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Herein we review current practice regarding the management of chronic graft-vs.-host

disease (cGvHD) in paediatric patients after allogeneic haematopoietic stem cell

transplantation (HSCT) for acute lymphoblastic leukaemia (ALL). Topics covered include:

(i) the epidemiology of cGvHD; (ii) an overview of advances in our understanding cGvHD

pathogenesis; (iii) current knowledge regarding risk factors for cGvHD and prevention

strategies complemented by biomarkers; (iii) the paediatric aspects of the 2014 National

Institutes for Health-defined diagnosis and grading of cGvHD; and (iv) current options

for cGvHD treatment. We cover topical therapy and newly approved tyrosine kinase

inhibitors, emphasising the use of immunomodulatory approaches in the context of the

delicate counterbalance between immunosuppression and immune reconstitution as well

as risks of relapse and infectious complications. We examine real-world approaches of

response assessment and tapering schedules of treatment. Furthermore, we report on

the optimal timepoints for therapeutic interventions and changes in relation to immune

reconstitution and risk of relapse/infection. Additionally, we review the different options

for anti-infectious prophylaxis. Finally, we put forth a theory of a holistic view of paediatric

cGvHD and its associated manifestations and propose a checklist for individualised risk

evaluation with aggregated considerations including site-specific cGvHD evaluation with

attention to each individual’s GvHD history, previous medical history, comorbidities, and

personal tolerance and psychosocial circumstances. To complement this checklist, we

present a treatment algorithm using representative patients to inform the personalised

management plans for patients with cGvHD after HSCT for ALL who are at high risk

of relapse.
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INTRODUCTION

Allogeneic haematopoietic stem cell transplantation (HSCT)
is a curative treatment for an increasing number of children
and adolescents with various malignant and non-malignant
haematological diseases, due to improved transplant procedures
and reduced early mortality. However, successful long-term
outcomes can be limited by chronic graft-vs.-host disease
(cGvHD), which is often severe and is the most common
complication post HSCT (1). This complex immune disorder
resembles multiorgan autoimmune diseases and can result
in adverse psychomotor development, functional impairment,
disability and poor quality of life (2). It is believed to correlate
with the graft- vs.-leukaemia effect (GvL) and contributes
to a lower risk of relapse of malignancy (3). Moderate-to-
severe cGvHD is the major cause of treatment-related mortality
(TRM) and inferior overall survival (OS) following HSCT,
and little progress has been made in recent decades regarding
outcomes (4).

The publication of the National Institutes for Health (NIH)
consensus criteria for cGvHD diagnosis and grading for use
in clinical trials in 2005, as revised in 2014, represented
a major advancement in the field (5, 6). Correspondingly,
the German-Austrian-Swiss GvHD Consortium published a
number of expert recommendations for daily clinical practice,
including some considerations for the paediatric population
(7). Recently, our understanding of cGvHD pathogenesis has
improved substantially (8–10). The 2020 NIH Consensus Project
has published documents aiming to move the field forward by
summarising current knowledge and expert opinion, identifying
the unmet needs of clinical care and gaps of knowledge, and
outlining future research efforts (11–13).

Unfortunately, cGvHD in children and adolescents has been
relatively understudied compared with in adults. Paediatric data
on cGvHD pathophysiology, clinical manifestations, diagnosis
and outcome are scarce. Furthermore, the NIH consensus criteria
were primarily developed from adult data: their validation and
clinical applicability for use in paediatric populations have been
rarely investigated since their publication (14).

After HSCT to cure acute lymphoblastic leukaemia (ALL),
paediatric patients are at high risk of developing various long-
term sequelae, with cGvHD being one of the major risk factors
(15). In view of the now longer life expectancy of children post
HSCT and the significant cGvHD-related morbidities within
a growing body, better understanding and management of
paediatric cGvHD is imperative.

