Ryan et al., 2003, 2007). Using a cell-free assay, 
D’Angelo et al. (2006) demonstrated that de novo NPC bio
genesis during NE expansion in interphase Xenopus laevis nuclei 
shares common players with postmitotic NPC assembly, includ-
ing, in addition to Ran and karyopherin , the Nup107-160 
complex (D’Angelo et al., 2006). In addition, major vault 
protein-containing particles were recently reported to contribute 
to this process (Vollmar et al., 2009).

Because de novo pore insertion requires local fusion events 
between the inner and outer NE membranes, integral membrane 
proteins are anticipated to play a key role in this process. Among 
the three integral membrane Nups identified so far in yeast and 
vertebrates, only Ndc1 is universally conserved in eukaryotes 
(Stavru et al., 2006; Mansfeld et al., 2006). In S. cerevisiae, the 
three pore membrane proteins, Ndc1, Pom34, and Pom152, form 
a trimeric complex that binds to Nup53 or Nup59, which in turn 
interact with Nup157 and Nup170, generating an interaction net-
work critical for NPC assembly (Madrid et al., 2006; Onischenko 
et al., 2009; Flemming et al., 2009; Makio et al., 2009). Besides 
these bona fide Nups, proper NPC assembly was also shown to 
involve the inner nuclear membrane–associated protein Esc1 
(Lewis et al., 2007); Apq12 and Brr6, two NE/ER integral mem-
brane proteins contributing to lipid homeostasis (Scarcelli et al., 
2007; Hodge et al., 2010); and the RSC chromatin-remodeling 
complex (Titus et al., 2010). Finally, a recent study pointed to a 
role of members of the reticulon (Rtn) and Yop1/DP1 families in 
de novo NPC assembly. These integral membrane proteins were 
previously demonstrated to have membrane-bending properties 
and to be involved in both tubular ER maintenance and post
mitotic NE formation (Kiseleva et al., 2007; Audhya et al., 2007; 
Anderson and Hetzer, 2008; Hu et al., 2008; for review see Yang 
and Strittmatter, 2007). Dawson et al. (2009) further showed that 
S. cerevisiae Rtn1 and Yop1 are partially localized at NPCs and 
that their codeletion leads to a NPC clustering phenotype. In ad-
dition, antibody-mediated inhibition of vertebrate Rtn4a inhib-
ited de novo NPC formation in a cell-free assay based on X. laevis 
egg extracts, which suggests a conserved function of Rtns in 
pore assembly (Dawson et al., 2009).

In S. cerevisiae, deletion of genes encoding several mem-
bers of the Nup84 complex (the counterpart of the vertebrate 
Nup107-160 complex) also leads to a constitutive NPC clustering 
phenotype (for review see Doye and Hurt, 1997). The Nup84 
complex is also required for mRNA export, a function shared by 
the Nup107-160 complex (Doye and Hurt, 1997; Vasu et al., 
2001), and for maintenance of appropriate sumoylation patterns 
(Palancade et al., 2007). To gain further insights into the function 
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797Pom33, a novel transmembrane nucleoporin • Chadrin et al.

Figure 1.  Pom33, and to a lower extent its paralogue Per33, are associated with NPCs. (A and B) Fluorescence microscopy analysis of Pom33-GFP (A)  
and Per33-GFP (B) in wt and nup133 cells expressing Nup49-mCherry. Spinning disk confocal images of single-channel fluorescence for GFP and 
mCherry are shown (left) as well as the merge (right). Bar, 5 µm. (C) Immunolocalization of GFP-tagged Pom33 at nuclear pores. Cryosections of Pom33-
GFP cells were successively labeled with anti-GFP (detected using ProtA 10-nm gold particles) and with mAb414 (detected using ProtA 15-nm gold par-
ticles). (a) Typical patterns of Pom33-GFP localization at NPCs (detected based on NE structure and mAb414 labeling) as well as a section encompassing 
a nucleus are presented. Arrows point to 10-nm gold particles recognizing the GFP moiety of Pom33-GFP at nuclear pores. Arrowheads point to 10-nm 
gold particles localized outside of the NE. The cytoplasmic faces of the NE are oriented toward the top of each micrograph. (b) Statistical analysis of the 
distribution of anti-GFP–associated gold particles in control (expressing no GFP fusion protein), Pom33-GFP, Per33-GFP, and Ndc1-GFP cells. For each 
strain, the total number of anti-GFP–associated gold particles (n1) and of cryosectioned cells (n2) analyzed, as well as the percentage of GFP-associated 
gold particles localized at NPCs relative to the entire NE (NPC + NE), are indicated.
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Moreover, Per33-GFP was still present at the nuclear periphery 
in nup133 cells, although a minor fraction of this fusion pro
tein colocalized with Nup49-mCherry aggregates (Fig. 1 B). 
Consistently, immunogold labeling of Per33-GFP cryosections 
revealed an increased proportion of gold particles outside the NE 
and a less significant enrichment of gold particles at NPCs over 
the entire NE as compared with Pom33-GFP or Ndc1-GFP cells 
(Fig. 1 C, b). Finally, FLIP experiments indicated that Per33-
GFP dynamically exchanges between the ER and the NE, with 
kinetics similar to those displayed by Sec61-GFP (Fig. 2).  
Because Ylr064w can associate with NPCs, but unlike Pom33  
is mainly associated with the ER/NE, YLR064w was renamed 
PER33 (pore and ER protein, 33 kD).

A phylogenic analysis revealed that Pom33 and Per33 
belong to a protein family conserved during evolution (Fig. 3 A).  
Unlike in S. cerevisiae and more generally in the Saccharo
mycotina clade, only one orthologue was found in all other species. 
In vertebrates, this orthologue was previously termed TMEM33 
(transmembrane No. 33). Fluorescence analysis of stable HeLa 
cell lines, mildly overexpressing GFP-HsTMEM33 as compared 
with endogenous HsTMEM33 (5–10-fold as established by 
RT-PCR analyses; unpublished data), revealed that this fusion 
protein localized to the NE and the ER, with a significant enrich-
ment at the NE as compared with protein disulfide isomerase 
(PDI), a luminal ER protein, or to BAP31, an integral membrane 
protein of the ER (Fig. S1, A and B). Although the significant 
fraction of GFP-HsTMEM33 localized at the ER could be partly 
attributed to its mild overexpression, this localization may also 
reflect the fact that in vertebrates, TMEM33 fulfills the function 
of both S. cerevisiae Pom33 and Per33.

