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Abstract
Combination therapy or concomitant drug administration can be associated with 
pharmacokinetic drug–drug interactions, increasing the risk of adverse drug 
events and reduced drug efficacy. Thus far, machine-learning models have been 
developed that can classify drug–drug interactions. However, to enable quanti-
fication of the pharmacokinetic effects of a drug–drug interaction, regression-
based machine learning should be explored. Therefore, this study investigated 
the use of regression-based machine learning to predict changes in drug exposure 
caused by pharmacokinetic drug–drug interactions. Fold changes in exposure rel-
ative to substrate drug monotherapy were collected from 120 clinical drug–drug 
interaction studies extracted from the Washington Drug Interaction Database 
and SimCYP compound library files. Drug characteristics (features) were col-
lected such as structure, physicochemical properties, in vitro pharmacokinetic 
properties, cytochrome P450 metabolic activity, and population characteristics. 
Three different regression-based supervised machine-learning models were 
then applied to the prediction task: random forest, elastic net, and support vec-
tor regressor. Model performance was evaluated using fivefold cross-validation. 
Strongest performance was observed with support vector regression, with 78% of 
predictions within twofold of the observed exposure changes. The results show 
that changes in drug exposure can be predicted with reasonable accuracy using 
regression-based machine-learning models trained on data available early in drug 
discovery. This has potential applications in enabling earlier drug–drug interac-
tion risk assessment for new drug candidates.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Machine learning has been used to classify drug–drug interactions by type (phar-
macokinetic or pharmacodynamic) and by severity using chemical structure fea-
ture sets or knowledge graphs rich in biomedical data.
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INTRODUCTION

The use of polypharmacy, where patients are prescribed 
multiple drugs at the same time, is increasing, with 32% 
of elderly adults affected in Europe.1 Polypharmacy 
comes with the risk of drug–drug interactions (DDIs). 
DDIs can result in under- or overexposure to the drugs 
administered, which can reduce efficacy or increase ad-
verse drug events (ADEs). In DDI studies, the drug that 
exerts an effect on another drug is known as the “perpe-
trator,” whereas the affected drug is known as the “sub-
strate.” Pharmacokinetic (PK) DDIs are a subset of DDIs 
where changes in drug activity are the result of changes 
in the absorption, distribution, metabolism, and excretion 
(ADME) characteristics of the drugs involved. This usu-
ally occurs through a change in the activity of transporters 
or metabolic enzymes that are involved in the ADME of 
both the perpetrator and the substrate.2 The cytochrome 
P450 (CYP) enzyme family metabolizes ~45% of marketed 
drugs.3 The fraction of a drug metabolized by a specific 
CYP is known as the fraction metabolized (fm).2 CYP-
mediated PK DDIs can potentially occur as a result of two 
conditions. First, the perpetrator drug must inhibit or in-
duce a CYP. Second, the fm by that CYP for a coadmin-
istered substrate drug must be >25%.4 These DDIs have 
the potential to be clinically significant, with 7%–44% of 
ADEs caused by DDIs.5 Inhibition of CYPs can lead to 
reduced substrate metabolism, resulting in increased ex-
posure, whereas induction would result in the opposite 
effect.4 Physiologically based PK (PBPK) software, such 
as SimCYP,6 can model and predict DDIs. However, these 
models require the collection of in vitro and clinical in 
vivo data to build models for each drug and take time to 

validate. Therefore, the application of machine learning 
(ML) has been explored to predict DDI risk for drugs shar-
ing ADME features with established drugs without need-
ing to build individual PBPK models.

Machine learning algorithms consist of a set of predic-
tor variables (features) to make predictions for the depen-
dent variable (label). A prevalent approach for applying 
ML in DDI prediction has been to compute similarity 
metrics between features of a drug to predict their inter-
action because drugs sharing similar features are more 
likely to share interaction targets and therefore affect each 
other's pathways.7 An early approach was a heterogenous 
network-assisted inference framework to predict DDIs.7 
This involved generating a heterogenous set of similarity 
features between drug A and drug B describing chemical, 
genomic (based on target proteins), phenotypic (based 
on ADEs), and therapeutic similarities to build a binary 
classifier for whether a DDI will occur between the two 
drugs. The use of similarity measures was further devel-
oped by making predictions based on the structural sim-
ilarity between a drug A and the drugs that interact with 
the proteins, enzymes, and transporters in the interaction 
network of drug B.8 However, due to the binary nature of 
these classifiers, the predictions were limited in their de-
scriptive granularity. The multitask classifier “DeepDDI” 
method helped to address this by classifying 86 types of 
interaction using structural similarity profiles. This en-
abled the prediction of possible mechanisms behind the 
predicted DDIs, enhancing model interpretability.9 These 
predictions were made using features derived only from 
structural information.