To aid this, we herein review the current knowledge regarding
the management of paediatric cGvHD. Specific topics covered
include: the epidemiology and pathogenesis of cGvHD, risk
factors, biomarkers and paediatric aspects of the 2014 NIH
criteria for diagnosis and grading. Furthermore, we present
current options for treatment, with emphasis on topical therapy,
immunomodulatory interventions and supportive care and
with consideration for the delicate counterbalance between
immunosuppression and immune reconstitution, risk of relapse
and risk of infectious complications. We aim to present a new
perspective on how management strategies can be tailored to the

specific needs of individual patients and provide a framework
for the personalised treatment of paediatric patients with cGvHD
after HSCT for ALL to support clinicians in daily clinical practice.

Methods
We searched PubMed to find English-language articles from
1970 to 2021 emphasising on paediatric data whenever possible.
We used the following terms: “chronic GVHD with and
without paediatric/children,” “pathogenesis, pathophysiology,”
“epidemiology, incidence,” “diagnosis and grading,” “risk
factors,” “biomarker,” “immune reconstitution,” “treatment,”
“management,” “topical treatment,” “ECP,” “MSC,” “supportive
and ancillary care,” “relapse,” and “infections and infectious
complications.” The reference lists in the selected studies were
reviewed to identify additional articles. No limits were applied
in the initial search, but we then excluded articles that contained
only adult case series focusing on experimental approaches.

CURRENT KNOWLEDGE AND PRACTICE

Epidemiology of cGvHD in Children and
Adolescents
Nowadays, the criteria for diagnosis of cGvHD are based on
the combination of clinical manifestations and time of onset
according to the NIH consensus criteria (5). This should be kept
in mind for comparison of published data on the incidence of
acute GvHD (aGvHD) and cGvHD.

The incidence of paediatric cGvHD shows great variety
(ranging from 6 to 65%), with some differences explained by
the specific transplant indication (malignant vs. non-malignant),
heterogeneity of transplant procedures, and age-related immune
reconstitution post transplantation (16). In general, paediatric
cGvHD tends to be less common and somewhat milder than
cGvHD in adults (17–19).

Stem cell source can influence risk of GvHD. The lowest
incidence of cGvHD (6%) was observed among paediatric
patients undergoing cord blood HSCT (20, 21). In historical
data from the 1990s and early 2000s, the incidence of paediatric
cGvHD after HSCT for haematological malignancies ranged
from 28% with a sibling donor to 52–65% with an unrelated
donor. The incidence and severity of cGvHD was higher in
patients after peripheral blood stem cell (PBSC) HSCT than after
bone marrow (BM) HSCT (22, 23).

Underlying disease and age can also affect cGvHD risk. Zecca
et al. reported in 2002 a higher incidence of cGvHD in patients
with malignant (35%) vs. non-malignant (13%) diseases in a
retrospective analysis of 696 children. Furthermore, the lowest
incidence of cGvHD (9%) was described for children <2 years
of age, and the highest (44%) for patients >15 years of age (24).
Likewise, Qayed et al. found in a retrospective analysis of 476
paediatric ALL patients after matched sibling donor (MSD) BM
HSCT during the years 2000 to 2013 a cumulative incidence of
cGvHD of 16%; a lower risk of cGvHD was observed for the
age group 2 −12 years in comparison to patients >12 years
old (25). A retrospective, single-centre analysis of 146 children
with malignant and non-malignant diseases transplanted at the
St. Anna Children’s Hospital, Vienna, between 2004 and 2012
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revealed a cumulative incidence of reclassified NIH-defined
cGvHD (2005 criteria) of 18% and 21% at 1 and 3 years post
HSCT, respectively. A multivariate analysis identified donor age
>5 years as risk factor for the development of cGvHD but
there was no association between recipient age and cGvHD risk
(Lawitschka et al., unpublished data). One of the most recent
prospective multicentre studies of paediatric cGvHD, by Cuvelier
et al., indicated an incidence of 21% of accurately assessed NIH-
defined cGvHD in 243 paediatric patients with various malignant
and non-malignant diseases undergoing a range of transplant
procedures. Recipients ≥12 years of age were at higher risk for
cGvHD in comparison to younger patients, and de novo cGvHD
occurred almost exclusively in patients ≥12 years, indicating
a crucial role of aGvHD in the pathogenesis of cGvHD in
infants (14).