Sequence analyses revealed that Pom33, Per33, and  
HsTMEM33 (as well as the various TMEM33 family members 
in other species) share three long hydrophobic regions of 38–46 
amino acids, each potentially fitting two transmembrane helices 
(Figs. 3 B and S1 C; see Discussion). Moreover, a recent large-scale  

significant fraction of anti-GFP–bound gold particles colocal-
ized with mAb414 at NPCs in Pom33-GFP cells (Fig. 1 C). 
Quantitative analysis of the distribution of anti-GFP–bound 
gold particles in Pom33-GFP cells revealed that 60% of the  
NE-associated gold particles were localized at NPCs, a fraction 
comparable to the one obtained with similarly processed cells 
expressing Ndc1-GFP (Fig. 1 C, b). The increased cytoplasmic 
fraction of anti-GFP–bound particles detected in Pom33-GFP 
cells as compared with Ndc1-GFP cells probably represents an 
ER-associated pool of Pom33 (Fig. 1 A).

Because a minor fraction of Pom33-GFP also localizes 
within the ER, fluorescence loss in photobleaching (FLIP) was 
used to investigate its dynamics between these two compart-
ments. As controls, the dynamics of GFP-tagged versions of 
Ndc1 and of Sec61, a subunit of the translocon that localizes to 
both the cortical and perinuclear ER, was similarly analyzed. As 
shown in Fig. 2, repetitive photobleaching of a small area of the 
cortical ER led to a decay in Pom33-GFP fluorescence within 
the NE that was significantly faster as compared with the one 
displayed by Ndc1-GFP (Fig. 2). Yet, as best revealed upon 
comparison of the variations of the nucleus/ER fluorescence  
ratio over time (Fig. 2 C), Pom33 exchanges between these two 
compartments in a slightly less dynamic fashion than Sec61. 
Together, these data therefore indicate that Pom33 behaves as a 
dynamic transmembrane Nup.

Pom33 and its paralogue, Per33,  
are evolutionarily conserved 
transmembrane proteins
Database analyses revealed that YLL023c/POM33 has a para-
logue in S. cerevisiae, namely the nonessential YLR064w gene 
(subsequently termed PER33). Unlike Pom33-GFP, subcellular 
localization analysis of Ylr064w/Per33-GFP revealed a more 
typical ER localization, with no major enrichment at the nuclear 
periphery when compared with cortical ER staining (Fig. 1 B). 

Figure 2.  Pom33 is a dynamic component of nuclear pores. (A) FLIP analysis in Ndc1-GFP–, Pom33-GFP–, Per33-GFP–, and Sec61-GFP–expressing cells. 
Shown are confocal microscopy images of representative cells before photobleaching and after 15–20 bleaching pulses (100 s). The cell shape is out-
lined in white and the bleached area within the cortical ER is outlined in yellow. Bar, 2 µm. (B) For each strain, the fluorescence decay in the nucleus (closed 
symbols) and in the ER (open symbols) was quantified as described in Materials and methods. Each curve represents the mean of a least 16 independent 
cells. SD is also indicated. (C) For each cell, the ratio of fluorescence in the nucleus over the ER, normalized to 1 at t = 0, was quantified at each time point. 
The median value and SD (error bars) are plotted over time.

http://www.jcb.org/cgi/content/full/jcb.200910043/DC1
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Figure 3.  S. cerevisiae Pom33 and Per33 and human TMEM33 are evolutionarily conserved NE/ER-associated proteins. (A) Phylogenic tree of S. cerevisiae 
Pom33 and Per33 homologues. The tree, based on ClustalW alignment of sequences identified by BLAST searches using ScPom33, ScPer33, and HsTMEM33 
(highlighted in bold), was constructed with the Jalview software (www.jalview.org; Waterhouse et al., 2009) based on the percentage of identity between the 
proteins. (B) ClustalW alignment of ScPom33, ScPer33, and HsTMEM33. Identical residues are colored in black, and similar residues are colored in gray. Aster-
isks in the consensus line denote residues that are identical in all three proteins sequences, and periods indicate residues that are either identical or similar in at 
least two out of the three sequences. Approximate positions of the hydrophobic stretches are shown on top of the alignment (black line, see also Fig. S1 C).

http://www.jcb.org/cgi/content/full/jcb.200910043/DC1
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study using a topology reporter determined experimentally that 
the C termini of both Pom33 and Per33 are located in the cyto-
solic/pore face of the membrane (Kim et al., 2006). Various pro-
grams further predicted that Pom33, Per33, and HsTMEM33 are 
multipass transmembrane proteins, with the N and C termini both 
positioned on the cytosolic/pore face (Fig. S1 C). Consistently, 
topology analysis of HsTMEM33, based on the accessibility of 
the GFP tags within HsTMEM33-GFP and GFP-HsTMEM33 
upon digitonin treatment of transfected HeLa cells, revealed that 
the N- and C-terminal domains of HsTMEM33 are both posi-
tioned on the cytoplasmic/pore face of the NE/ER (Fig. S1 B).

POM33 genetically interacts with a  
subset of Nups including members of 
the Nup84 complex and of the Ndc1 
interaction network
Analysis of pom33 per33 cells did not reveal any growth de-
fect as compared with wild-type (wt) cells, which indicates that 
these paralogous genes do not perform an essential redundant 
function (Fig. 4 A). Analysis of the per33 nup133 double 
mutant revealed a synergistic growth defect that was however 
only detected at 30°C and 37°C (Fig. 4 A). As a result of an ad-
ditive effect, cell growth was further impaired at 30°C and 37°C 
in the pom33 per33 nup133 triple mutant (Fig. 4 A).

