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Abstract: DNA methylation, as one of the major means of epigenesis change, makes a large difference
in the spatial structure of chromatin, transposable element activity and, fundamentally, gene tran-
scription. It has been confirmed that DNA methylation is closely related to innate immune responses.
Decitabine, the most efficient available DNA methyltransferase inhibitor, has demonstrated exhila-
rating immune activation and antiviral effects on multiple viruses, including HIV, HBV, HCV, HPV
and EHV1. This review considers the role of decitabine in regulating innate immune responses and
antiviral ability. Understanding the complex transcriptional and immune regulation of decitabine
could help to identify and validate therapeutic methods to reduce pathogen infection-associated
morbidity, especially virus infection-induced morbidity and mortality.
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1. Background

Epigenetic regulation occurs at multiple levels, including through DNA methylation,
histone modification, RNA interference, nucleosome remodelling and modulation of the
3D chromatin structure, and contains almost all molecular mechanisms affecting gene
expression in a reversible, transmissible, and adaptive way without altering the genomic
DNA sequence [1]. These dynamic epigenetic regulations play a significant role in transcrip-
tional regulation, genomic integrity, cell fate and physiological control of tissue and organ
development. DNA methylation is established through the addition of a methyl group
from S-adenosyl-methionine to the 5′ position on a cytosine within a cytosine–guanine
(CG) dinucleotide. In general, CpG islands are rare in mammalian DNA with a typical
expected: observed ratio of 30% or lower. In promoters with CpG islands, this ratio is 60%
or higher [2]. Promoter hypermethylation is an epigenetic mechanism of gene regulation
known to silence gene expression. Various factors, such as ageing, differentiation, and
environmental stress, can alter DNA methylation patterns in mammalian cells [3], includ-
ing immune-related cells [4]. DNA methylation is deposited and maintained through the
concerted activity of three essential DNA methyltransferases, mainly DNMT1, DNMT3A
and DNMT3B [5]. Mounting evidence suggests that 5-aza-2′-deoxycytidine (5-AZA-dC,
decitabine, DAC) (Figure 1A), the most widely used inhibitor of DNA methyltransferases
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(DNMTs), induces demethylation of DNA, leading to consecutive reactivation of epigeneti-
cally silenced tumour suppressor genes mainly in practice for haematological tumours, and
it is being developed for solid tumours. While exploring the antitumour effect of DAC, an
array of studies has revealed that in addition to inhibiting cell proliferation, inducing cell
apoptosis and regulating tumour immunity, DAC shows a crucial function in the innate
immune response [6–9]. Moreover, as a nucleic acid analogue, DAC has demonstrated
potential antiviral activity by upregulating innate antiviral immune responses. In 2006,
decitabine (DAC) was approved by the FDA for the treatment of patients with myelodys-
plastic syndrome (MDS) [10]. Therefore, it is highly valuable to explore its new applications
in addition to antitumour functions, especially in antiviral activity.
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2. DNA Methylation in Antiviral Innate Immune Response