Another approach to predicting DDIs uses features 
from knowledge graphs, which describe entities (e.g., drug 

WHAT QUESTION DID THIS STUDY ADDRESS?
The utility of machine-learning regression models to predict the area under the 
curve ratio of a drug administered alone versus the drug administered with an-
other “perpetrator” drug. In addition, the utility of features available early in 
the drug-discovery process (e.g., cytochrome P450 [CYP450] activity data) was 
investigated.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Regression modeling using a support vector regressor is effective, with the ma-
jority (78%) of points predicted correctly within twofold of actual area under the 
curve ratios. In addition, CYP450 activity and fraction metabolized data are effec-
tive as features even when used as a lone feature set, likely due to their mechanis-
tic relation to drug–drug interactions.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
This study demonstrates the potential for regression machine-learning modeling 
to be used in early drug–drug interaction risk assessment using features available 
early in drug discovery.
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properties) and the relationships between them. This has 
the benefit of being able to use all the information relating 
to the PK and pharmacodynamics (PD) of a drug, such 
as drugs, pathways, structures, and diseases. The com-
plex embedding method10 was used to generate features 
from a knowledge graph for high classification accuracy.11 
An alternative embedding technique improved the area 
under the precision-recall curve (AUCPR) score from 0.88 
to 0.97 and also enabled prediction of the adverse effect 
from a DDI even when the adverse effect was rare.12 A dif-
ferent approach also demonstrated that integrating struc-
tural information together with knowledge graphs rather 
than using structure or knowledge graphs alone improves 
performance.13

The performance of these more recent classifiers shows 
highly accurate classification scores. However, the ap-
proaches using knowledge graphs is limited to late-stage 
DDI risk assessment and cannot be applied in early dis-
covery because to build these algorithms, large amounts 
of biomedical data to inform the knowledge graphs are 
required and need to include features such as affected 
pathways, target proteins, and adverse effects. Although 
structure-based models do not rely on PK data that only 
become available after in vitro assays are performed, not 
incorporating these data may limit the performance in 
predicting PK DDIs. Furthermore, models thus far have 
focused on classification tasks, whether binary or multi-
task. However, the development of regression-based mod-
els for PK DDI prediction would be expected to enable a 
more precise estimate of the extent of the PK changes in 
the substrate drug, which would enable better-informed 
decisions regarding the risk associated with the PK DDI 
that could warrant dose reduction or discontinuation of 
this drug candidate.

To explore a more quantitative predictive approach, 
regression-based ML models for PK DDI prediction were 
investigated based on the use of early PK data, such as the 
CYP activity profile and fm for a given drug. The perfor-
mance of the model using different feature sets was also 
assessed as well as whether the regression outputs could 
be converted to correct DDI classes based on US Food and 
Drug Administration (FDA) guidelines14 by evaluating the 
classification performance of the model.

MATERIALS AND METHODS

Data collection

DDI data

Clinical DDI data were collected from the Washington 
Drug Interaction Database15 and SimCYP compound 

files.6 Studies were included based on the following crite-
ria: drugs involved must be available in SimCYP (Version 
20),6 dosing regimen should begin with steady-state dosing 
of the perpetrator drug before a single substrate dose (to 
simulate clinical coadministration of the drugs), and the 
interaction must be mediated via time-dependent inhibi-
tion (because the CYP activity profiles used as features are 
time dependent). In total, data from 120 studies were col-
lected. The format of the PK data used in the analyses was 
the observed area under the plasma drug concentration-
time curve (AUC) ratio, defined as the ratio of the AUC 
of the substrate drug administered in monotherapy over-
the AUC of the substrate drug with the perpetrator drug. 
Remaining data were used directly as features or used to 
generate other features using in silico models. Study de-
sign details were used to specify the simulation condi-
tions used in each SimCYP simulation. CYP activity-time 
profiles and fm were generated from these simulations. A 
total of 201 timepoints of CYP activity for each CYP in a 
study simulation were extracted and used as features to 
represent the CYP activity-time profile. The fm data were 
collected for each CYP with and without the perpetrator 
drug for each DDI. System-specific features are described 
in more detail elsewhere (Table S1).