To gain insight into the function of Pom33 and Per33, we 
then investigated whether genetic interactions occurred be-
tween POM33 or PER33 and genes encoding other proteins 
physically or functionally associated with NPCs. This analysis 
revealed impaired growth of nup120 cells upon deletion of 
POM33, but not PER33 (Figs. 4 B and S2 A), which strength-
ens the evidence for a genetic connection between POM33 and 
members of the Nup84 complex. This study also uncovered a 
strong genetic interaction between pom33 (but not per33) 
and nup159-1, which carries a mutation within an essential  
cytoplasmic Nup contributing to mRNA export and NPC distri-
bution (Figs. 4 B and S2 C; Gorsch et al., 1995). Interestingly, 
a synergistic growth defect was also observed when pom33 or 
per33 were combined with deletion of NUP170, but not of its 
orthologue NUP157 (Figs. 4 B and S2, B and F). In contrast, 
deletion of POM33, PER33, or both POM33 and PER33 in 
pom34 pom152 cells did not lead to any synergistic growth 
defect at any temperature (Figs. 4 B and S2 E). Because of the 
strong growth defects caused by the ndc1 alleles available,  
it was difficult to assess their synergistic interactions with 
pom33. However, we observed that mild overexpression of 
Pom33 or Per33 partially rescued the temperature-sensitive 
growth defect of the ndc1-39 mutant that affects NPC assem-
bly, but not of the ndc1-1 mutant that was reported to mainly 
affect spindle pole body insertion (Fig. 4 C and not depicted; 
Chial et al., 1998; Lau et al., 2004).

The rtn1 yop1 mutant was recently demonstrated to 
genetically interact with mutants in genes encoding Poms and a 
subset of structural Nups (Dawson et al., 2009). However, the 
pom33 per33 rtn1 yop1 quadruple mutant displayed no 
growth defects at any temperature (Figs. 4 B and S2 H). Finally, 
no synergistic growth defect could be detected when pom33 
was combined with nup188, nup60, or with mutants in genes 

encoding non-NPC ER/NE proteins (apq12, nem1, and brr6-1; 
Figs. 4 B and S2 G; and not depicted).

Collectively, these data thus reveal strong genetic connec-
tions between POM33 and a subset of Nups, notably with two 
structural NPC subcomplexes: the Nup84 complex and the 
Ndc1 interaction network. PER33 exhibits a more restricted 
pattern of genetic interactions, with the most prominent connec-
tion being to the Ndc1 interaction network, which indicates that 
although only a minor fraction of Per33 is localized at NPCs, it 
might fulfill partially overlapping functions with Pom33.

Pom33 physically interacts with Rtn1,  
a Rtn family member functionally linked  
to NPCs
To identify proteins physically interacting with Pom33, the 
protein tagged with three IgG-binding domains of protein A 
(ProtA) was affinity-purified from yeast cells, and the copuri-
fying proteins were analyzed by SDS gels followed by silver 
staining. This analysis revealed species migrating at 35–40 kD 
in the Pom33-ProtA fraction that were not detected in the 
control sample (unpublished data). Comparative mass spec-
trometry analysis of the proteins present within this area of the 
gel, as well as systematic mass-spectrometry analysis of all pro-
teins copurifying with Pom33, led to the identification of the 
Rtn protein Rtn1 as one of the major species specifically present 
in the Pom33-ProtA fraction (17% coverage, see Materials and 
methods). Similar affinity purification from cells expressing ei-
ther Rtn1-GFP or Yop1-GFP confirmed the interaction between 
Pom33 and Rtn1 but revealed no significant interaction between 
Pom33 and Yop1 (Fig. 5 A). Unexpectedly, Pom33-ProtA co-
precipitated GFP-tagged Rtn1 more efficiently than rtn1-K48I, 
a mutant previously demonstrated to be enriched at the NE and 
to more efficiently complement the lethality of the pom34 
nup59 mutant, as compared with wt Rtn1 (Fig. 5 A; Shibata 
et al., 2008; Dawson et al., 2009). However, fluorescence analy-
sis performed in nup133 cells revealed that unlike Rtn1-GFP, 
rtn1-K48I-GFP is not specifically enriched at the clustered 
NPCs (Fig. 5 B). This result, along with the absence of a specific 
interaction between Pom33-ProtA and Dpm1, a transmembrane 
protein of the ER (Orlean et al., 1988), confirmed the specificity 
of the interaction between Pom33 and Rtn1, and further sug-
gests that Pom33 may interact with the NPC-associated fraction 
of Rtn1. Finally, Western-blot analyses of proteins copurifying 
with Pom33-ProtA or Pom34-ProtA confirmed the strong inter-
action between Pom34 and Pom152 (Onischenko et al., 2009) 
and further revealed a modest interaction between Pom33-ProtA  
and Pom152 and between Pom34-ProtA and Rtn1-GFP (Fig. 5 C). 
Together, these data thus indicate that Pom33 physically inter-
acts, albeit possibly indirectly, with Rtn1.

