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Abstract

Probiotics are dietary supplements containing viable, non-pathogenic microorganisms that

interact with the gastrointestinal microflora and directly with the immune system. The possi-

ble health effects of probiotics include modulating the immune system and exerting antibac-

terial, anticancer, and anti-mutagenic effects. The purpose of this study was to isolate,

identify, and characterize novel strains of probiotics from the faeces of Korean infants. Vari-

ous assays were conducted to determine the physiological features of candidate probiotic

isolates, including Gram staining, 16S rRNA gene sequencing, tolerance assays to stimu-

lated gastric juice and bile salts, adherence ability assays, antibiotic susceptibility testing,

and assays of immunomodulatory effects. Based on these morphological and biochemical

characteristics, five potential probiotic isolates (Enterococcus faecalis BioE EF71, Lactoba-

cillus fermentum BioE LF11, Lactobacillus plantarum BioE LPL59, Lactobacillus paracasei

BioE LP08, and Streptococcus thermophilus BioE ST107) were selected. E. faecalis BioE

EF71 and L. plantarum BioE LPL59 showed high tolerance to stimulated gastric juice and

bile salts, and S. thermophilus BioE ST107 as well as these two strains exhibited stronger

adherence ability than reference strain Lactobacillus rhamnosus GG. All five strains inhib-

ited secretion of lipopolysaccharide-induced pro-inflammatory cytokines IL-6 and TNF-α in

RAW264.7 macrophages in vitro. L. fermentum BioE LF11, L. plantarum BioE LPL59, and

S. thermophilus BioE ST107 enhanced the production of anti-inflammatory cytokine IL-10.

Overall, our findings demonstrate that the five novel strains have potential as safe probiotics

and encouraged varying degrees of immunomodulatory effects.

Introduction

Probiotics defined as “living micro-organisms, which upon ingestion in certain numbers, exert

health benefits beyond inherent basic nutrition”, have become a major topic of lactic acid bac-

teria research over the past 20 years [1]. Probiotics are usually considered dietary supplements

and contain viable, non-pathogenic microorganisms that interact with the gastrointestinal

microflora and directly with the immune system [2]. Possible health effects of probiotics
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include modulating the immune system; antibacterial, anticancer, and anti-mutagenic activi-

ties; and preventing cancer recurrence [3–6]. Certain members of the Lactobacillus, Bifidobac-
terium, Streptococcus, and Enterococcus genera are thought to be beneficial for human health

when ingested and are reported to exert anti-inflammatory properties [7]. Members of these

genera have been shown to be useful in the treatment and prevention of immune and intestinal

disorders, including allergic diseases, diarrhoea, and chronic inflammatory diseases [8–10].

However, these beneficial effects have been associated with a minority of strains, and other

strains and same species cannot be assumed to have the same effects [11]. The effects of probi-

otics on immune-modulatory cytokine level have been shown to be highly diverse and strain-

dependent as well as cell type-specific.

For probiotics to be successful, a strain should be able to colonize the gastrointestinal tract

and promote host health through its metabolic activities. The safety and functional properties

of the strains, such as antibiotic resistance and adherence to intestinal mucosa cells, and the

possibility of immunomodulation are very important for the selection of potential probiotic

strains, they should be studied using reliable in vitro screening methods [12].

The modulation of immune responses, such as the suppression of inflammation, is a major

part of the crosstalk between bacteria and epithelial cells. Previous studies have reported that

some bacteria induce the secretion of pro-inflammatory cytokines, such as tumour necrosis

factor (TNF)-α and interleukin (IL)-6, whereas others promote the secretion of anti-inflamma-

tory cytokines such as IL-10 [13–16]. These cytokines contribute to defence mechanisms that

participate in host immunity in response to external invasion, but they may induce immune-

pathological disorders when secreted in excess. Macrophages derived from monocytes play a

central role in initiating the primary defence system of host immunity and can be activated by

microbial components such as endotoxins, lipopolysaccharides (LPS), and lipoteichoic acids

(LTA) [17]. This enables the recognition of foreign objects that trigger a cascade of immuno-

logical defence mechanisms, such as the production of pro- and anti-inflammatory cytokines

[18].

In this study, in order to isolate, identify, and characterize novel strains of probiotics, 20

strains were isolated from Korean infant stool samples and were examined for their acid and

bile tolerance, adherence to intestinal mucus, and effects on the induction of known pro-

inflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages.

Materials and methods

Subjects and ethics statement

As they age, the number of beneficial bacteria in the intestinal environments is generally

lower, which can result in an imbalance in bacterial community composition. However, the

beneficial bacteria including Lactobacillus and Bifidobacterium spp. are abundant in infants

[19, 20]. The study included faecal samples from 10 healthy infants aged from 1 to 47 months,

with no exclusions based on delivery or feeding mode. Mothers and infants were in good

health (self-reported). Subjects were excluded if the infant had a gastrointestinal disorder or

had taken antibiotics in the previous 14 days, if the infant had been ill in the previous 7 days,

or if the infant was administered oral probiotics. This study was approved by the Public Inves-

tigational Review Board designated by the Ministry of Health and Welfare (IRB number: P01-

201712-33-002). Written informed consent was obtained from all parents according to the

institutional guidelines. Fresh faecal samples were collected by the participants and immedi-

ately stored in home freezers until delivery to the experimental laboratory within 24 h of sam-

ple collection. Samples were placed in labelled collection tubes and stored at -80˚C until

analysis.