Three primary mechanisms are considered to induce epigenetic changes: DNA methy-
lation, histone modification, and noncoding RNA-associated gene regulation. Herein, DNA
methylation is widely related to chromatin modification, given its pivotal role in gene si-
lencing, X-chromosome inactivation, genomic stability and imprinting in mammalian cells,
and occurs in cells via the addition of methyl groups by DNA methyltransferases (DNMTs)
at position 5 of cytosine residues at CpG-rich promoter regions to silence specific genes
such as tumour suppressor genes (Figure 1C). There are approximately 28 million CpG
dinucleotides in human genomic DNA, reaching 60–80% methylation in any given cell, but
CpG dinucleotide-enriched regions known as CpG islands, mostly located in or near gene
promoter sequences, are predominantly hypomethylated [11]. DNA methylation patterns
are regulated by the function of a family of DNA methyltransferases -DNMT1, DNMT3A
and DNMT3B. Unmethylated DNA is methylated by de novo DNMT3A and DNMT3B,
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which have ubiquitous and nonselective activity. The maintenance DNA methyltransferase
DNMT1 binds the hemimethylated DNA strand and copies with the parental strand CpG
methylation pattern to the daughter strand [5]. The immune system is responsible for host
immune surveillance, defence and regulation, and primordial functions of living organisms,
with the goal of preserving tissue and organismal homeostasis. Infectious diseases, espe-
cially viral infections, remain a serious threat to human health, and the host innate immune
system exhibits a critical defence against pathogen invasion. Innate immunity is the first
line of defence against pathogens and infections, and the innate immune system is made up
of tissue barriers (skin and mucosal system, blood–brain barrier, placental barrier, etc.), in-
nate immune cells (phagocytes, natural killer cells, dendritic cells, etc.) and innate immune
molecules (complement, cytokines, enzymes, etc.) [12]. Among them, the antiviral innate
immune response has a direct and effective inhibitory effect on viral infection and replica-
tion. DNA methylation, as a transcriptional regulator of the immune system, makes a great
difference in immune system development, differentiation and function, and aberrant DNA
methylation is the major epigenetic change leading to oncogenesis [13]. Moreover, DNA
methylation is closely linked to the antiviral immune response. Recent research found that
Uhrf1 (one of the critical molecules involved in DNA methylation) deficiency in myeloid
cells significantly upregulated IFN-β expression, increasing resistance to viral infection.
The whole-genome bisulfite sequencing revealed that a single-nucleotide methylation site
in the Ifnb promoter region disrupted IRF3 recruitment [14]. Inhibition of DNA methylation
can induce an antiviral response through upregulation of the interferon signalling pathway.
Multiple molecular mechanisms, such as activating endogenous retroviruses, initiating
key factor expression in the interferon signalling pathway, regulating the NF-κB pathway
and enhancing regulatory T cell function, are involved in the DNA methylation-mediated
antiviral response [2,6,7,9,15–18]. Viral infections can alter the epigenetic landscape through
modulation of DNA methylation profiles. Herpes simplex virus type 1 (HSV-1) capsid
protein VP26 was identified to bind to the host factor de novo DNA methyltransferase
DNMT3A during infection, and downregulating DNMT3A with siRNA or suppression by
the human DNMT inhibitor RG108 can dramatically trigger a decrease in HSV-1 titres [19].
Several possible mechanisms are involved in the effect of DNMT3A on HSV-1 infection,
and immune recognition probably participates in this process [6,7,20]. The DNMT in-
hibitor 5-aza-2′-deoxycytidine was identified to induce a retinoic acid-inducible gene I
(RIG-I/DDX58)-related innate immune response, one of most significant anti-dsRNA virus
immune signalling pathways, by modulating mitochondrial stress in neuroblastoma [15].
In vitro methylation of the interferon regulatory factor-7 (IRF-7) gene promoter blocks its
expression. Regulating the promoter activity of IRF-7 by 5-AzaC (5′-aza-deoxycytidine)
was sufficient to elicit basic levels of IRF-7 expression and further stimulate the Type I IFN
(interferon) pathway [2]. Toll-like receptors (TLRs) play an important role in the antiviral
innate immune response. Upon detailed analysis of the TLR2 promoter CpG island, higher
CpG methylation was detected in gingival epithelial cells. When cells were treated with a
DNA methyltransferase inhibitor, TLR2 mRNA and downstream innate immune-related
cytokine expression were significantly upregulated [21]. DNA methylation for TLR-2 and
TLR-9 in spontaneous preterm labour (sPTL) was notably reduced compared to term not
in labour (TNL) or term in labour (TL). Treatment of THP-1 cells with 5-Aza resulted in
remarkable increases in TLR-2 and TLR-9 mRNA expression, which was associated with a
noteworthy upregulation in the expression of the neutrophil chemokine IL-8 [22]. An array
of studies has proposed that DAC treatment and DNMT1 knockdown induce an antiviral
response, including activation of interferon-responsive genes via dsRNA-containing en-
dogenous retroviruses in cancers [6,7,13,17]. In conclusion, methylation modifications of
genomic DNA and some specific innate immune-related genes in the prompter or body
have been shown to be closely associated with antiviral innate immune responses.
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3. Decitabine and Its Role in the Immune Modulation of Viral Diseases