Drug-specific data

For each DDI, drug-specific data were also collected. This 
included physicochemical properties and in vitro ADME 
data, collected from SimCYP compound files. Simplified 
molecular-input line-entry system16 representations of drug 
chemical structures were used as an input for in silico mod-
els to derive drug-specific data additional to the SimCYP 
features. Chemical descriptors composed of AstraZeneca's 
internal OESelma descriptors, which are 84 molecular de-
scriptors of additional physicochemical properties,17 and 
extended connectivity fingerprints of diameter 4 (ECFP4),18 
a set of topological circular fingerprints to describe molecu-
lar structures. PK descriptors were features derived from 
AstraZeneca's internal ML models for predicting human 
PK19 and in vitro ADME parameters.20,21 Drug-specific fea-
tures are described in more detail in Table S2.

Feature engineering

All models (random forest, elastic net, and support vec-
tor regression [SVR]) were implemented in Python using 
the Scikit-learn library.22 To enable compatibility between 
the feature data and the Scikit-learn package, categorical 
features were encoded into binary format using one-hot 
encoding. To control for different scales between features, 
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values were converted from its original scale into standard 
deviation units as follows:

where z is the new feature value, x is the original feature 
value, � is the mean value for the feature, and � is the stan-
dard deviation of the feature. To remove redundant features, 
feature selection was implemented by regenerating the mod-
els using the most important features via the “Select from 
model” function in Scikit-learn. This method of feature se-
lection was not included for the SVR implementation due to 
software incompatibility. Therefore, to ensure differences in 
performance between SVR and other models were not due 
to feature selection, additional random forest and elastic net 
models were built for comparison without feature selection.

Logarithmic transformations of AUCs

AUC ratios showed a strong positive skew because induc-
tion observations ranged between 0 and 1, whereas inhibi-
tion observations had a range of 1 to ~30. To normalize 
the AUC distribution and make it more uniform (reduc-
ing the potential for prediction bias toward the ratios < 1), 
a log10 transformation was applied.

ML modeling

Collected data were used to train regression-based ML 
models. Model performance was evaluated using the 
nested fivefold cross-validation. This involved splitting the 
full dataset (120 samples) into 96 training (80%) and 24 
test (20%) samples five times with no overlap in each step/
fold. For each such trial, additional (nested) fivefold cross-
validation was performed on the training data to optimize 
hyperparameters. Then, an optimized model was applied 

to estimate the test set performance. Performance values 
of five independent test sets were then averaged to pro-
vide final model accuracy. The candidate hyperparameter 
values are detailed in Table 1. All random states were set 
to zero. For each model, collected data for each DDI were 
used as features, whereas observed log10 AUC ratio data 
were used as labels. Deep-learning techniques were not im-
plemented due to the small sample size and to maintain 
model interpretability. Random forests are an ensemble 
of decision trees, where the output prediction for a given 
input is the average of the predictions of all the decision 
trees.23 Elastic net regression uses linear regression with 
regularization using a combination of the lasso and ridge 
penalties.24 SVR uses subsets of the training data (support 
vectors), rather than all of the data, to determine the regres-
sion line to enable increased generalizabiltiy.25 A negative 
control regressor model was also implemented to model 
random prediction by predicting the mean of the training 
label data. The ML models were expected to significantly 
outperform the negative control regressor model to be con-
sidered predictive. Feature importance was determined 
using Shaply Additive Explanations (SHAP) values.26

Classification criteria

A potential use case of the log10 AUC ratio predictions is 
to classify interactions according to established FDA DDI 
guidelines,14 which are described in Table  2 (to two sig-
nificant figures). These reference thresholds were therefore 
used to convert the regression output into categorical labels.