Immunomodulatory effects of five novel probiotic strains
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Faecal samples and bacterial growth conditions

Fresh faecal samples were mixed with de Man, Rogosa and Sharpe (MRS; Difco, Detroit, MI,

USA) broth at a ratio of 1:9 and homogenized using a BenchMixer (Benchmark, Sayreville, NJ,

USA) according to the method of Chung et al [21]. Homogenized samples were incubated

under anaerobic conditions at 37˚C for 3 h. Each sample was streaked onto MRS, blood liver

(BL; MB Cell, Los Angeles, CA, USA), and bismuth sulphite (BS; Difco) agar, which is selective

for probiotics. The plates were incubated at 37˚C for 48–72 h under anaerobic conditions. For

each faecal culture sample, 118 colonies were randomly selected and purified on MRS broth

medium (Difco) for identification. Isolates were stored frozen at -80˚C in glycerol until subse-

quent analyses.

Isolation and identification of lactic acid bacteria

For identification, the cell morphology of selected isolates was examined by microscopy.

Selected isolates were identified by Gram staining, Analytical profile index (API) 50 CHL kit

(BioMerieux, Marcy l’Etoile, France) or API 20E Strep kit (BioMerieux), and 16S ribosomal (r)

RNA gene sequencing. The 16S rRNA gene was amplified by direct PCR using the following

universal primers: forward, 5ʹ-GAGTTGGATCCTGGCTCAG-3ʹ and reverse, 5ʹ-AAGGAGGGG
ATCCAGCC-3ʹ. DNA was extracted from each strain with a commercial G-spin kit for bacte-

rial genomic DNA extraction (Intron, Korea) according to the manufacturer’s instructions.

Sequencing of the 16S rRNA gene was performed by a commercial sequencing facility (Macro-

gen, Seoul, Korea) with an ABI 3730XL DNA analyzer. The 16S rDNA sequences were ana-

lysed using the GenBank (NCBI, Bethesda, MD, USA) database, and identification was

performed on the basis of 16S rDNA sequence homology using the BLAST database. CLUS-

TAL X [22] was used to construct multiple alignments of 16S rRNA gene sequences. A phylo-

genetic tree was constructed in MEGA version 7 [23] using the neighbor-joining method [24].

Bootstrap analysis was based on 1,000 neighbor-joining datasets [25].

Tolerance to low pH and bile salts

For determining the tolerance of the isolated strains to low pH and bile salts, an in vitro meth-

odology was used [26], which mimics conditions encountered during in vivo human upper

gastrointestinal transit. Tolerance was examined by monitoring bacterial growth. In brief, arti-

ficial gastric juice was prepared by suspending pepsin (Sigma-Aldrich, St. Louis, MO, USA) in

MRS broth to a final concentration of 250 units/ml and adjusting the pH to 2.5 with 1 N HCl

using a Model S220-K pH meter (Mettler, Toledo, OH, USA). The strains were incubated at

37˚C for 18 h and then centrifuged at 10,000 × g for 25 min at 4˚C. After centrifugation, the

supernatant was removed, and an equal volume of artificial gastric juice was added to the bac-

terial cell pellet and incubated at 37˚C for 2 h. The pellets were collected by centrifugation at

10,000 × g for 25 min at 4˚C and washed three times with phosphate-buffered saline (PBS).

MRS broth containing 0.3% bile acids (Oxgall; Difco) was added to each pellet in artificial gas-

tric juice and incubated at 37˚C for 24 h. The number of bacterial colony-forming units (CFU)

was determined on MRS agar plates. Assays were performed three times independently.

In vitro adherence assay

The human intestinal epithelial cell line Caco-2 was acquired from the Korean Collection for

Type Cultures (KCTC, Daejeon, Korea). For isolated strains with high resistance to low pH

and bile salts, adherence to Caco-2 cell cultures was assessed. Caco-2 cells were cultured in

modified Eagle’s medium (MEM; Corning, Corning, NY, USA) supplemented with 20% fetal
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bovine serum (Biowest, France), 100 U/ml penicillin, and 100 μg/ml streptomycin (Gibco,

Waltham, MA, USA) at 37˚C in 5% CO2. Caco-2 cells were seeded in a cell culture dish with a

diameter of 60 mm (SPL Life Sciences, Gyeonggi, Korea) at 1.0 × 105 cells/cm2 and cultured

for 2 d. Before the adherence assay, Caco-2 cell monolayers were washed three times with PBS

(Gibco), and the medium was replaced with antibiotic-free MEM. Each dish was inoculated

with 100 μl (108 bacteria) of 18 h culture and incubated for 2 h at 37˚C in 5% CO2. After 2 h of

incubation, the monolayers were washed three times with PBS, and 200 μl of 1% Triton-X 100

(Sigma-Aldrich) was added. An aliquot of 1 ml of the homogenate was added to an MRS agar

plate by serial dilution. The percentage of bacteria that adhered to the plate was then calcu-

lated. All experiments were performed three times independently. The commercial strain Lac-
tobacillus rhamnosus GG (L.GG) from the American Type Culture Collection (Manassas, VA,

USA; ATCC 53103) was grown and used as a control for this assay.