In 1964, the azanucleosides 5-azacytidine (azacytidine, AZA) and 2′-deoxy-5-azacytidine
(5-aza-dC, decitabine, DAC) were first synthesized as classical cytostatic agents [23]
(Figure 1A,B). As nucleic acid analogues, detection results of the in vitro stability of
decitabine in a neutral aqueous solution indicated considerable chemical stability (half-life
time of 7 days at 4 ◦C, 96 h at 20 ◦C and 21 h at 37 ◦C), and even storing the solution at
room temperature effectively inhibited DNA methylation. At 37 ◦C, the half-life times
were 7 h for azacytidine and 21 h for decitabine [24]. DNMT inhibitors (DNMTis), such
as 5-azacytidine (azacytidine) and decitabine, are the most frequently used epigenetic
modulators employed in routine clinical practice for the treatment of malignant diseases.
DAC can have direct or indirect effects on gene expression. The effect is direct when
DAC incorporation into a gene significantly alters its methylation and expression status;
promoter and gene body demethylation are two such examples. The effects are considered
indirect when gene expression is altered without the gene itself undergoing any marked
change in methylation.

As a cytosine analogue, DAC can be incorporated into DNA and trap DNA methyl-
transferases (DNMTs), resulting in their proteasomal degradation and global DNA demethy-
lation [25]. As mentioned in the preceding part of the text, DNA methylation is a dynamic
epigenetic modification with a prominent role in the immune system [13], indicating that
decitabine, one of the most effective inhibitors of DNMTs, plays an important role in the
regulation of the interferon signalling pathway. Both DAC and DNMT1 siRNA caused
overall hypomethylation, and hypomethylation at the promoters of many histones and
hypermethylation at multiple sites genome wide were unique to DAC treatment [8]. DAC
has been shown to be a powerful inducer of human endogenous retrovirus, HERV-Fc1 in
cells previously not expressing HERV-Fc1, or with a low expression level, and at the same
time, it strongly inhibits methylation of DNA [26]. Transient treatment of HCT116 colorectal
cancer cells with a low dose of DAC induces an increase in dsRNAs and durable DNA
demethylation-independent activation of the det gene enriched for interferon-responsive
genes and the MDA5/MAVS/IRF7 pathway [7]. Additionally, DAC-induced transcripts
of human endogenous retroviruses (ERVs), which constitute more than 8% of the human
genome, can activate interferon signalling-mediated viral defence responses in epithelial
ovarian cancer (EOC) [6]. Hung-Yu Lin reported that DAC effectively induced a RIG-I-
related innate immune response and apoptotic signalling primarily in SK-N-AS NB (human
neuroblastoma cells) cells by hypomethylating the DDX58/RIG-I promoter, elevated mtROS
and increased dsRNA [15]. These reports suggest that decitabine is a promising compound
for innate immune response regulation. In addition, inflammation affects immunoregu-
lation. Bioinformatics analysis showed upregulated DNMT1 expression and suggested
upregulated NF-κB signalling pathway-related genes in patients with sepsis. Degrading
intracellular DNMT protein levels by decitabine improved the inflammatory response and
survival in mice with severe sepsis induced by caecal ligation and puncture (CLP) [18]. GO
(gene ontology) analysis of the genes demonstrated that IKK/NF-κB cascade-related genes
such as Bst2, Rnf31, Zc3hav1 and Ubd were dramatically upregulated upon inhibition of
DNA methylation with 1 µM DAC on colon tumour organoids [9]. Low-dose decitabine
treatment enhanced IκBα degradation and induced NF-κB activation in CD4 T cells from
patients with a response to decitabine-primed chemotherapy rather than those without a
response [27]. DAC also regulated the inflammatory response by the significant upregula-
tion of p-IKKα/β, p-IκBα, p-p65, p-p38 and p-ERK in lipoteichoic acid (LTA)-stimulated
human odontoblast-like cells (hOBs) [28]. A recent study showed that, in B cell lymphomas,
decitabine repressed B cell-specific gene transcription and activated NF-κB signalling; dur-
ing osteoclastogenesis, decitabine conversely inhibited the activity of NF-κB, AP-1 and
extracellular signal-regulated kinase (ERK) but not the PI3K/Akt pathway [29]. Taken
together, decitabine showed a shifting function on the NF-κB pathway, mainly regulating
the inflammatory response, but showed a concentrated character on the interferon response
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pathway, which makes decitabine an ideal drug candidate for interferon-related diseases
such as pathogen infection.