Statistical analysis

Regression performance

Regression performance was evaluated using the coef-
ficient of determination (R2), root mean square error 

z =
x − �

�

T A B L E  1   Hyperparameter values used for optimization of regression models

Model Hyperparameter Candidate values

Select from model (feature selection step) max_features 20, 40, 60, 80, 100, 120

Random forest n_estimators 50, 100, 500, 1000

min_samples_leaf 1, 5, 10, 50, 100, 200, 500

max_features “auto,” “sqrt”

Elastic net Alpha 0.0001, 0.001, 0.01, 0.1, 0, 1, 10, 100, 500, 1000

l1_ratio 0.001, 0.01, 0.1, 0, 1

Support vector machine C 0.01, 0.1, 1, 10, 100, 500

Epsilon 0.01, 0.05, 0.1, 0.5, 1, 10

Kernel “linear,” “poly,” “rbf,” “sigmoid,” “precomputed”
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(RMSE), and the twofold error score. All regression per-
formance metrics were reported as the mean of the result 
(to two significant figures) after fivefold cross-validation 
for each model along with the 95% confidence intervals.

R2 describes the proportion of variation of the depen-
dent variable (predicted log10 AUC ratio) that can be ex-
plained by the independent variable (observed log10 AUC 
ratio). It is defined as

where n is the sample size and for the i-th sample, y is the 
observed value, ŷ is the predicted value, and y is the mean 
observed value. To investigate whether the non-normally dis-
tributed predictions and observations were statistically sig-
nificantly different, the Wilcoxon signed-rank test was used.

Root mean square error describes the magnitude of 
error for predictions, meaning lower scores are better, and 
is defined as

A twofold error margin was used as the range for acceptable 
predictions. The metric score was defined as the proportion 
of predicted log10 AUC ratios within twofold of the observed 
log10 AUC ratios. This wider margin was chosen because it 
is the industry standard for AUC prediction of drugs with a 
wide therapeutic window,27 making it appropriate for this 
proof-of-concept analysis.

Classification performance

Classification performance was evaluated using macro 
F1 scores, reported as the mean (to two significant fig-
ures) across after fivefold cross-validation ±95% confi-
dence limits. Macro scores were used to provide equal 
weighting to each class because the prediction of each 
class had equal importance in this model. Macro F1 
scores were calculated using the precision and recall 
metrics. The macro precision describes the proportion 

of positive predictions that were true positives per fold, 
defined as

where TPi is the number of true positives for class i, FPi 
is the number of false positives, and l is the number of 
classes. Recall describes the proportion of actual positives 
that were correctly predicted (sensitivity), defined as

where FNi is the number of false negatives for a given class. 
Because there is a trade-off between precision and recall 
performance,28 F1 score (harmonic mean of precision and 
recall for each fold) was used to evaluate the overall per-
formance of the model. The macro F1 score is defined as

RESULTS

Observed log10 AUC ratios were unevenly 
distributed

Distributions of observed data in a training dataset can be 
a source of bias in a ML model, where less-represented 
data ranges show higher prediction error.29 Therefore, the 
distribution of the label data in the dataset was investi-
gated to identify potential poorly represented data ranges 
in the DDI dataset used to train this model. Figure  1 
shows a histogram of the log10 AUC ratios of the collected 
DDI studies (n = 120). The distribution of log10 AUC ra-
tios were determined to be significantly different from a 
uniform distribution using the Kolmogorov–Smirnov test 
(p < 0.005). There were a greater number of samples show-
ing inhibition (16 weak, 38 moderate, 19 strong) compared 
with induction (9 weak, 22 moderate, 10 strong), whereas 
noninteraction samples were the least common (6). This 
uneven distribution of log10 AUC ratios in the dataset may 
have been a source of bias in the ML model.