The overall incidence of cGvHD in paediatric patients has
decreased over recent decades. This is contrary to the pattern
observed in adult studies, probably due to the widespread
use of granulocyte colony-stimulating factor (G-CSF)–mobilised
PBSCs over BM grafts in adults (26). The older age of
transplanted patients, and the use of reduced intensity regimens
which require GvL effect also contribute to the higher incidence
of cGvHD in this group (27, 28).

Pathogenesis of cGvHD in Children and
Adolescents
The immunobiology of cGvHD differs distinctly from that of
aGvHD (29). Despite major advances in the field, the complex
andmultifactorial pathogenesis of cGvHD is not fully understood
and incorporates failure of central and/or peripheral tolerance
mechanisms in the presence of minor (and major) major
histocompatibility complex (MHC) polymorphisms (30). It is
well-known that cGvHD is a pleomorphic syndrome resembling
many autoimmune diseases but, in addition, appreciation of
its correlation with monogenic immune disorders may lead to
better understanding of its pathogenesis, especially in paediatric
populations (31).

Cooke et al. (8) has proposed a triphasic model of cGvHD
pathogenesis which involves: (i) acute inflammation with tissue
injury and vascular inflammation (which may be subclinical);
(ii) dysregulated immunity, thymic damage and dysfunction
with the transition to chronic inflammation; followed by (iii)
dysfunctional tissue repair resulting in the deposition of collagen
and development of fibrosis. Recently, major advances in cGvHD
research have been made but these are largely based on murine
models that do not reflect the whole clinical spectrum of human
cGvHD (10).

In general, a complex cytokine-driven cellular network (32)
involving damage of the thymus and germinal centres with
aberrant interactions between donor-derived subsets of effector
T and B cells contributes to both the immune pathology of
cGvHD and innate immune responses with unusual antigen
presentation. Of note, multiple pathogenic pathways may
operate simultaneously.

Regarding the T-cell compartment, various models have
demonstrated a critical role of naïve T cells with further

dysregulation of CD4+ T helper (Th17), CD8+ T cell (Tc17)
and T-follicular helper (Tfh) cell differentiation (32, 33) together
with reduced numbers of regulatory T cells (Treg) (34). High
interleukin (IL)-6 levels after HSCT lead to IL-17–secreting Th17
and Tc17 differentiation (35, 36). This process is augmented by
stem cell mobilisation with G-CSF. Th17/Tc17 produce multiple
cytokines, including interferon gamma (IFN-γ), tumour necrosis
factor (TNF), IL-22, colony-stimulating factor-1 (CSF-1), and
granulocyte-macrophage colony-stimulating factor (GM-CSF)
which promote the migration and differentiation of monocytes
into pathogenic macrophages. Simultaneously, Tfh produce IL-
21 which is critical for germinal centre B-cell formation and
antibody secretion (both autoreactive and alloreactive) (37).

Regarding the B-cell compartment, an expansion of germinal
centre B cells with subsequent allo/autoantibody secretion has
been shown (38). B cells of cGvHD patients have increased
survival capacity and signal through B-cell activating factor
(BAFF) and B-cell receptor (BCR) signalling pathways. BAFF
is produced primarily by myeloid cells, stromal cells and some
lymphoid cells. BAFF:B-cell ratios are elevated in patients with
active cGvHD (39). The BCR-signalling molecules Syk and
Bruton tyrosine kinase (BTK) appear to be hyper-activated in B
cells during cGvHD (37).

Additionally, a role of the gut microbiome has been observed
in cGvHD, with the loss of flora diversity after HSCT recently
reported to correlate with inferior outcome (an increased risk of
mortality) (40, 41).

In the context of the transition to fibrosis, the involvement of
macrophages producing the profibrotic cytokines tumour growth
factor beta (TGF-β) and platelet-derived growth factor alpha
(PDGF-α) leads to the deposition of collagen secreted from
activated fibroblasts (42).