Nucleocytoplasmic transport is not 
drastically impaired in the pom33 mutant
To functionally characterize Pom33, nucleocytoplasmic transport 
was analyzed in pom33 cells. In vivo analysis of the nuclear  
import of Mig1-GFP-LacZ (De Vit et al., 1997) and of the local-
ization of the NLS–GFP2–nuclear export signal (NES) reporter 
(Stade et al., 1997) revealed no defect in the classical NLS- or  

http://www.jcb.org/cgi/content/full/jcb.200910043/DC1
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Figure 4.  POM33 displays genetic interactions with core components of NPC. (A) Growth properties of wt, pom33, per33, nup133, and of cor-
responding double and triple mutants. Equivalent amounts of cells were spotted as fivefold dilutions on YEPD plates, and were incubated for 5 d at 18°C 
or for 3 d at 25, 30, and 37°C. (B) Summary of the genetic interactions between pom33, per33, or pom33 per33, and Nups or NE/ER mutants. 
Synthetic interactions were scored as: SS, strong synergistic interaction; S, synergistic interaction; V, viable; n.d., not determined. The temperature above 
which the synthetic phenotype was observed is indicated. Footnote a, see Fig. 4 A; footnote b, see Fig. S2; *, note that PER33 deletion partially rescues 
the pom33 nup133 synthetic phenotype at 18°C. (C) Growth assay of ndc1-39 mutant cells transformed with an empty pRS315 plasmid (ø), with 
centromeric (cen), or with multicopy (2µ) plasmids encompassing the POM33 or PER33 genes. Transformants were spotted as fivefold dilutions on selective 
medium, and plates were incubated for 3 d at the indicated temperatures.

http://www.jcb.org/cgi/content/full/jcb.200910043/DC1
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NES-mediated transport pathways in pom33 cells (unpublished 
data). Similarly, no defect was detected in the kinetics of import 
of the Nab2-NLS-GFP reporter, recently reported to be impaired 
in the rtn1 yop1 NPCs clustering mutant (Fig. S3, A and B; 
Dawson et al., 2009). Finally, fluorescence in situ hybridization 
only revealed a very mild accumulation of poly(A)+ RNA in the 
nucleus of a fraction of pom33 cells (Fig. S3 C). Although we 
cannot exclude that Pom33 may be required for efficient import 
or export of other specific cargos, these data indicate that Pom33 
is only modestly involved in nucleocytoplasmic transport.

NPC distribution is altered in pom33 but 
not in per33 cells
The genetic or physical interactions between Pom33 and proteins 
required for NPC assembly prompted us to analyze the localiza-
tion of individual Nups in pom33 cells. Unlike in wt or per33 
cells (see Fig. 8 A), live imaging of pom33 cells revealed 
clusters of Nup84-GFP colocalizing with Nup49-mCherry at 
the nuclear periphery (Fig. 6 A). A similar localization within 
NPC clusters was also recorded for all the GFP-tagged Nups  

analyzed, namely Nup159 (a cytoplasmic FG-Nup), Nup60, 
and Mlp2 that localize at the nuclear basket; Ndc1, Pom34, and 
Pom152 (the transmembrane Nups); and Nup157, a structural 
Nup of the inner ring (Fig. 6 B and not depicted). Unlike these 
various Nups, the inner nuclear membrane protein Asi1 tagged 
with GFP did not colocalize with clustered NPCs labeled by 
Nup49-mCherry, and its localization was not otherwise altered 
in pom33 cells (Fig. 6 C). Together, these data indicated that 
POM33 deletion alters NPC distribution without inducing pro-
found alterations of the NE structure.

Consistent with this observation, thin-section EM analy-
ses of pom33 cells revealed the presence of NPC clusters that 
were not associated with major distortions of the NE structure 
(Fig. 7, D–J). In most cases, these NPCs appeared, as in wt 
cells, as electron-dense structures spanning the two membranes 
of the NE (Fig. 7, arrowheads). Additional electron-dense struc-
tures that appeared to be associated with only one side of the 
NE were also observed in pom33 cells (Fig. 7, E–H and J,  
asterisks) and, albeit more rarely, in wt cells (Fig. 7 C, asterisk). 
These structures were somehow similar to those described in 

Figure 5.  Pom33 interacts with the Rtn protein Rtn1. (A) Affinity purification by IgG chromatography of Pom33-ProtA in Rtn1-GFP–, rtn1-K48I-GFP–, or 
Yop1-GFP–expressing strains. Total soluble extracts (inputs) and affinity-purified fractions (eluates, 2.5-fold equivalent for the anti–[]-ProtA and 2,500-fold 
equivalent for the other antibodies) from strains expressing (+) or not expressing () Pom33-ProtA were analyzed by Western blotting using the indicated 
antibodies. Dpm1 and the nucleolar protein Nop1 were used as controls. (B) Spinning disk confocal images of rtn1 nup133 cells expressing Rtn1-GFP 
or rtn1K48I-GFP and Nup49-mCherry. Note that unlike wt Rtn1, the rtn1-K48I mutant is not enriched at the clustered pores labeled with Nup49-mCherry. 
Bar, 5 µm. (C) Affinity purification by IgG chromatography of Pom33-ProtA or Pom34-ProtA in Rtn1-GFP–expressing cells. Total soluble extracts (inputs) and  
affinity-purified fractions (eluates, fivefold equivalent for the anti-ProtA and 2,500-fold equivalent for the other antibodies) were analyzed by Western blotting 
using the indicated antibodies. Black lines indicate that intervening lanes have been spliced out. Size markers on the sides of the gel blots indicate kD.

http://www.jcb.org/cgi/content/full/jcb.200910043/DC1
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Figure 6.  The pom33 mutant displays an NPC clustering phenotype. (A) The localization of Nup84-GFP was analyzed in wt and pom33 cells carrying 
the Nup49-mCherry plasmid. Wide-field images of single-channel fluorescence for mCherry and GFP; merge and DIC images are also shown. (B) The 
localization of the indicated GFP-tagged Nups was analyzed by direct fluorescence microscopy in wt and pom33 cells. The bright Ndc1-GFP dots in wt 
and pom33 cells correspond to the spindle pole body. (C) Fluorescence microscopy analysis of the localization of the inner nuclear membrane protein 
Asi1-GFP in wt and pom33 cells expressing Nup49-mCherry. Bars, 5 µm.
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asymmetric distribution of Nup84-GFP between the mother and 
the bud nuclei of wt telophase cells that was significantly in-
creased in nup133 telophase cells (Fig. 8 A). A similar analysis 
revealed an altered incorporation of Nup84-GFP in the daughter 
nuclei of pom33 cells, comparable to the one observed in 
nup133 cells (Fig. 8 A). In contrast, PER33 deletion only in-
duced a slight increase of the Nup84-GFP M/B ratio and did not 
enhance the phenotype of pom33 cells (Fig. 8 A). This bias to-
ward the mother in Nup84-GFP fluorescence intensity did not 
merely reflect a defect in the nuclear or NE growth of pom33 
daughter nuclei, as probed using a soluble nuclear reporter 
(TetR-mCherry, see Fig. S4 A). An increased M/B ratio was also 
observed in pom33 cells upon fluorescence intensity quantifi-
cation of two other NPC markers: the cytoplasmic Nup159 and 
the symmetrically localized Nup49 (Fig. S4 B). In the latter case, 
however, the phenotype was more pronounced, likely reflecting 
the fact that Nup49-GFP is not fully functional (Fig. S4 B; Makio 
et al., 2009).