R2 = 1 −

∑n
i=1

�

yi− ŷi
�2

∑n
i=1

�

yi−yi
�2

RMSE =

�

∑n
i=1

�

yi− ŷi
�2

n

Macro Precision =

∑l
i=1

TPi
TPi+FPi

l

MacroRecall =

∑l
i=1

TPi
TPi +FNi

l

Macro F1 Score = 2
Macro Precision∗MacroRecall

Macro Precision +MacroRecall

Magnitude Inhibition Induction

No interaction −0.10 < log10 AUC ratio < 0.10

Weak 0.10 ≤ log10 AUC ratio ≤ 0.30 −0.10 ≥ log10 AUC ratio ≥ −0.30

Moderate 0.30 < log10 AUC ratio ≤ 0.70 −0.30 > log10 AUC ratio ≥ −0.70

Strong Log10 AUC ratio > 0.70 Log10 AUC ratio < −0.70

Abbreviation: AUC, area under the curve.

T A B L E  2   Thresholds for classification 
of predictions using log10 AUC ratio 
values
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SVR showed the strongest regression 
performance

The regression performance of each model was compared 
to determine which ML model was most appropriate for 
the DDI dataset. Each model was subject to fivefold cross-
validation, and a mean predictor model was used as a neg-
ative control for predictive performance. Figure  2 shows 
that random forest, elastic net, and SVR all had signifi-
cantly lower RMSE and higher R2 and twofold error scores 
compared with the control model. Figure  2a shows that 
the random forest regressor achieved the lowest/weakest 
twofold error score (0.69), whereas SVR showed the high-
est (0.78). Figure  2b shows that the elastic net regressor 
demonstrated the lowest R2 (0.67), whereas SVR showed 
the highest (0.73). Figure 2c shows that the highest RMSE 
score was achieved by the elastic net (0.33), whereas SVR 
achieved the lowest/best (0.30). SVR also outperformed the 
elastic net and random forest models built without feature 
selection (Figure S1). However, the differences between the 
ML models were small and statistically insignificant, indi-
cating that SVR only marginally outperformed the elastic 
net and random forest methods. However, all ML models 
significantly outperformed the mean predictor control.

SVR showed the strongest classification 
performance after conversion to 
categorical labels

Classification performance was evaluated to determine 
whether the regression outputs would be correctly classi-
fied according to FDA guidelines.14 Predicted log10 AUC 
ratios from the regression models were assigned to a class 
of DDI, and these classes were compared with the actual 
class (assigned based on the same thresholds) to determine 

the F1 score as the measure of performance. Figure  3a 
shows that all models showed significantly stronger mean 
performance than the control model. The elastic net 
showed the lowest macro F1 score of the noncontrol mod-
els (0.31), whereas the SVR showed the highest macro F1 
score (0.40). However, intermodel performance differ-
ences were small and considered insignificant.

Across models, inhibition was generally better predicted 
than induction with average F1 scores of 0.42 versus 0.33, 
respectively. The prediction of moderate drug interactions 
(considering both inhibition and induction, average 0.54) 
were improved compared with strong (0.32) or weak (0.27) 
drug interactions. These two trends are concordant with 
the significantly higher F1 score for moderate inhibition 
compared with the average of all the classes in each model 
(0.66 vs. 0.32). In addition, there was no prediction of non-
interactions, and therefore there was an F1 score of zero 
for noninteractions in every model. Figure 3b–d also shows 
that moderate drug interactions, especially moderate inhi-
bition, had the most true positives and false positives. The 
random forest model showed the greatest tendency to over-
predict the strength of weak interactions and correctly clas-
sified strong induction less often than the SVR. However, it 
correctly classified moderate induction more often than the 
SVR model. The raw classification matrix values are shown 
in Figure S2. Overall, SVR showed a stronger classification 
performance compared with the other two methods/mod-
els, with moderate inhibition being the most accurately 
predicted class across the three methods/models.

Strong correlation between predicted and 
observed log10 AUC ratios

Next, the performance of the regressor was investigated 
visually. Linear regression supported a strong correlation 

F I G U R E  1   Frequency histogram 
of the distribution of collected log10 area 
under the curve (AUC) ratios. Observed 
log10 AUC ratios were extracted from 
120 clinical drug–drug interaction 
studies. Of the interactions, 73 were 
inhibition, 41 were induction, and six 
were noninteractions. The ratios were 
not uniformly distributed (Kolmogorov–
Smirnov test; p < 0.005).
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between the observed and predicted log10 AUC ratios 
(R2 = 0.73; Figure 4a). The result of the Wilcoxon signed-
rank test indicated that the distributions of predictions 
and observations were not statistically significantly dif-
ferent (p = 0.51). The model predicted log10 AUC ratios 
between −1.5 and 1 effectively, but ratios >1 were poorly 
predicted because the predictions were outside the two-
fold error margin. Figure 4b shows the plot of residuals 
against observed log10 AUC ratios. There is a bias in the 
prediction in that both induction and inhibition effects are 
underpredicted.