4. Antiviral Effects of Decitabine
4.1. HIV

Human immunodeficiency virus (HIV)-induced acquired immunodeficiency syn-
drome (AIDS) has persevered for more than four decades, but ongoing global challenges
remain. Epigenetic modification plays a vital role in the life cycle of HIV [30]. In 1990,
Bouchard, J. et al. found that two 5-azacytidine derivatives, 5-azacytidine (AZA) and
5-deoxyazacytidine (DAC), could effectively inhibit the replication of HIV-1 in the human
T-lymphocyte cell line CEM cells without cytotoxicity. The potential mechanism may in-
volve demethylation of viral DNA. The methylation of viral DNA modulates the expression
of HIV proviruses and leads to the instability of HIV provirus DNA [31]. Studies have
shown that DAC, a reducer of AZA, is more effective in inhibiting HIV, mainly through the
enhancement of HIV-1 mutations [32]. It has been reported that fatal mutations of HIV-1
mediated by decitabine are related to base-G and C mutations, and the G-to-C mutation
mediated by decitabine is an effective antiviral mechanism to inhibit HIV-1 infection [33].
Through the synthesis of new resveratrol derivatives, it was found that it not only had
anti-HIV-1 activity but also had a strong synergistic effect of resveratrol combined with
decitabine. The mechanism of synergistic reduction of HIV-1 infection by resveratrol and
decitabine may be related to their ability to enhance cytotoxicity [34]. Clouser, C.L. et al.
used drug retargeting to identify clinically approved drugs with anti-HIV activity. The
results showed that the combination of two clinically approved drugs, decitabine and
gemcitabine (4-Amino-1-[(2R,4R,5R)-3,3-difluoro-4-hydroxy-5-(hydroxymethyl)oxolan-2-
yl]pyrimidin-2-one, a difluorine nucleoside analog), synergistically reduced HIV infectivity
at concentrations significantly lower than those used for cancer treatment. A potential drug
target could be the mutation rate of HIV [35]. In addition, by using the murine leukaemia
virus (MuLV)-based LP-BM5/murine AIDS (MAIDS) mouse model (LP-BM5/MAIDS),
the authors found that the combination of decitabine and gemcitabine exhibited strong
antiretroviral HIV-1 activity in vivo and in vitro. The main involved mechanisms included
the following: (1) Decitabine is integrated into HIV-1 DNA during reverse transcription
to form atypical base pairs, thereby increasing the mutation frequency of G-to-C. (2) The
anti-HIV-1 activity of gemcitabine is attributed to its inhibition of ribonucleotide reductase,
which in turn alters the deoxyribonucleoside triphosphate (dNTP) pool and ultimately
enhances the activity of decitabine or increases the frequency of HIV-1 mutations [36]. In the
same year, the authors first demonstrated that the divalerate prodrugs of both decitabine
and gemcitabine were permeable and stable, and both showed strong anti-HIV-1 activity at
noncytotoxic concentrations. Compared to the parent compound, the prodrug increases
intestinal permeability, which is usually associated with increased bioavailability and
pharmacokinetic properties [37]. In addition, a sequential combination of demethylation
agents (DACs) and histone deacetylase inhibitors (HDACIs) or TNFα has been reported
to reactivate latent HIV [38]. The synergistic effect of this combination therapy may be
explained by the synergistic targeting of epigenetic mechanisms between the two by the
inhibition of DNA methyltransferase (DNMT) activity or by the unique pharmacological
properties inherent to HDACIs [39]. The functions of decitabine in the process of HIV
infection are multifarious. Further exploration of the molecular regulation of decitabine
will contribute to the development of antiviral drugs.