Antibiotic resistance profiles of isolates

The antibiotic resistance profiles of selected isolates were determined using disc diffusion

assays with 13 discs purchased from Bio-Rad (Hercules, CA, USA) containing the following

antibiotics: vancomycin (VAN, 30 μg), erythromycin (ERY, 15 μg), tetracycline (TET, 30 μg),

gentamycin (GMN, 10 μg), chloramphenicol (CHL, 30 μg), ampicillin (AMP, 10 μg), strepto-

mycin (SMN, 10 μg), ciprofloxacin (CIP, 5 μg), rifampin (RIF, 5 μg), imipenem (IPM, 10 μg),

trimethoprim (TMP, 5 μg), clindamycin (CMN, 2 μg), and kanamycin (KMN, 30 μg). A vol-

ume of 100 μl of an overnight culture suspension of each isolate (equivalent to 108 bacteria/ml)

was spread on an MRS agar (Difco) plate. E. coli KCTC1682, used as a control, was spread on

Müller-Hinton agar (MHA) plates (Difco). Discs with antibiotics were placed onto the solidi-

fied MHA or MRS agar with sterile tweezers for 15 min. Three discs were placed in each dish

with a distance of more than 24 mm between the centres of the discs and more than 15 mm

between the edge of each disc and the inner edge of the dish. Plates were incubated at 37˚C for

24 h under anaerobic conditions, except for E. coli KCTC1682, which was grown under aero-

bic conditions. After 24 h, the diameter of the inhibition zone around each antibiotic disc was

measured with a SCAN-500 (Interscience, France) and compared with a known standard pro-

vided by the Clinical and Laboratory Standards Institute (CLSI) guidelines. Breakpoints were

calculated as previously described [27].

Immunomodulatory cytokine analysis

RAW264.7 murine macrophages were acquired from the KCTC and were maintained in Dul-

becco’s MEM (DMEM; Corning) supplemented with 20% fetal bovine serum (Biowest), 100

U/ml penicillin, and 100 μg/ml streptomycin (Gibco) at 37˚C in 5% CO2. RAW264.7 cells

were seeded in a 24-well plate (SPL) at 1 × 106 cells/cm2 and cultured for 4 h at 37˚C in a 5%

CO2 incubator. The levels of cytokines produced following stimulation with each bacterial iso-

late were compared with those observed in RAW264.7 cells in DMEM alone as a negative con-

trol and in cells cultured with LPS (1 μg/ml; Sigma-Aldrich) as a positive control. Before

treatment of RAW264.7 cells with bacteria, RAW264.7 cell monolayers were washed three

times with PBS (Gibco), and the medium was replaced with antibiotic-free MEM. After culture

in MRS broth for 18 h at 37˚C in an anaerobic incubator, bacterial cells (1 × 108 CFU/ml) were

washed with PBS and added to culture plates containing RAW264.7 cells. All cells except the

negative controls were stimulated with LPS (1 μg/ml) for 24 h. After stimulation, culture

supernatants were collected and centrifuged at 13,000 rpm for 3 min and stored at -20˚C until

cytokine analysis [28]. Cytokine levels (IL-6, TNF-α, and IL-10) were measured using com-

mercial ELISA kits (Cusabio Biotech, Wuhan, China).
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Statistical analysis

All data are expressed as the mean ± SEM. Statistical analysis was performed with GraphPad

Prism 5 (San Diego, CA, USA). Differences in abundances of bacterial species between the mean

values for different treatments with the isolated strains or their supernatants were analysed by

one-way ANOVA with turkey as appropriate. (�p< 0.05, ��p< 0.01, and ���p< 0.001).

Results

Isolation and identification of bacteria

A total of 10 faecal samples from infants under 47 months of age were obtained from 10

healthy mothers regardless of their delivery mode. The faecal samples yielded 84 distinct bacte-

rial isolates representing the genera Bifidobacterium, Lactobacillus, Enterococcus, Klebsiella,

Staphylococcus, and Streptococcus (Table 1). Of these, we first selected 20 strains above 108

CFU/ml and 20 isolates showed gram-positive and catalase negative reaction identified by

gram-staining and API kit. We used the API 20 strep kit for Enterococcus faecalis and the API

50 CH fermentation system for the rest of the isolates to assess the carbohydrate fermentation

ability of the isolated lactic acid bacterial (LAB) strains, and these results are shown in Table 2.