In nup133 and pom33 cells, the decreased density of 
pores in the daughter cell could have two possible origins: 
(1) a defect in de novo NPC biogenesis or stabilization in the bud 
nuclei, or (2) an altered transit of clustered and/or defective 
NPCs from the mother to the bud. However, the mean M/B ratio  

rtn1 yop1 cells and could, as proposed by Dawson et al. 
(2009), represent intermediates of NPC assembly. However, as 
similar observations were also made in other NPC-clustering 
mutants such as the nup82108 mutant, which affects a periph-
eral (cytoplasmic) Nup (Belgareh et al., 1998), these apparently 
distorted structures may also correspond to tilted views of NPCs 
that would be more frequently detected in NPC clustering mu-
tants because of the nearby distribution of multiple pores.

Pom33 is required for normal pore density 
in the daughter nucleus during telophase
Shcheprova et al. (2008) have previously demonstrated that from 
anaphase on, a barrier restricts the diffusion of outer-membrane 
proteins and large structures such as NPCs through the bud neck. 
Consequently, de novo NPC insertion is likely to significantly 
contribute to the number of NPCs in the bud nuclei in telophase 
cells. These authors further showed that in the pore assembly mu-
tants nup133 and to a lower extent nic96-1, the relative intensity 
of GFP-tagged Nup49 between the mother and the bud nucleus 
(subsequently called the mother/bud [M/B] ratio; see Materials 
and methods) is increased as compared with wt cells.

Using the structural Nup Nup84 as a reporter and in agree-
ment with Shcheprova et al. (2008), we observed a slightly 

Figure 7.  Thin-section EM analysis of the NE and NPCs in wt and pom33 cells. wt cells (A–C) and pom33 cells (D–J) were grown to early log phase 
at 30°C and processed for thin-section EM (as described in Materials and methods). Arrowheads point to typical NPCs and asterisks denote distorted 
NPC-like structures. Bar, 500 nm.

http://www.jcb.org/cgi/content/full/jcb.200910043/DC1
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was not significantly different between wt and pom33 cells 
in early anaphase cells (whose nuclei are just entering the bud; 
Fig. 8 B). This indicates that despite the clustering phenotype 
of pom33 cells, a similar fraction of NPCs passes through the 
bud in pom33 and wt cells during early anaphase, before the 
establishment of a tight diffusion barrier. In addition, disrupting 
BUD6 in the pom33 mutant partially decreased the M/B ratio 
of telophase cells as compared with the parental pom33 strain 
(Fig. S4 C), which indicates that alteration of the diffusion barrier  

allows clustered NPCs present in pom33 mother cells to reach 
the daughter nuclei. Finally, the altered M/B ratio observed in 
nup133 cells was partially rescued by a plasmid encoding the 
N-nup133 mutant allele, in which NPCs are still clustered 
(Fig. 8 A; Doye et al., 1994). Together, these data indicate that 
the altered M/B ratio observed in nup133 or pom33 cells is 
unlikely to solely result from a primary defect in NPC distribu-
tion, which suggests a contribution of Pom33 to efficient NPC 
biogenesis or stabilization in the daughter nucleus. However, the 

Figure 8.  Pom33 is required for normal pore density in the daughter nucleus in telophase. (A, a) Nup84-GFP fluorescence was analyzed by confocal 
microscopy in the indicated yeast strains. 3D reconstructions of total fluorescence from 13 planes covering the entire nuclei are shown. The cell shape of 
dividing cells is outlined in white. Bar, 5 µm. (b) The ratios of the total fluorescence intensity of Nup84-GFP in the mother versus the bud nuclei, quanti-
fied in telophase cells, are represented as box plots using KaleidaGraph (see Materials and methods). Mean values (m) and SD of the M/B ratios are 
indicated below the corresponding strains. *, 1010 < P < 5 × 103 compared with wt using the Student’s t test; ***, P < 1010. The total number of cells 
quantified is indicated (n; arising from at least two independent experiments). (B) M/B ratio distribution of Nup84-GFP fluorescence in wt and pom33 
cells at early anaphase, telophase, and G1 stages of mitosis was plotted as in A. Confocal images of Nup84-GFP at the corresponding stages, revealed 
by the cell shape outlined in white, are shown on top. Bar, 2 µm.
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of the NE, which was not associated with any significant 
alteration in nucleocytoplasmic transport pathways. This clus-
tering phenotype was observed in pom33 cells grown at all 
temperatures tested, and thus differed from the reversible pheno
type described in mutants affecting peripheral Nups such as 
nup159-1, nup82108, or gle2-1 (Gorsch et al., 1995; Murphy  
et al., 1996; Belgareh et al., 1998). EM images further revealed 
that pom33 cells do not exhibit major alterations of the NE, 
such as herniations documented previously for nup116, gle2-1, 
gle2, nup188, and brr6–1 (Wente and Blobel, 1993; Murphy 
et al., 1996; Zabel et al., 1996; Bailer et al., 1998; de Bruyn Kops 
and Guthrie, 2001; Hodge et al., 2010) or other NE abnormalities 
reported for mutants in genes encoding NE/ER-associated pro-
teins including Acc1, Spo7, Nem1, Npl4, or Apq12 (DeHoratius 
and Silver, 1996; Schneiter et al., 1996; Siniossoglou et al., 1998; 
Scarcelli et al., 2007). In addition, analysis of a representative 
panel of GFP-tagged Nups indicated that the clustered NPCs in 
pom33 cells apparently encompassed the entire Nup content. 
These NPC clusters are thus very distinct from the inner nuclear 
membrane–associated NPC-like structures or the punctuated cyto
plasmic foci described in mutants of the Ndc1 interaction net-
work or in apq12 cells, which only comprised subsets of Nups 
(Scarcelli et al., 2007; Flemming et al., 2009; Makio et al., 2009; 
Onischenko et al., 2009). Rather, the phenotype observed in the 
pom33 mutant strikingly resembles the one recently reported 
for rtn1 yop1 cells (Dawson et al., 2009) and for Nup84 com-
plex mutants, although NE alterations leading to grapelike NPC 
clusters were also observed for some of the latter ones, notably at 
restrictive temperature (for review see Doye and Hurt, 1997).