CYP450 and fm data enabled the highest 
model performance

Because the SVR model overall performed the best 
(Figure  4), we assessed which features were most influ-
ential for driving the AUC ratio prediction. Subsets of 

the original features were grouped by the type of infor-
mation the feature represented. The chemical features 
represented ECFP4 fingerprints and OESelma descrip-
tors. The in vitro ADME features represented the non-
CYP descriptors of ADME derived from early in vitro 
assays, and the other feature set contained the CYP and 
fm descriptors. Each of the four feature sets was evalu-
ated using fivefold cross-validation with the SVR model. 
Individual feature importance was then evaluated using 
SHAP methodology, measured by the average impact on 
model output. Figure 5a shows that the RMSE scores were 
not significantly different across the different models. 
However, twofold error scores were significantly lower 
for the chemical (0.63) and in vitro ADME (0.66) mod-
els compared with the full model (0.78). In addition, the 
chemical model showed a significantly reduced R2 (0.60) 
compared with the full model (0.73). Only the CYP and 
fm model showed no significant difference compared with 
the full model. Figure 5b shows the 20 features with the 

F I G U R E  2   Regression performance 
of different machine-learning models on 
the drug–drug interaction (DDI) dataset. 
Fivefold cross-validation results (n = 5) 
are provided for different machine-
learning models applied to the DDI 
dataset. Random forest (dotted), elastic 
net (grid), and support vector machine 
regressor (striped) were tested, and the 
mean predictor was a negative control 
for predictive capability, which always 
predicted the mean observed log10 area 
under the curve (AUC) ratio of the 
training fold. (a) “<Two-fold error score” 
reflects the proportion of predicted log10 
AUC ratios that were within twofold of 
their corresponding observed log10 AUC 
ratios. (b) R2 represents the coefficient 
of determination. (c) RMSE represents 
the root mean square error (lower is 
better). Data are represented as the mean 
metric of five test folds, and the gray 
lines topping each bar indicate the 95% 
confidence intervals.
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F I G U R E  3   Classification performance of machine-learning regressor outputs after conversion to categorical labels. Predicted log10 area 
under the curve (AUC) ratios from different machine-learning models were used to classify interactions according to US Food and Drug 
Administration guidelines. The possible classes were weak, moderate, and strong inhibition (light, medium, or dark blue) or induction 
(light, medium, or dark orange). (a) The mean performance of the model across the different classes and folds was also compared (dotted). 
Data are presented as the mean macro F1 score (harmonic mean of precision and recall) across the five folds (n = 5 for each model), along 
with lines indicating the 95% confidence intervals. Classification matrices of (b) elastic net, (c) random forest regressor, and (d) support 
vector regressor outputs are shown. Numbers correspond to the percentage of interactions of a given observed class that were predicted by 
the model to be a certain class. The red diagonal box indicates the ideal cases where predicted classes matched the observed class, whereas 
the red arrows indicate cases where observed classes were predicted to be a different class more often than the correct class.
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highest impact on model outputs using SHAP methodol-
ogy. Notably, eight of these most important features were 
related to CYP and fm data (these were CYP activity at dif-
ferent timepoints and CYP3A5 fm with the perpetrator). 
In summary, the feature importance investigation demon-
strated that CYP and fm data were the most influential for 
the predictive performance of the model.