Next, the 20 selected strains were subjected to PCR and 16S rDNA sequencing and analysed

using BLAST. Among the 20 isolates, five isolates exhibited >99.5% sequence identity to each

of E. faecalis, Lactobacillus fermentum, Lactobacillus paracasei, Lactobacillus plantarum, and

Streptococcus thermophilus. A phylogenetic tree was created to show the species relationships

of the isolates (Fig 1). These five isolates were patent deposited in the Korean Collection for

Type Cultures (KCTC) under the following strain names: E. faecalis BioE EF71 (KCTC

18627P), L. fermentum BioE LF11 (KCTC 18628P), L. paracasei BioE LP08 (KCTC 18629P), L.

plantarum BioE LPL59 (KCTC 18630P), and S. thermophilus BioE ST107 (KCTC 18631P).

The NCBI GenBank accession numbers of these sequences are MK779052, MK779053,

MK7799054, MK7799055, and MK7799056, respectively.

Acid and bile salt tolerance

Bacterial survival was assessed under conditions similar to those in the proximal part of the

gastrointestinal tract at time intervals corresponding to the actual presence of lactobacilli in

Table 1. Bacterial isolates by genus and species isolated from infant stool samples obtained from 10 mother’s

infants (n = 10).

Bacterial genus and species No. of isolates Comments

Bifidobacterium animalis subsp. lactis 1 From 1 infant (ages 1 month)

Bifidobacterium pseudocatenulatum 8 From 2 infants (ages 1 and 47 months)

Lactobacillus paracasei 8 From 1 infant (ages 9 months)

Lactobacillus plantarum 43 From 3 infants (ages 0.5, 1, 11 months)

Lactobacillus fermentum 1 From 1 infant (ages 1 months)

Enterococcus avium 15 From 1 infant (ages 31 months)

Enterococcus gallinarum 3 From 2 infants (ages 24 and 31 months)

Enterococcus malodoratus 3 From 2 infants (ages 24 and 31 months)

Enterococcus faecalis 4 From 3 infants (ages 0.5, 1, 31 months)

Enterococcus faecium 27 From 3 infants (ages 7, 9, 24 months)

Klebsiella pneumoniae 3 From 1 infants (ages 7 months)

Staphylococcus epidermidis 1 From 1 infants (ages 0.5 months)

Streptococcus thermophilus 1 From 1 infant (ages 11 months)

Total number of unique isolates 118 From 10 infant (ages 0.5, 1, 7, 9, 11, 24, 31, 47 months)

https://doi.org/10.1371/journal.pone.0223913.t001
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the intestines. The five isolates showed good survival in artificial gastric juice and in a solution

containing 0.3% bovine bile salts. After 2 h of exposure to artificial gastric juice, the growth of

L. fermentum BioE LF11 and S. thermophilus BioE ST107 was almost maintained at control

levels, with the number of viable cells at 8.62 and 5.91 log CFU/ml, indicating survival rates of

99.4 and 73.2%, respectively. The growth of E. faecalis BioE EF71 and L. plantarum BioE

LPL59 decreased somewhat, resulting in viability values of 4.82 and 4.39 log CFU/ml, respec-

tively. In addition, after 24 h of exposure to bovine bile salt solution, the strong growth of E.

faecalis BioE EF71, L. paracasei BioE LP08, L. plantarum BioE LPL59 resulted in viability val-

ues of 9.00, 8.80, and 8.99 log CFU/ml (Table 3). E. faecalis BioE EF71, L. paracasei BioE LP08,

and L. plantarum BioE-LPL59 exhibited higher tolerances to acid and bile salts than L.GG. In

addition, while S. thermophilus BioE ST107 exhibited slower growth than L.GG in terms of the

total number of viable cells, S. thermophilus BioE ST107 exhibited increased survival after 24 h

following bile acid treatment.

Adherence to intestinal cells

To confirm the adherence of the five isolated strains to intestinal epithelial cells, we used the

human intestinal epithelial cell line Caco-2. We determined the concentration (CFU/ml) of

initial and adhered cells before and after adherence to Caco-2 cells, respectively. These values

were 9.14 log CFU/ml and 7.79 log CFU/ml for E. faecalis BioE EF71 and 8.94 log CFU/ml and

8.4 log CFU/ml for L. plantarum BioE LPL59, indicating 30% survival rates for these two

strains. Among the five strains, E. faecalis, L. plantarum, and S. thermophilus exhibited signifi-

cantly improved adherence to Caco-2 cells compared to that of the reference strain (Figs 2 and

S1).