4.2. Hepatitis Viruses

Hepatitis virus is the pathogen of viral hepatitis. Human hepatitis viruses can be
classified as types A, B, C, D, E and G. As a kind of infectious pathogen, hepatitis viruses
subject human beings to both physical and psychological torment, and patients often suffer
unspeakably. To date, there is no specific clinical drug for hepatitis virus. Therefore, it is
important to develop specific new drugs against hepatitis virus. Studies have shown that
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hepatitis B virus (HBV) can downregulate apolipoprotein A1 (ApoA1) through epigenetic
silencing of ApoA1 gene expression by inducing DNA CpG island hypermethylation.
Further studies showed that upregulation of DNMT1, DNMT3A, and DNMT3B resulted in
hypermethylation of the ApoA1 promoter. Since cholesterol levels are necessary for HBV
infection and escape from the host cell membrane, ApoA1 may inhibit HBV expression by
inhibiting cellular cholesterol levels, which provides a sufficient theoretical basis for the
clinical diagnosis and treatment of chronic hepatitis B (CHB) [40]. Chen, C. et al. identified
DNMT1 and DNMT3B as host factors involved in HCV reproduction by using lentivirus-
mediated shRNA interference technology. In addition, the DNMT inhibitors AZA and
DAC significantly inhibited HCV cell culture (HCVcc) infection, viral RNA replication, and
protein expression. These results suggest that DNMTs may be an effective target for HCV
infection [41]. Studies have shown that the HCV core protein inhibits E6-associated protein
(E6AP) expression through DNA methylation, protects itself from ubiquitin–proteasome
degradation and stimulates viral proliferation. However, when E6AP was ectopically
expressed, the DNA methyltransferase (DNMT) inhibitor DAC or DNMT1 was knocked
out, the E6AP level recovered, and the effect of the HCV core protein on E6AP almost
completely disappeared, which provided a potential target for the development of anti-
HCV drugs [42]. All the results listed above indicate that decitabine has the potential to be
developed into an anti-hepatitis virus therapy.