Better understanding of the pathogenic pathways of cGvHD
is being translated into the clinic in the form of rationales for
specific treatment schedules. This may pave the way for novel
promising therapeutic approaches that potentially target various
cytokines, cell subsets and signalling pathways (30). Furthermore,
it serves as a basis for more individualised treatment plans in
cGvHD (10).

Biomarkers for Paediatric cGvHD
The multisystemic, polymorphic nature of cGvHD and
challenges in clinical diagnosis such as lung involvement
in infants (14) makes the identification of potential GvHD
biomarkers of utmost importance. Biomarkers are defined as
biochemical or cellular variables categorised according to how
they are used. Three subtypes of biomarker in cGvHD are
recognised: (i) diagnostic biomarkers used to identify GvHD
patients at the onset of the disease and to aid differential
diagnosis; (ii) prognostic biomarkers used to identify patients
with different degrees of risk for GvHD occurrence, progression
or resolution before the onset of clinical cGvHD manifestation
of the disease; and (iii) predictive biomarkers used to categorise
patients based on their likelihood to respond to therapy (43, 44).

Great effort has been put into identifying relevant cGvHD
biomarkers. It is important to keep in mind that patients
with cGvHD represent a heterogeneous group with various
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characteristics having only the diagnosis but not the phenotype in
common. Variables such as age, primary disease for which HSCT
was indicated, treatment modalities and transplant procedures,
and post-transplant complications have a great impact on
immune reconstitution (45) and may influence the biomarkers
present (10, 44).

Among those considered to be validated plasma biomarkers
are soluble BAFF, a panel consisting of 4 biomarkers
[ST2, chemokine (C-X-C) motif ligand 9 (CXCL9), matrix
metalloproteinase 3 (MMP-3) and osteopontin], CXCL10,
and chemokine (C-C motif) ligand 15 (CCL15) (Table 1)
(46–63). Validated cellular biomarkers include CD163, B
cells expressing toll-like receptor 9 (TLR9), B cells defined as
CD19+/CD21low B cells, a high BAFF:B cell ratio in the plasma,
Tregs, CD4+CD146+CCR5+ T cells and Tfh cells (Table 1) (64).
We briefly discuss these biomarkers below.

Plasma Biomarkers

Soluble B-Cell Activating Factor
High levels of sBAFF have been found in patients with active
cGvHD and have been linked with both early onset (3–8 months)
and late onset (≥9 months) disease (46, 47). A significant
decrease in sBAFF was found in responders to corticosteroids
2 months after their initiation (46). Moreover, Saliba et al.
(47) described increased sBAFF levels at the time of diagnosis
of cGvHD as a potential predictor of non-relapse mortality
(NRM) (48). Because of its significant presence in various
settings of cGvHD, sBAFF is described as both a diagnostic and
prognostic biomarker (64). One major limitation is the steroid
sensitivity of sBAFF, which becomes undetectable on steroid
doses >0.5 mg/kg prednisolone independent of response to
treatment.

A Panel of ST2, CXCL9, MMP-3 and Osteopontin
In a study of Yu et al. (61), a panel of 4 proteins (ST2,
CXCL9, MMP-3, and osteopontin) was found to significantly
correlate with cGvHD diagnosis, cGvHD severity and NRM.
When measured at day +100, the panel could predict cGvHD
occurring within the next 3 months, even in the absence of
known clinical risk factors. In addition, increased MMP-3 is
associated with the development of bronchiolitis obliterans
(50). Solely elevated plasma concentrations of CXCL9 are
considered to be an independent cGvHD biomarker (49,
50).

CXCL10 and CCL15
Similarly to CXCL9, CXCL10 is an inflammatory chemokine
involved in the activation and recruitment of T cells, eosinophils,
monocytes and natural killer (NK) cells. In a study by Kariminia
et al. (52), CXCL10 met the criteria for replication as a
clinical biomarker for the diagnosis of cGvHD. Although
plasma concentrations of CCL15 were found to be elevated in
cGvHD patients compared with controls and were associated
with NRM, levels at day +100 could not predict cGvHD
occurring within the next 3 months with clinically relevant
sensitivity/specificity (63).