Antibiotic susceptibility

Disc diffusion assays were used to determine the antibiotic susceptibility profiles of the tested

strains according to the antimicrobial drug sensitivity standards of the CLSI. The sensitivities

of the five strains to 13 types of antibiotics are summarized in Table 4. The five strains were

generally resistant to gentamicin (n = 4), kanamycin (n = 5), trimethoprim (n = 5), and vanco-

mycin (n = 4) and were mostly sensitive to ampicillin (n = 4), chloramphenicol (n = 5), imipe-

nem (n = 5), and rifampicin (n = 3). The resistance rates of the three species of Lactobacillus
ranged from 38.5 to 53.8%, and these three isolates had similar resistance patterns. All three

Lactobacillus strains, as well as the L.GG reference strain, were resistant to vancomycin. The

resistance rate of S. thermophilus, which showed the highest antibiotic susceptibility, was

30.8%.

Table 2. Identification of isolates using API 50 CH (Lactobacillus fermentum, Lactobacillus paracasei, Lactobacillus plantarum, Streptococcus thermophilus) and

API 20 strep (Eenterococcus faecalis) kit.

In agreement

Strainsa Positive Negative % of agreement

E. faecalis BioE EF71 11 9 99.7

L. fermentum BioE LF11 12 38 81.2

L. paracasei BioE LP08 46 4 99.3

L. plantarum BioE LPL59 44 6 99.9

S. thermophilus BioE ST107 3 47 99.2

aAll isolates were able to ferment glycerol, erythritol, D-Arabinose, L-Arabinose, L-Xylose, β Methyl-D-Xyloside, rhamnose, dulcitol, inositol, inulin, starch, glycogen,

xylitol, D-Fucose, L-Fucose, D-Arabitol, L-Arabitol, 2 keto-gluconate, 5 keto-gluconate.

https://doi.org/10.1371/journal.pone.0223913.t002
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Fig 1. Phylogenetic tree showing the genetic relationships of the five isolates from Korean infant stools with the closest sequences

identified in GenBank by BLAST. Neighbor-joining analyses were conducted with the Jukes and Cantor model using the PHYLIP package [68].

The sequence of Paenibacillus jamilae CECT 5266T (AJ271157) served as the outgroup. Solid circles indicate that corresponding nodes were also

recovered using maximum-likelihood [69] and maximum-parsimony [70] trees. Bootstrap values (expressed as percentages of 1,000 repetitions)

>70% are indicated at each node. Bar, 0.01 substitutions per nucleotide position.

https://doi.org/10.1371/journal.pone.0223913.g001
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Immunomodulatory effects

Murine macrophage RAW264.7 cells were stimulated with the five isolated strains, and the

concentrations of IL-6, TNF-α, and IL-10 in the culture supernatants of the RAW264.7 cells

were measured using ELISA kits. The IL-6 concentration in RAW264.7 cells cultured with LPS

(1 μg/ml) was 83.1 ± 3.42 pg/ml, while minimal IL-6 levels were detected in untreated

RAW264.7 cells (Figs 3a and S2 a). The LPS-induced increase in IL-6 levels was attenuated in

cells stimulated with E. faecalis BioE EF71, L. fermentum BioE LF11, L. paracasei BioE LP08, L.

plantarum BioE LPL59, and S. thermophilus BioE ST107 (1.65 ± 0.39 pg/ml, 1.33 ± 0.2 pg/ml,

1.28 ± 0.19 pg/ml, 29.82 ± 3.84 pg/ml, and 11.03 ± 5.43 pg/ml, respectively). We also compared

the secretion of each cytokine following stimulation with the five isolated strains to those

observed with other strains previously reported to exhibit anti-inflammatory properties. Thus,

L. fermentum BioE LF11 (1.33 ± 0.2 pg/ml) was more effective at attenuating IL-6 levels than

Table 3. Tolerance to acid and bile salts of isolates and control strain Lactobacillus rhamnosus GG.

Isolates Log CFU/ml

0 h 2 h, pH 2.5 24 h, 0.3% oxgall

E. faecalis BioE EF71 9.14 ± 0.05 4.82 ±1.73 9.00 ± 0.02

L. fermentum BioE LF11 8.67 ± 0.02 8.62 ± 0.03 7.84 ± 0.01

L. paracasei BioE LP08 9.62 ± 0.01 6.52 ± 0.57 8.80 ± 0.04

L. plantarum BioE LPL59 9.69 ± 0.01 4.39 ± 0.09 8.99 ± 0.01

S. thermophilus BioE ST107 8.07 ± 0.04 5.91 ± 1.73 7.02 ± 0.04

L. rhamnosus GG 9.31 ± 0.03 9.51 ± 0.02 7.70 ± 0.02

https://doi.org/10.1371/journal.pone.0223913.t003

Fig 2. Adherence of E. faecalis BioE EF71, L. fermentum BioE LF11, L. paracasei BioE LP08, L. plantarum BioE LPL59, S.

thermophilus BioE ST107, and L. rhamnosus GG to Caco-2 cells. After bacterial inoculation of Caco-2 monolayers, the number of

bacteria that adhered to the plates was calculated. Pink numbers indicate the number of initial bacterial cells before addition to

Caco-2 cells. Dark pink numbers indicate the mean number of adhered cells after addition to Caco-2 cells. Data shown are

mean ± SEM of three independent experiments performed in triplicate. ��p< 0.05, ���p< 0.001 versus initial cell number.