Besides their closely related NPC clustering phenotype, 
both pom33 and rtn1 yop1 are synthetically lethal when 
combined with mutants of the Nup84 complex, although with 
slightly distinct patterns of genetic interactions (this paper; 
Dawson et al., 2009). It is noteworthy that a minor pool of Rtn1 
reproducibly copurified with Pom33. This may reflect the fact 
that the interaction between Pom33 and Rtn1 is dynamic, or 
restricted to the NPC-associated fraction of Rtn1. Although this 
interaction might be indirect, it is remarkable that it specifically 
connects NPC-associated proteins whose depletion leads to 
very similar phenotypes.

Pom33 contributes to NPC biogenesis  
and/or stabilization
In addition to NPC clustering, measurements of the intensities of 
distinct GFP-tagged Nups in pom33 cells uncovered an altered 
NPC density in the daughter nucleus during telophase. A simi-
larly altered M/B ratio was also observed for nup133 (this paper; 
Shcheprova et al., 2008) and for rtn1 yop1 (Nup84-GFP M/B 
ratio for rtn1 yop1 = 1.88 ± 0.67 compared with wt = 1.53 ± 
0.46; P < 1010; unpublished data). It cannot be formally excluded 
that the NPC clustering phenotype of these mutant cells may con-
tribute to the transiently altered NPC density observed in the 
daughter nucleus. However, the involvement of Pom33 in effi-
cient NPC biogenesis and/or stabilization was corroborated by 
the accumulation of Nup84-GFP in cytoplasmic foci upon deple-
tion of Nup170 in pom33 cells, a previously reported readout 
for NPC assembly defects (Makio et al., 2009).

M/B ratio is no longer significantly distinct in G1 between wt and 
pom33 cells expressing Nup84-GFP (Fig. 8 B). This implies 
that NPCs finally reach a proper density in pom33 daughter 
cells, although less efficiently, a result consistent with the lack of 
defects in growth and transport of these mutant cells.

Loss of Pom33 impairs NPC assembly 
upon depletion of Nup170
Recently, Makio et al. (2009) reported that repression of NUP170 
in the absence of NUP157 causes a defect in NPC assembly lead-
ing to the accumulation of newly synthesized Nups in cytoplasmic 
foci and inner NE-associated structures. Our data suggesting a 
contribution of Pom33 to NPC biogenesis or stabilization (Fig. 8), 
along with the genetic interaction between POM33 and NUP170 
(Figs. 4 B and S2 B), prompted us to investigate NPC assembly 
upon repression of NUP170 in the absence of Pom33. As shown 
in Fig. 9 A, depletion of Nup170 recapitulated the synergistic 
growth defect previously uncovered upon deletion of NUP170 
in pom33 strains (Fig. S2 B). Analysis of Nup84-GFP localiza-
tion upon repression of NUP170 in pom33 cells revealed a clear 
accumulation of this Nup into cytoplasmic foci (Fig. 9 B). The 
less-pronounced NPC defects induced upon Nup170 depletion in 
pom33 cells as compared with nup157 cells (Fig. 9 B; Makio 
et al., 2009) suggest that NPC assembly is delayed in nup170 
pom33 cells, whereas it is completely inhibited in nup170 
nup157 cells. Together, these data thus confirmed the require-
ment of Pom33 for efficient NPC assembly or stabilization.

Discussion
Pom33 is a novel integral membrane 
protein dynamically associated with  
nuclear pores
In this study, we identified the nonessential YLL023c/POM33 
gene based on its functional interaction with nup133. Immuno
fluorescence and EM studies further revealed that Pom33-GFP is 
highly enriched at the level of nuclear pores. In contrast, only a frac-
tion of its paralogue, Ylr064w/Per33-GFP, associated with NPCs.

The identification of a fourth integral membrane protein of 
the yeast NPCs was surprising in view of the multiple high-
throughput genetic, functional, and biochemical approaches that 
might have been anticipated to cover the entire NPC proteome. 
However, purification of NPC fractions followed by mass spec-
trometry (Rout et al., 2000; Alber et al., 2007b) may have missed 
Pom33 either because of technical limitations inherent to the 
small size of this highly hydrophobic protein, or because of its 
dynamic association with NPCs, a property revealed by our photo
bleaching experiments. In this respect, Pom33 somehow resem-
bles gp210, a vertebrate transmembrane Nup that dynamically 
interacts with NPCs (Rabut et al., 2004).