Cellular Markers
In a study of Inamoto et al. (54), a higher cellular expression of
CD163 at day+80 was associated with de novo cGvHD. CD163—
a macrophage receptor—is expressed at increased levels during
oxidative stress; therefore, the authors concluded that monocyte
or macrophage activation may contribute to the pathogenesis
of cGvHD.

Sarantopoulos and colleagues in 2009 suggested that B
cells play a role in cGvHD pathogenesis through the presence
of alloantibodies and high plasma sBAFF levels: both are
found in patients with cGvHD. Detailed phenotypic and
functional analyses of peripheral B cells in patients after
HSCT showed that, in patients with cGvHD, significantly
higher BAFF:B cell ratios are observed compared with
patients without cGvHD or with healthy donors (38, 47).
Other B cell subsets associated with the development of
cGvHD are those that express TLR9 (55) and CD21low B
cells (56).

Tfh cells play an important role in the regulation of B
cell immunity. Extensive phenotypic and functional analyses
of circulating Tfh cells demonstrated that patients with active
cGvHDhad a significantly lower frequency of circulating Tfh cells
compared with patients without cGvHD (60).

CD4+CD146+CCR5+ T cells are frequent in cGvHD patients.
According to Forcade et al. (59), these cells proved to be sensitive
to pharmacological inhibition (59).

Zorn et al. (58) conducted a phenotypic study of Tregs

and demonstrated a decreased frequency in patients with
cGvHD compared with patients without cGvHD (p < 0.001)
and healthy individuals. A different study has connected
an increased Th17:Treg ratio to the development of liver
cGvHD (65). Moreover, Alho et al. (66) confirmed a decreased
frequency of Tregs and shortened Tregs telomeres in patients
with cGvHD.

cGvHD Biomarkers in Children: Children Are Not

Small Adults
It is known that children have a lower rate and perhaps different
presentation of cGvHD compared to that seen in adults (25).
One of important aspects of cGvHD pathophysiology is the
variability of immune reconstitution between patients after
HSCT, which is age related and dependent on thymic hormones
(as described in a companion article by Eyrich et al. in this
supplement of Frontiers in Paediatrics). Therefore, it is important
to determine differences among cGvHD biomarkers in adult and
paediatric populations.

Few studies have investigated age-related differences in
the biology of cGvHD (16, 67). Recently, Lawitschka et al.
(45) demonstrated for the first time in a highly homogenous
paediatric patient cohort that both cGvHD and its activity were
associated with the perturbation of the B cell compartment,
including low frequencies of CD19+CD27+ memory B cells and
increased frequencies of circulating CD19+CD21low B cells. The
immunological profile of patients with cGvHD in a paediatric
cohort studied by Schultz et al. (67) had distinctive features, with
increased activated T cells, naïve Th cells and cytotoxic T cells,
loss of CD56bright regulatory NK cells, and increased levels of
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TABLE 1 | Validated Biomarkers in cGvHD.

Biomarker References Age range,

years

Association

with cGvHD

Use

Plasma sBAFF (46) 1–29 ↑ Diagnostic

(47) 21–68 ↑ Diagnostic

(48) 18–68 ↑ Diagnostic/prognostic

4 biomarker panel

(ST2, CXCL9, MMP-3, and

osteopontin)

(49) 1–79 ↑ Diagnostic/prognostic

CXCL9 (49) 13–59 ↑ Diagnostic

(50) 0–79 ↑ Diagnostic

CXCL9, CXCL10 (51) 21–68 ↑ Diagnostic

CXCL10 (52) ≤18 ↑ Diagnostic

CCL15 (63) 19–79 ↑ Diagnostic/prognostic

MMP-3 (53) 19–73 ↑ Diagnostic

Cellular CD163 (54) 19–73 ↑ Diagnostic

TLR9+ B cells (55) 1–29.9 ↑ Diagnostic

CD21low B cells (56) 20–66 ↑ Diagnostic

sBAFF:B cell ratio (47) 19–66 ↑ Diagnostic

(57) 23–59 ↑ Diagnostic

Tregs (58) NR ↓ Diagnostic

CD4+CD146+CCR5+ T

cells

(59) 25.9–75.6 ↑ Diagnostic

Tfh cells (60) 25–75.6 ↓ Diagnostic

↑, increased in cGvHD; ↓, decreased in cGvHD; CCL15, chemokine (C-C motif) ligand 15; cGvHD, chronic graft- vs.-host disease; CXCL, chemokine [C-X-C] motif ligand; MMP-3,