Reference strain: L. rhamnosus GG. ���p< 0.001 versus L. rhamnosus GG.

https://doi.org/10.1371/journal.pone.0223913.g002
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L. fermentum KCTC 5048 (42 ± 4.42 pg/ml), and E. faecalis BioE EF71 (1.65 ± 0.39 pg/ml) was

more effective than E. faecalis KCTC3206 (1.84 ± 0.07 pg/ml). The TNF-α concentration in

RAW264.7 cells cultured with LPS (1 μg/ml) was 992.57 ± 64.23 pg/ml (Figs 3b and S2 b).

TNF-α induction was attenuated by E. faecalis BioE EF71, L. fermentum BioE LF11, and L.

paracasei BioE LP08 (296.27 ± 37.2 pg/ml, 8.73 ± 3.76 pg/ml, and 3.13 ± 3.13 pg/ml, respec-

tively). TNF-α levels were more effectively reduced by L. fermentum BioE LF11 and L. paraca-
sei BioE LP08 than by L. fermentum KCTC 5049 (111.18 ± 7.45 pg/ml) and L. paracasei KCTC

3265 (118.83 ± 27.77 pg/ml). For experiments with the anti-inflammatory cytokine IL-10,

treatment with L. fermentum BioE LF11 (208.51 ± 19.01 pg/ml) and L. plantarum BioE LPL59

(254.61 ± 29.94 pg/ml) resulted in higher levels of IL-10 than the other strains (Figs 3c and S2

c).

Discussion

The early microbial colonization of the gastrointestinal tract in infants has a major effect on

health status and homeostasis [29]. Previous studies have shown that the direct effects of probi-

otics such as Lactobacillus, Bifidobacterium, Streptococcus, and Enterococcus include the upre-

gulation of immunoglobulins such as IgA, downregulation of inflammatory cytokines, and

enhancement of the gut barrier function [30]. However, because each strain differs in other

characteristics, it is essential to select and identify probiotics with desired characteristics.

In the present study, we identified five probiotics isolates (E. faecalis BioE EF71, L. fermen-
tum BioE LF11, L. paracasei BioE LP08, L. plantarum BioE LPL59, and S. thermophilus BioE

ST107) that showed improved tolerance to acid and bile and enhanced anti-inflammatory

properties compared to other potential probiotics. In order to identify the specific microbes

isolated, we used 16S rRNA gene sequencing to determine the phylogenetic relationships

among organisms and identify closely related species (Fig 1). We compared the 16S ribosomal

DNA sequences of the isolated strains with those available in the NCBI BLAST database (100%

homology). Although the Bifidobacterium species constitute almost 10% of the typical human

Table 4. Characteristics and antibiotic resistance profiles of isolates and Eeschericia coli.

Antibioticsa Conc. Diameter (mm) of inhibition zone

E. coli E. faecalis BioE

EF71

L. fermentum BioE

LF11

L. paracasei BioE

LP08

L. plantarum BioE

LPL59

S. thermophiles BioE

ST107

L. rhamnosus
GG

AMP 30 μg 19.97 ± 0.15 33.97 ± 1.92 23.00 ± 1.04 31.82 ± 0.15 33.90 ± 0.82 31.8 ± 2.52 22.40 ± 1.15

CIP 5 μg 32.13 ± 2.84 18.90 ± 0.78 ND 16.07 ± 0.59 ND 14.23 ± 1.17 16.00 ± 1.1

CHL 30 μg 24.30 ± 2.00 28.10 ± 2.57 23.20 ± 1.11 26.71 ± 0.46 23.93 ± 2.05 28.70 ± 1.56 25.70 ± 0.10

CMN 2 μg ND ND 21.57 ± 1.67 36.02 ± 0.41 15.77 ± 0.21 27.63 ± 1.91 21.83 ± 1.58

ERY 15 μg ND ND 22.87 ± 3.10 31.21 ± 0.58 23.13 ± 0.21 28.23 ± 1.19 27.80 ± 0.36

GMN 10 μg 17.30 ± 0.26 ND 8.83 ± 0.06 10.18 ± 0.66 8.83 ± 0.06 12.00 ± 2.36 8.73 ± 0.12

IPM 10 μg 27.73 ± 0.55 29.80 ± 0.96 36.17 ± 1.16 27.54 ± 0.65 38.53 ± 1.96 33.80 ± 0.17 24.47 ± 1.32

KMN 30 μg 16.63 ± 0.75 ND 8.80 ± 0.0 ND ND 8.03 ± 0.75 ND

RIF 5 μg 13.00 ± 0.30 17.50 ± 0.69 24.33 ± 0.83 28.07 ± 0.52 17.43 ± 0.51 23.13 ± 0.80 27.43 ± 1.46