Genetic and physical connections between 
Pom33, Rtns, and the Nup84 complex 
define a novel NPC-associated network 
required for NPC distribution
The most striking phenotype resulting from POM33 deletion 
was the clustering of the nuclear pores within a restricted region  
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namely the Nup107-160 complex and Rtn4a, in de novo NPC 
biogenesis in interphase (D’Angelo et al., 2006; Dawson et al.,  
2009). So far, preliminary experiments based on siRNA-mediated 

The implications of the Nup84 complex and of Rtn1/
Yop1 in NPC assembly in yeast were inferred from in vitro data 
demonstrating the implications of their vertebrate orthologues, 

Figure 9.  POM33 deletion impairs Nup84-GFP incorporation into NPCs upon Nup170 depletion. (A) Growth properties of wt, nup157, and pom33 
cells expressing NUP170 under the control of the PMET3 repressible promoter in a NUP84-GFP background. Serial dilutions were spotted on selective 
media lacking methionine (Met) or on YEPD (+Met). (B) The localization of Nup84-GFP was analyzed in the indicated strains by spinning disk confocal 
microscopy before (Met) or after a 6-h repression of NUP170 expression (+Met). Cytoplasmic Nup84-GFP foci are observed upon repression of NUP170 
in nup157 and to a lower extent in pom33 cells (arrows, foci in mother cells; arrowheads, foci in buds). The percentage of cells with Nup84-GFP 
cytoplasmic foci is indicated. Bar, 5 µm.
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contributes to proper distribution and to efficient assembly or 
stabilization of NPCs. After the first identification of NPC clus-
tering yeast mutants in the 1990s, such studies may provide 
clues on the molecular mechanisms connecting NPC distribu-
tion and biogenesis in yeast.

Materials and methods
Yeasts strains and plasmids
The strains used are listed in Table S1. Deletion strains were obtained from 
the EUROSCARF deletion collection (http://web.uni-frankfurt.de/fb15/ 
mikro/euroscarf/), and GFP C-terminally tagged strains were obtained from 
Invitrogen (http://clones.invitrogen.com/cloneinfo.php?clone=yeastgfp). 
Unless otherwise indicated, all strains were obtained by successive crosses 
and are isogenic to S288C. Yeast cells were grown in standard yeast 
extract peptone dextrose (YEPD) or synthetic complete (SC) media lacking 
appropriate amino acids. Transformation, mating, and sporulation were 
performed as described previously (Palancade et al., 2005). Construction 
of plasmids used here (Table S2) was performed using standard molecular 
cloning techniques.

Purification of Pom33/34-ProtA-associated proteins and mass 
spectrometry analysis
Pom33 or Pom34 tagged with IgG-binding domains of the Staphylo-
coccus aureus ProtA were affinity-purified from whole cell lysates using 
IgG-conjugated magnetic beads essentially as described in Alber et al. 
(2007a). In brief, 2.4 g of frozen yeast grindate was homogenized in 
10 ml of extraction buffer (20 mM Hepes, pH 7.5, 110 mM KOAc,  
2 mM MgCl2, 0.1% Tween 20, and 1% Triton X-100) supplemented with 
1 mM DTT, 0.5 mM PMSF, 2 µg/µl Leupeptine, and 1× protease inhibi-
tor cocktail (complete EDTA-free; Roche). The soluble fraction, isolated 
by centrifugation at 2,000 gmax, at 4°C for 15 min, was incubated for  
30 min at 4°C with IgG-conjugated magnetic beads. The beads were then 
washed three times with extraction buffer, three additional times with ex-
traction buffer supplemented with 150 mM NaCl and 1 mg/ml heparin, 
and once with 0.1 M NH4OAc, 0.1 mM MgCl2, and 0.02% Tween 20.  
The proteins were eluted with 0.5 M NH4OH and 0.5 mM EDTA. The elu-
ates were lyophilized and resuspended in SDS-PAGE sample buffer. The 
proteins were then separated on 4–12% SDS-PAGE gels and either silver 
stained or transferred to nitrocellulose filters. The resulting blots were 
probed with the following antibodies: 1:5,000 rabbit IgG-HRP polyclonal 
antibody (PAP; code Z0113; Dako), 1:500 anti-GFP (monoclonal, clones 
7.1/13.1; Roche), 1:100 anti-Pom152 (mAb118C3; gift from M. Rout, 
The Rockefeller University, New York, NY; Strambio-de-Castillia et al., 
1995), 1:200 anti-Nop1 (mAbA66; Tollervey et al., 1991), or 1:1,000 
anti-Dpm1 (monoclonal 5C5; Invitrogen). The blots were saturated with 
TBS, 0.1% Tween, 5% dried milk, and, except for ProtA detection, 10% 
human serum. Antibodies were detected with anti–mouse-HRP (Jackson 
ImmunoResearch Laboratories, Inc.).

For mass spectrometry analyses, gel slices were reduced, alkylated, 
and subjected to digestion with trypsin (Roche) as described previously 
(Fevrier et al., 2004). The extracted peptides were dried and resolubilized 
in solvent A (95:5 water/acetonitrile in 0.1% [wt/vol] formic acid). The 
total digestion product of a gel slice was used for liquid chromatography- 
tandem MS (LC-MS/MS) analysis. The extracted peptides were concen-
trated and separated on an HPLC system (LC Packings; Dionex) coupled to 
the nano-electrospray II ionization interface of a mass spectrometer (QSTAR 
Pulsar i; Applied Biosystems) using a PicoTip emitter (10 µm in diameter; 
New Objectives). HPLC mobile phases contained solvent A and solvent B 
(20:80 water/acetonitrile in 0.085% [wt/vol] formic acid). Bound peptides 
were eluted with a gradient of 5–50% of solvent B. Information-dependent 
acquisition was used to acquire MS/MS data, with the experiments designed  
such that the two most abundant peptides were subjected to collision-induced 
dissociation, using nitrogen as collision gas. Data from the information-
dependent acquisition experiments were searched twice using MASCOT 
(Matrix Science) and PHENYX (Geneva Bioinformatics) software on the 
Saccharomyces Genome Database (SGD ORF 062007). All data were 
manually validated using myProMS (Poullet et al., 2007).