matrix metalloproteinase 3; NR, not reported; sBAFF, soluble B-cell activating factor; Tfh, T follicular helper; TLR9, toll-like receptor 9; Tregs, regulatory T cells.

ST2 and soluble CD13. When cohorts of adults and children who
had undergone HSCT were compared, significant differences
were found (16). Elevated levels of ST2 and naïve Th cells, and
depression of NK regulatory cells were present in both children
and adults. However, children presented with broad suppression
of newly formed B cells whereas adults demonstrated increased
T1-CD21low B cells and decreased T1-CD24highCD38high B
cells. Treg abnormalities in children were primarily present
in memory Tregs, whereas in adults the abnormalities were
in naïve Tregs. Aminopeptidase N (sCD13) and intercellular
adhesion molecule 1 (ICAM-1) were significantly increased only
in prepubertal children with cGvHD (16). The authors concluded
that the recipient’s age at the time of HSCT impacts on the
immune profile of cell populations and cytokines occurring
in cGvHD.

Even though there are several validated biomarkers for
cGvHD, studies that associate biomarkers with severity,
activity and resolution of the disease are lacking. Studies
with mixed age cohorts may show trends, but immune
reconstitution is age related and this needs to be taken
into consideration when evaluating biomarkers and the
pathophysiology of cGvHD. The verification and validation
of candidate biomarkers in paediatric populations is highly
relevant since this is a notoriously underrepresented population
within clinical trials and adult data may not be extrapolated to
the paediatric population (44). Thus, more age-specific studies
of biomarkers are needed because children are simply not
“small adults.”

Risk Factors for the Development of
cGvHD and Prevention Strategies
Since cGvHD is a highly polymorphic complication of HSCT,
much clinical research has been done to characterise disease
severity at onset and to define risk factors for the development
of cGvHD and for predicting poor survival (1, 68). However,
published data on risk factors for paediatric cGvHD often stem
from combined adult and paediatric studies and are mutually
incomparable because important details of patient and transplant
characteristics are incomplete, such as use of conventional
vs. high-resolution human leukocyte antigen (HLA) disparity,
details of GvHD prophylaxis including blood concentrations and
duration of given agents, kinetics of engraftment and chimerism
with imminent relapse, and antigenaemia and infections.

Below we provide an overview of risk factors for the
occurrence of cGvHD (Table 2) (14, 17, 24, 25, 27, 69–82) and
prognostic factors associated with poor outcomes in patients with
cGvHD (Table 3) (75, 76, 81, 83–99), prioritising paediatric data
wherever possible.

Risk Factors for the Development of cGvHD
The following risk factors for cGvHD post HSCT have been
published and summarised in reviews and recommendations:
preceding aGvHD, the use of an unrelated donor or mismatched
donor, PBSCs as the donor source, older (≥12 years) recipient or
donor age, female donor for a male recipient, parity of female
donor, malignant primary disease and the use of total body
irradiation (TBI) (Table 2).
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Zecca et al. (24) 696 MC X Median 7

yr

(0.3–17)

Diaz et al. (69) 80 X Mean 13

yr (1–18)

Eapen et al. (70) 773 MC X Median

17 yr

(8–20)

Ozawa et al. (71) 2,937 MC X X X X X Median

27 yr

(0–67)

Williams et al. (72) case

report/review

CR X BOS NR

Baird et al. (17) Review MC X X X X X X X X NR

Flowers et al. (71) 2941 SC X X X X X X X Median

40.3 yr

(0.6–

71.6)

Lee et al. (73) 23 SC X Mean 12

yr (1–18)