DISCUSSION

This study focused on predicting CYP-mediated DDIs 
as a first step to predicting PK DDIs because CYPs me-
diate a significant proportion of PK DDIs.4 This analysis 

described whether changes in drug exposure (specifically 
changes in CYP and fm data) attributed to PK DDIs can 
be predicted based on drug features. The findings of 
this study highlight that clinically significant exposure 
changes attributed to drug induction or inhibition can 
be predicted early in drug discovery using a regression-
based ML model. The ML models demonstrated high R2, 
low RMSE, and a high proportion of predictions within 
twofold of the observed AUC ratios for DDIs of log10 AUC 
ratio <1 (all but the strongest cases of inhibition). The 
SVR model performed marginally better than the other 
approaches. Furthermore, predictive performance was 
retained using just CYP and fm data for PK DDIs medi-
ated via time-dependent inhibition or induction. This was 

F I G U R E  4   Regression analysis of 
observed and support vector regressor 
predicted log10 area under the curve 
(AUC) ratios. (a) Predicted log10 AUC 
ratios after fivefold cross-validation 
of a support vector regressor were 
plotted against the observed log10 AUC 
ratios of the corresponding drug–drug 
interaction studies. The dashed diagonal 
line indicates the perfect prediction line 
where predictions equal observations. 
The two gray lines on either side indicate 
the twofold error margins. Predictive 
performance was generally good 
(coefficient of determination = 0.73, root 
mean square error = 0.30, proportion 
of predictions less than twofold 
error = 0.78). (b) A plot is shown of the 
resulting residuals against the observed 
log10 AUC ratios.
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F I G U R E  5   Regression performance of support vector regressor using different feature sets. (a) Support vector regressor model 
performance is shown using either chemical; in vitro absorption, distribution, metabolism, and excretion; or CYP and fm/FM feature sets. 
Regression performance was compared using fivefold cross-validation on the drug–drug interaction dataset. The performance metrics used 
were the RMSE (gray), R2 (coefficient of determination; light blue), and twofold error (proportion of predicted log10 AUC ratios within 
twofold of the observed value; dark blue). Metric scores were reported as the mean score of the five folds along with lines indicating 95% 
confidence intervals. (b) SHAP values of the 20 most important features in the support vector regressor model are shown. CYP and FM 
indicate the cytochrome P450 enzyme activity-time profiles and the fraction of substrate drug metabolized by each CYP enzyme with 
and without the perpetrator drug. AUC, area under the curve; Cmax, maximum concentration; CYP2C9, cytochrome P450 2C9; CYP3A4, 
cytochrome P450 3A4; CYP3A5, cytochrome P450 3A5; ECFP4, extended connectivity fingerprint with diameter 4; EM, extensive 
metabolizer; Exp, expected activity (simulation output); fm, fraction metabolized; fUmic, fraction unbound in microsomes IC50, half 
maximal inhibitory concentration; I.V., intravenous administration; Perp, perpetrator; PK, pharmacokinetic; PM, poor metabolizer; PO, oral 
administration; Pop, population type; RMSE, root mean square error; SHAP, Shaply Additive Explanations; Sub, substrate, T, timepoint
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demonstrated by the insignificant decrease when using 
CYP and fm features only compared with the full feature 
set for the R2 (0.06 decrease), RMSE (0.03 increase), and 
twofold error (0.05 decrease). Therefore, the development 
of a model using this refined feature set may be prioritized 
because it is simpler and has reduced data collection re-
quirements without the significant loss of performance 
associated with the other feature sets. However, the use 
of chemical and in vitro feature set models may also have 
utility when available data are limited because RMSE 
scores did not differ significantly between any of the fea-
ture subset models.

Of the 20 most important features in the model, eight 
described CYP activity at timepoints soon after adminis-
tration (generally between 24 and 72 h after the first dose 
of the perpetrator, although the exact times represented 
by each timepoint depend on the specific conditions used 
for the SimCYP simulation). This indicates that CYP ac-
tivity may not need to be measured for the entire dura-
tion of administration of a perpetrator to predict the effect 
on AUC, providing the possibility to explore using more 
limited time ranges for prediction to reduce data collec-
tion requirements. Two of the features also described 
the predicted maximum concentration and AUC of the 
substrate—this demonstrates the utility of using outputs 
of other ML models in feature generation.