4.3. Other Viruses

In 1995, it was first reported that in the presence of DAC, the production of infectious
Autographa californica nuclear polyhedrosis virus (AcMNPV) was only slightly affected,
while the synthesis of late proteins (polyhedrin and pl0) was abolished, similar to the
methyltransferase inhibitor 3-deazaadenosine (3DA-Ado) [43]. It has also been reported
that when applied a few hours prior to virus inoculation, DNA methyltransferase inhibitors
(AZA, azacytidine and DAC, decitabine) improved baculovirus-mediated gene expression
by fourfold or more in all four mammalian cell lines (CHO, CNE, HEK293, and HepG2
cells) [44]. In addition, it has been reported that human parvovirus B19 (B19V) formed
chromatin-like structures after cotransfection of B19V-infected clones and pHelper plasmids
into HEK293T cells for 12 h. More importantly, DAC treatment reduced the formation of
chromatin-like structures and the replication of the B19V genome, suggesting that DNA
methylation status may be responsible for the reduced replication of the viral genome
and altered RNA processing [45]. Thieulent, C. et al. screened 2891 compounds for
resistance to Equid herpesvirus-1 (EHV-1) using the impedance method and found that 22
compounds were effective against EHV-1 in vitro. Among them, valganciclovir, ganciclovir,
decitabine, aphidicolin, idoxuridine and pritelivir (BAY57-1293) were identified as the most
effective compounds. Valganciclovir and decitabine have synergistic effects. Based on the
results, the authors hypothesize that the mechanism of decitabine against EHV-1 is the
integration of decitabine into EHV-1 DNA and/or blockage of viral polymerase, thereby
inhibiting viral growth [46]. HPV16 is the most likely carcinogenic genotype of high-risk
human papillomavirus. Morel, A. et al. found that treatment with the demethylating
agent DAC in HPV 16-positive Ca Ski and SiHa cells could inhibit the expression of
viral oncoprotein E6 at the mRNA and protein levels and simultaneously upregulate
the expression level of miR-375, a tumour suppressor miRNA known to target HPV 16
E6/E7 mRNA. The mechanism of action may involve the demethylation of the miR-375
promoter [47]. Greggs, W.M. et al. demonstrated the activity of four FDA-approved
anti-HIV-1 active drugs, tenofovir, raltegravir, decitabine, and gemcitabine, against feline
leukaemia virus (FeLV) at nontoxic concentrations. Both HIV-1 and FeLV are retroviruses,
and the mechanism of action of gemcitabine, tenofovir and raltegravir against FeLV may
be similar to that of anti-HIV-1. However, the fact that FeLV reverse transcriptase (RT)
has a higher fidelity than HIV-1 RT indicates that decitabine may act through a different
mechanism than anti-HIV-1 [48]. In summary, DAC has antiviral effects on both RNA
and DNA types of viruses (Table 1). According to current research, DAC regulates only
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DNA methylation, and it has not been reported that DAC can affect RNA modification.
This indicates that DAC inhibits viruses mainly by regulating host DNA methylation. In
addition, the nucleic acids of pathogenic microorganisms have a low methylation level,
which further suggests that DAC mainly regulates the immune response by inhibiting the
methylation of host DNA. With increasing reports on antiviral research on decitabine, the
immune regulation mechanism and antiviral effect of decitabine will advance its antiviral
drug development process.

Table 1. Decitabine antiviral effects and potential mechanism.

Virus Nucleic Acid Type Potential Mechanism References

HIV RNA
Regulated the methylation of viral DNA,

leading to the instability of HIV
provirus DNA

[31–37,39]

B19 V DNA Regulated the formation and modification
of chromatin-like structure [45]

HBV DNA Upregulated anti-inflammatory
protein ApoA1 [40]

EHV1 DNA Integrated into the EHV-1 DNA and/or
jams the viral polymerase [46]

HPV16 DNA Upregulated miR-375 level and represses
HPV16 E6 expression [47]

HCV RNA Induced E6AP to increase degradation of
HCV viral protein [41,42]

FeLV RNA - [48]

5. Conclusions and Future Prospects

As one of the DNMTs, DAC interferes with the epigenetic control of gene expression
in cells by impeding DNMTs. DAC can reactivate epigenetically silenced genes and has
a role in cancer chemotherapy. However, DAC is also a nucleic acid analogue that shares
analogous functions with other nucleic acid antiviral drugs, such as acyclovir (ACV) [49]
and ganciclovir (GCV) [50], and much more than this, DAC is able to regulate the antiviral
innate immune response in various tumour cells. These results have endowed DAC with
particular and promising functions in antiviral therapy regimens. In addition, DAC was
approved for the treatment of myelodysplastic syndrome subtypes by the FDA in 2006 and
Europe in 2009 and progressively spread to different countries worldwide [10], indicating
its obvious advantages in medicinal properties. To date, DAC has been reported to have
antiviral effects on HIV, hepatitis virus, EHV1, B19V, HPV16 and FeLV. These studies
suggest that decitabine may share a similar function in other types of viruses, and because
it is a listed drug, decitabine may be a potential drug for antiviral therapy.