SMN 10 μg 13.63 ± 0.50 ND ND ND 10.37 ± 1.34 12.70 ± 0.56 ND

TET 30 μg 23.37 ± 0.29 11.10 ± 0.36 22.13 ± 1.10 31.55 ± 0.27 17.83 ± 1.11 29.63 ± 2.68 29.00 ± 1.47

TMP 5 μg 18.90 ± 1.54 ND 7.83 ± 0.64 ND 4.03 ± 6.99 ND ND

VAN 30 μg ND 16.80 ± 0.26 ND ND ND 18.03 ± 0.57 ND

aAMP, ampicillin; CIP, ciprofloxacin; CHL, chloramphenicol; CMN, clindamycin; ERY, erythromycin; GMN, gentamicin; IPM, imipenem; KMN, kanamycin; RIF,

rifampicin; SMN, streptomycin; TET, tetracycline; TMP, trimethoprim; VAN, vancomycin. Note. Diameter of the disc is 6 mm.

https://doi.org/10.1371/journal.pone.0223913.t004
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Fig 3. Effects of E. faecalis BioE EF71, L. fermentum BioE LF11, L. paracasei BioE LP08, L. plantarum BioE LPL59,

S. thermophilus BioE ST107, and the reference strain L. rhamnosus GG on the secretion of IL-6 (a), TNF-α (b),

and IL-10 (c) in LPS-stimulated RAW264.7 cells. Bacterial cells were added to RAW264.7 cells, followed by

stimulation with LPS (except in negative control). Cytokine levels were measured by commercial ELISA kits.
���p< 0.001 versus negative control; ##p< 0.01, ###p< 0.001 versus LPS-treated sample; $ $p< 0.01, $ $ $p< 0.001

versus KCTC registered strain of the same species.

https://doi.org/10.1371/journal.pone.0223913.g003
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intestinal microbiota, they have been isolated from the neonatal gut as the earliest and most

abundant bacterial colonizers. Some Bifidobacterium spp. were isolated from our samples, but

the commercial probiotics strains with high functionality were not selected. A relatively high

percentage of Lactobacillus, mainly L. paracasei, L. plantarum, and Lactobacillus acidophilus
has been previously observed in infant stool [31]. These results suggest that Bifidobacterium
are sensitive to oxygen environment for survival than Lactobacillus.

We used the API 50CH fermentation system to assess the carbohydrate fermentation abili-

ties of the isolated LAB strains (Table 2). This system supports the metabolic characterization

of strains on a broad range of individual substrates with respect to enzymatic type and activity

level. In this analysis, L. plantarum BioE LPL59 exhibited strong fermentation of N-acetyl glu-

cosamine, amygdalin, and arbutin. In particular, N-acetyl glucosamine is a known component

of gram-positive bacterial peptidoglycan, a major compound in the cell wall [32]. Among the

genes in L. plantarum WCFS1 involved in immunomodulation are those belonging to the N-

acetyl-glucosamine/galactosamine phosphotransferase system [33]. This suggests that L. plan-
tarum BioE LPL59 may possess immunomodulatory genes involved in supporting cell shape

or modulating surface properties. However, this ability was not detected in L. paracasei BioE

LP08 or L. fermentum BioE LF11. Only L. fermentum BioE LF11 exhibited the ability to fer-

ment D-xylitol, which can be found in many fruits, vegetables, and mushrooms [34], suggesting

that L. fermentum BioE LF11 supports the reduction of D-xylitol to xylitol, similar to strains of

S. avium and L. casei [35].

In order to be effective, probiotic bacteria must be able to survive travel from the upper

digestive tract to the large intestine [36]. It has been previously reported that acidity has a

strongly negative effect on bacterial growth and viability during passage through the stomach

[37]. Bile plays an essential role in specific and non-specific defence mechanisms in the gut, and

the concentration of bile salts is the primary determinant of the strength of its inhibitory effects

[38]. The physiological concentrations of human bile salts range from 0.3 to 0.5% [39, 40].

Because of its similarity to human bile salts, 0.3% ox bile (Oxgall) solution is the most com-

monly used substitute [41, 42]. We performed an assessment of the tolerance to acid and bile

salts for each strain without separation of each test. We found that although L. paracasei BioE

LP08, L. plantarum BioE LPL59, and E. faecalis BioE EF71 exhibited reduced survival rates in

acidic conditions, all three isolates exhibited improved tolerances to stimulated gastric juice and

bile salts compared with those of L.GG. This suggests that resistant derivatives could be obtained

from these strains [43] or that the strains could adapt to the presence of acid and bile salts to

enhance their resistance to gastrointestinal factors that compromise probiotic survival [44].