The model's underprediction of stronger cases of in-
hibition could be linked to the absence of other features 
describing mechanisms driving stronger inhibition. An 
important mechanism not considered in this model is 
transporter-mediated DDIs. For example, the hepatic up-
take transporter Organic anion-transporting polypeptide 
1B1 and 1B3 has been found to mediate more than half of 
the observed strong clinical DDIs highlighted by the FDA.30 
In addition, drugs can inhibit transporters expressed on 
the basolateral surface of proximal tubular epithelial 
cells.31 Because these transporters enable the hepatic and 
renal clearance of other drugs, their inhibition can lead to 
an increased AUC of substrate drugs.32 Similarly, the un-
derprediction of induction could be explained by unmod-
eled transporter effects. Some perpetrator drugs included 
in this dataset, such as rifampicin and carbamazepine, in-
duce the gene expression of P-glycoprotein (P-gp), which 
leads to a decreased AUC for P-gp substrates.33,34 P-gp is 
particularly relevant because 75% of CYP3A4/5 substrates 
are also substrates of P-gp.35 CYP3A4/5 metabolized the 
majority of interactions in the dataset used in this study 
and is the most common enzyme through which DDIs 
are mediated,30,35 meaning P-gp is likely involved in many 
DDIs in this study. Regardless, the model predicted the 
majority (~80%) of log10 AUC ratios below 1 within two-
fold, indicating that the current model is capable of effec-
tive predictions for cases that are not strong inhibition.

Imbalance in the distribution of samples may have led 
to poorer performance in some data ranges. F1 scores for 
the inhibitory and/or moderate DDIs were higher than in-
duction and strong/weak DDIs, and there was no predic-
tion of noninteractions. There were more inhibition DDIs 
than induction, more moderate than strong/weak, and 
noninteractions were the least common. Therefore, F1 
scores for each class appear to be dependent on the sample 
size for each class. Previous work has shown that regres-
sion and classification ML model predictions are biased 
toward predicting values that are in the ranges most rep-
resented in the training data.29 This may have contributed 
to the bias toward moderate predictions and the conse-
quent underprediction of strong inhibition and induction. 
Therefore, the use of techniques that correct for class im-
balance biases, such as synthetic minority oversampling 
technique,36 may lead to improved performance in these 
other data ranges for both classification and regression. 
The use of deep-learning algorithms could also enable im-
proved regression performance using the set of features 
discussed in this study because deep learning improves 
DDI prediction.9,37

There were limitations to this study. Although the 
potential for overfitting (and thus reduced generaliz-
ability) caused by the small sample size to feature ratio 
is controlled by the use of the nested cross-validation,38 
the model needs to be tested on a dataset from a different 
source to confirm generalizability. Generalizability to clin-
ical applications of DDI risk assessment may be limited by 
the feature space of the training DDI dataset. For example, 
ML models showed poor performance when making DDI 
predictions using chemical structures that the models 
were not trained on.39

Future work could explore the application of PK DDI 
modeling in other stages of drug development. This 
study demonstrated the predictive power based on just 
CYP and fm features, and collecting these data for new 
drug candidates currently requires information from in 
vitro assays. Recent ML models can predict whether a 
drug will be metabolized by CYP3A4 using chemical 
features,40 and deep learning has been used to classify 
which CYPs a drug may inhibit.41 If this concept is de-
veloped to predict continuous values for fm and CYP 
activity-time profiles, the necessary CYP and fm inputs 
for this model could be collected from in silico mod-
els rather than in vitro assays. This would enable the 
model to be used by project teams at the point of de-
sign. Conversely, ML modeling could also be used for 
regression-based DDI modeling of already established 
drugs where clinical ADE data are already available 
because ADE data improve DDI prediction.7 Also, the 
AUC label data used to train the model has uncertainty 
estimates from the SimCYP software used to generate 
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it. The traditional ML architectures implemented in this 
study do not account for such uncertainties in the la-
bels. However, future developments of this model could 
account for these by describing the label data as a prob-
ability distribution rather than as a single value. An ex-
ample of this is the probabilistic random forest model, 
which accounts for uncertainty in feature or label data 
and outperformed the traditional random forest 30% of 
the time when used with noisy label data.42

In conclusion, this study has shown that regression-
based ML can be used to predict changes in substrate 
AUC due to PK DDIs caused by time-dependent inhibi-
tion/induction using features available early in the drug-
discovery process. Predictive algorithms as described here 
can inform early DDI risk for drug candidates.
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