In summary, DAC possesses a spectrum of antiviral activity. However, it is difficult
to achieve stable pharmacokinetics with decitabine because of their rapid deamination
by cytidine deaminase in vivo and spontaneous hydrolytic cleavage. With the improved
understanding of the DAC mechanism of action, researchers have discovered that even
nanomolar doses could achieve effective inhibition of DNA methylation while also im-
proving tolerability [51]. Decitabine has demonstrated rapid deamination by cytidine
deaminase in vivo and spontaneous hydrolytic cleavage. Developing more stable deriva-
tives of decitabine is a demanding prompt solution. 5′-O-trialkylsilylated DACs-OR-2003
and OR-2100 were confirmed to completely deplete DNA methyltransferase 1 and induce
both gene-specific and genome-wide demethylation and were comparable to that of DAC,
with fewer adverse effects in vivo [52]. Guadecitabine (SGI-110), an investigational drug
for the treatment of myelodysplastic syndrome and acute myeloid leukaemia, is a second-
generation DNA methylation inhibitor that was designed to overcome the instability of
DAC, with the potential to improve pharmacodynamics, clinical efficacy, and safety [53].
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At the same time, as an antitumour drug, DAC’s main role is to inhibit cell growth and
induce cell apoptosis. Therefore, high-dose and high-frequency administration has a certain
toxicity and side effects. Therefore, reducing the side effects of DAC is an important devel-
opment direction, and the role of guadecitabine in the field of antiviral therapy is worthy of
further exploration. The effectiveness of decitabine therapy is also influenced by the relative
transport capacities of the target tissue, and four different classes of proteins participate in
the transportation process of nucleosides across membranes in human cells [54]. There was
also a statistically significant correlation between the expression level of the equilibrative
transporter ENT-1 and the sensitivity of mononuclear cells cultured in vitro from acute
myelocytic leukaemia (AML) patients [55]. Therefore, it is a new direction to explore the
relationship between host cell nucleotide transporter proteins such as ENT-1 and viral
infection. Correspondingly, viruses have also evolved various mechanisms to evade host
immunity to ensure efficient viral replication and persistence. Several viruses, such as
Ebola virus (EBV), HBV, HPV and Kaposi’s sarcoma-associated herpesvirus (KSHV), can
modulate host DNA methyltransferases for epigenetic dysregulation of immune-related
gene expression in host cells [56]. Hypomethylation of CpG islands in the interferon reg-
ulatory factor 5 (IRF-5) promoter was observed in EBV type III latent infected Burkitt’s
lymphoma and gastric carcinoma cell lines to restrain IFR5 expression [57]. Further detailed
explorations are required for a more thorough understanding of the molecular mechanism
of decitabine immunoregulation and feasible treatments for virus infection.
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Abbreviations

DAC 5-aza-2′-deoxycytidine, decitabine
DNMTs DNA methyltransferases
MDS myelodysplastic syndrome
HSV-1 Herpes simplex virus type 1
RIG-I retinoic acid-inducible gene I
IRF-7 interferon regulatory factor-7
IRF-5 interferon regulatory factor 5
IFN interferon
TLRs Toll-like receptors
sPTL spontaneous preterm labour
TNL term not in labour
TL term in labour
AZA 5-azacytidine, azacytidine
DNMTis DNMT inhibitors
ERVs endogenous retroviruses
EOC epithelial ovarian cancer
CLP caecal ligation and puncture
GO gene ontology
LTA lipoteichoic acid
hOBs stimulated human odontoblast-like cells
ERK extracellular signal-regulated kinase
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HIV human immunodeficiency virus
AIDS acquired immunodeficiency syndrome
MuLV murine leukaemia virus
dNTP deoxyribonucleoside triphosphate
HDACIs histone deacetylase inhibitors
HBV hepatitis B virus
ApoA1 apolipoprotein A1
CHB chronic hepatitis B
HCVcc HCV cell culture
E6AP E6-associated protein
AcMNPV Autographa californica nuclear polyhedrosis virus
B19V human parvovirus B19
EHV-1 Equid herpesvirus-1
FeLV feline leukaemia virus
ACV acyclovir
GCV ganciclovir
AML acute myelocytic leukaemia
EBV Ebola virus
KSHV herpesvirus
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