Fluorescence microscopy of yeast and HeLa cells
Yeast live cell imaging was performed using exponentially growing cul-
tures. Nuclear import assays were performed according to Shulga et al. 
(1996) after metabolic poisoning of Nab2-NLS-GFP–expressing cells in the 

depletion of HsTMEM33 in HeLa cells revealed no significant 
defects in NPC assembly (unpublished data). This might 
reflect the specific contribution of HsTMEM33 to efficient  
de novo but not postmitotic NPC assembly. However, as pre-
viously discussed (Madrid et al., 2006; Mansfeld et al., 2006; 
Stavru et al., 2006), and in view of the nonessential function of 
Pom33 in S. cerevisiae, the lack of a detectable phenotype upon 
HsTMEM33 depletion may also highlight redundancy among 
the transmembrane Nups, or a yet undefined function of TMEM33, 
possibly shared by S. cerevisiae Per33.

Pom33 association with membranes: a key 
to its function in NPC integrity?
As an integral membrane protein, Pom33, along with the other 
NPC-associated transmembrane proteins, may contribute to 
nuclear pore insertion in the lipid bilayer of the NE. This first 
hypothesis is supported by the genetic interactions occurring 
between POM33 and the Ndc1 interaction network, notably the 
complementation of the ndc1-39 phenotype upon overexpression 
of Pom33 or its paralogue Per33, a property possibly reflecting 
redundancy among pore membrane Nups (see also Miao et al., 
2006; Dawson et al., 2009). This rescue further underscores the 
shared predicted topology of yeast Pom33, Per33, and Ndc1; i.e., 
three pairs of transmembrane segments flanked by N- and 
C-terminal domains exposed to the cytosolic/pore face of the NE 
(Fig. S1 B; Stavru et al., 2006; Lau et al., 2006; Kim et al., 2006).

However, only the first hydrophobic stretch within the pri-
mary sequence of Pom33 and Per33 is predicted with very high 
reliability to encompass two membrane-spanning segments  
(Fig. S1 B). As demonstrated for the vertebrate counterparts of 
Rtn1 and Yop1 (Rtn4c/NogoC and DP1, respectively), the two 
other hydrophobic domains of Pom33, Per33, and TMEM33 may 
adopt a hairpin-like structure in which hydrophobic segments do 
not fully span the membrane (Fig. S1 B; Voeltz et al., 2006). The 
resulting interaction of Pom33 with membranes could, as re-
ported for the Rtns and Yop1/DP1 family members (Hu et al., 
2008), induce and/or stabilize positive membrane curvatures re-
quired along with negative curvature for nuclear pore formation 
(discussed in Antonin, 2009). Unlike Rtns, Pom33 mainly local-
izes at the NPC and is thus properly positioned to act at the site 
of pore formation or stabilization. Interestingly, members of the 
Nup84 complex that are required for both NPC biogenesis and 
distribution also exhibit biochemical features, which suggests a 
role in stabilization or sensing of membrane curvatures (Devos 
et al., 2006; Drin et al., 2007; Kampmann and Blobel, 2009).  
Although affecting the Ndc1 interaction network may block NPC 
assembly at an early step (for review see Rexach, 2009), lack of 
Pom33, Rtns, or constituents of the Nup84 complex may impair 
stabilization of the pore–membrane interface at various stages of 
pore formation, thus leading to a delay in proper NPC assembly. 
In these mutants, defective curvature stabilization may ultimately 
allow assembly of complete NPCs, which could be further stabi-
lized through clustering.

Further investigations of the biochemical properties of 
Pom33 with relation to membranes and its additional part-
ners at NPCs will now be required, along with studies in other  
organisms, to decipher the specific function of this protein that 

http://www.jcb.org/cgi/content/full/jcb.200910043/DC1
http://www.jcb.org/cgi/content/full/jcb.200910043/DC1
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log phase were resuspended in fixative (2% [wt/vol] PFA in 0.1 M phos-
phate buffer) and incubated for 1 h at room temperature on a roller. Fixation 
was continued overnight at 4°C. After three washes with PBS, the pellets 
were resuspended in 1 ml of freshly prepared 1% periodic acid in PBS 
and incubated at room temperature for 1 h on a roller. Cells were washed 
again three times in PBS and embedded in 12% gelatin. Gelatin blocks were 
infused with 2.3 M sucrose at 4°C and frozen in liquid nitrogen. Ultrathin 
cryosections were double-labeled with polyclonal rabbit anti-GFP (1:200; 
Abcam), mAb414 (1/400; Covance) antibodies, and ProtA coupled to 
10- or 15-nm gold particles (obtained from the Cell Microscopy Center, 
Utrecht Medical School), and examined as described in the previous para-
graph. For statistical analyses, sections of yeast cells passing through the 
nuclei were randomly acquired. For each strain, a similar number of NPCs 
per nuclear section (three to four on average) were identified based on 
mAb414 labeling and/or a typical NE structure. Anti-GFP–bound gold 
particles were quantified on the same sections and scored as being  
(1) out of the NE, (2) at the NE but not colocalizing with NPCs, or (3) at 
NPCs. Note that a significant fraction of the gold particles localized 
out of the NE reflect nonspecific binding of the anti-GFP antibodies, as 
revealed by the analysis of control cells expressing no GFP fusion. The frac
tion of gold particles scored as being at NPCs might be underestimated 
due to the absence of mAb414 labeling or to the nonoptimal preservation  
of the NE structure.

Online supplemental material
Fig. S1 shows experimental determination of HsTMEM33 topology in 
differentially permeabilized HeLa cells stably expressing HsTMEM33-
GFP or GFP-HsTMEM33, and in silico predictions of ScPom33, ScPer33,  
HsTMEM33, and HsRtn4c topologies. Fig. S2 shows the growth properties 
of the pom33 and/or per33 in combination with various other mutants. 
Fig. S3 shows nucleocytoplasmic transport assays in the pom33 mutant; 
i.e., nuclear import kinetics of a Nab2-NLS-GFP reporter and FISH visual-
ization of mRNA export. Fig. S4 provides control experiments for M/B ratio 
measurements in pom33 cells. Table S1 details all the yeast strains used. 
Table S2 details all the plasmids used. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200910043/DC1.
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