An important feature of probiotics within the intestinal microbiota is their capacity for adhe-

sion to the intestinal epithelium. Moreover, adherence is a factor in the competitive exclusion of

enteropathogens [45] and stimulation of the immune system [46]. The Caco-2 cell line was orig-

inally isolated from a human colon adenocarcinoma [47]. In the present study, Caco-2 cells,

which have been used as an in vitro model for the intestinal epithelium, were used to assess the

adhesion abilities of the isolated strains [48, 49]. The adherence of E. faecalis BioE-EF71, L. plan-
tarum BioE LPL59, and S. thermophilus BioE ST107 was almost twice that of L.GG.

Resistance to antibiotics is common among bacteria. The CLSI agar dilution procedure is

the gold standard reference method for anaerobic antibiotic susceptibility testing [50]. Our

antibiotic resistance tests indicated that the three Lactobacillus strains were all resistant to

GMN, KMN, SMN, and VAN. These results are consistent with those of previous studies [51,

52]. Resistance to VAN is usually intrinsic, chromosomally encoded, and not transmissible

[53]. The S. thermophilus strain was resistant to CIP, GMN, KMN, and TMP, similar to the

results of previous studies [54]. The E. faecalis strain was resistant to CMN, ERY, GMN, KMN,

SMN, TET, and TMP and susceptible to AMP, CHL, and IPM. Previous studies have reported
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antibiotic resistance rates of E. faecalis isolates to ERY, TET, and GMN of 82.2, 88.6, and

49.3%, respectively, and no resistance to ampicillin has been detected [55]. Among the antibi-

otic susceptibility studies performed in other countries, the highest resistance appears to be to

TET and ERY, with resistance rates of 55–100 and 45–100%, respectively [56, 57]. Differences

between species in terms of resistance to other antibiotics have also been observed.

When ingested, probiotics exert several health-promoting effects, including maintenance of

the gut barrier function and modulation of the host immune system [58, 59]. It has been sug-

gested that the safety of probiotics should be evaluated by detecting changes in immune

parameters [60] due to growing evidence that probiotics, especially Lactobacillus and Bifido-
bacterium, have immunomodulatory properties. Macrophages sense bacteria-associated

molecular patterns through Toll-like receptors (TLRs). The activation of TLR leads to a variety

of signalling cascades, triggering T-cell differentiation into Helper T cells or regulatory T cells

[61, 62]. Therefore, many changes of macrophage-derived cytokines could affect the immune

response. In this regard, we found that E. faecalis BioE EF71, L. fermentum BioE LF11, L. para-
casei BioE LP08, L. plantarum BioE LPL59, and S. thermophilus BioE ST107 exerted immuno-

modulatory effects when co-incubated with murine macrophages. Decreased levels of the pro-

inflammatory cytokines (IL-6 and TNF-α) were observed in the supernatants macrophages

treated with each strain. Surprisingly, L. fermentum BioE LF11 inhibited LPS-induced IL-6

and TNF-α production more effectively than another previously reported reference (L. fermen-
tum KCTC 5048) [63] and also stimulated the production of IL-10 more effectively. E. faecalis
BioE EF71 and L. paracasei BioE LP08 also attenuated LPS-induced TNF-α levels more effec-

tively than other references (E. faecalis KCTC 3206 and L. paracasei KCTC 3265, respectively)

[13]. In addition, increased levels of the anti-inflammatory marker IL-10 were found in the

supernatants of macrophages treated with L. plantarum BioE LPL59 and S. thermophilus BioE

ST107. Previous studies have reported that the strain L. plantarum CGMCC1258 results in a

decrease in the transcript abundance of TNF [64] and that L. paracasei induces TLR-9 expres-

sion and TGF-β2 secretion [65]. Thus, we suggest that the five strains isolated in this study are

likely to be recognized by a combination of receptors to regulate the immune response after

inflammatory stimulus. We speculate that the use of these strains as probiotics may improve

the balance between pro-inflammatory and anti-inflammatory cytokines by encountering with

butyrate, which serves as a major source of energy for the colonic epithelium and has anti-

inflammatory properties [66].

Conclusions

This study screened 118 unique bacterial isolates from Korean infant stools and further charac-

terized 20 isolates for their potential probiotic properties. Five of these, in particular E. faecalis
BioE EF71, L. paracasei BioE LF11, and L. plantarum BioE LPL59, demonstrated good in vitro
gastrointestinal tolerance. E. faecalis BioE EF71, L. plantarum BioE LPL59, and S. thermophilus
BioE ST107 showed strong adherence to intestinal cells. The five strains exhibited strong

effects against LPS-induced inflammatory responses in RAW264.7 cells. These findings indi-

cate that these probiotic isolates may be useful for the treatment of acute inflammatory

responses, but in our study using only RAW 264.7 cells to determine immunomodulatory

properties of test products will not necessarily provide a comprehensive picture of the immu-

nomodulatory properties of the substance under investigation [67]. It suggested that in addi-

tion to cell lines when evaluating immune bioactivity of substances, the response of primary

cells can also be included in vitro response. It is necessary to further evaluate potential changes

in the gut microbiota composition that may occur following the immunomodulatory effects of

these probiotic strains in animal models.
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