Kanda et al. (74) 4,818 MC X X X X X X Gr

2–4

aGvHD

(16–82

yr)

Arai et al. (75) 26,563 MC X X PBSC

+ BM

X X (1–79 yr)

Grube et al. (76) 243 SC X MMUD X X Gr

3–4

aGvHD

Mean 48

yr

(16–71)

Lazaryan et al. (77) 469 SC X X (0–74 yr)

(Continued)
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Watkins et al. (78) 442 SC X X Median

12 yr

(0.6–21)

Afram et al. (27) 820 MC Xsevere

cGvHD

X X (1–70 yr)

Qayed et al. (25) 476 MC X X ≥13

yr

X (1–17 yr)

Cuvelier et al. (14) 243 MC X X ≥13

yr

X X Gr

2–4

aGvHD

(0.2–18

yr)

Kok et al. (79) 98 SC X NR

For sclerotic cGvHD:

Martires et al. (80)

206 SC X X X X NR

Inamoto et al. (81) 977 SC X X X Median

48 yr

(0–78)

X, associated with the risk of cGvHD; A, adult; BOS, bronchiolitis obliterans syndrome; Ad, adolescent patients; CMV+, cytomegalovirus seropositivity; Gr, grade; MC, multicentre; MMD, mismatched donor; MMUD, mismatched

unrelated donor; NR, not reported; P, paediatric; PBSC, peripheral blood stem cell; RIC, reduced-intensity conditioning; SC, single centre; TBI, total body irradiation; TCD, T-cell depletion; UD, unrelated donor; yr, years.

F
ro
n
tie
rs

in
P
e
d
ia
tric

s
|
w
w
w
.fro

n
tie
rsin

.o
rg

7
F
e
b
ru
a
ry

2
0
2
2
|
V
o
lu
m
e
1
0
|A

rtic
le
8
0
8
1
0
3

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


S
o
b
ko

w
ia
k-S

o
b
ie
ra
jska

e
t
a
l.

M
a
n
a
g
e
m
e
n
t
o
f
c
G
vH

D
in
P
a
e
d
ia
tric

A
L
L
H
S
C
T

TABLE 3 | Summary of risk factors for higher NRM and lower OS in patients with cGvHD identified in studies.
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Jagasia et al. (83) 110 MC P/A

mean 42 yr

(1–65)

X OS

Pérez-Simón et al.

(84)

171 SC Ad/A

mean 45 yr

(14–69)

X X OS

Cho et al. (85) 211 SC Ad/A

mean 34 yr

(15–60)

X OS

Vigorito et al. (86) 740 SC P/A

(0.8–67)

X X X X X X X NRM

Kim et al. (87) 196 SC P/A

(10–59)

X X X X

UD

X X NRM/OS

Pidala et al. (88) 427 MC A

(NR)

X X X X NRM/OS

Arai et al. (75) 298 MC A

(19–78)

X X X NRM/OS

Arora et al. (89) 5,343 MC P/A

mean 36 yr

(<1–72)

X X X X

MMD

X X X X X X NRM/OS

CIBMTR risk

score: 6

risk groups

Pérez-Simón et al.

(90)

336 MC P/A

mean 50 yr

(1–69)

X X X X X NRM/OS

Jacobsohn et al.

(91)

1,117 MC P

mean 12 yr

(<1–19)

X X XX X X X NRM/OS

Jacobsohn et al.

(92)

458 MC P

>2 yr

X NRM/OS

(Continued)
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Tecchio et al. (93) 159 SC NR X X NRM

Baird et al. (94) 189 MC A

(NR)

X X OS

Inamoto et al.

(81, 95)

376 MC A

(NR)

X X X X

MMD

X X X X X X NRM/OS

Inamoto et al. (95) 574 MC A

(19–79)

X X NRM/OS

Moon et al. (96) 346 SC A

mean 46 yr

(18–70)

X X X X X NRM/OS

Palmer et al. (97) 496 MC P/A

≥2 yr

X NRM/OS

Ayuk et al. (98) 201 SC A

median 54 yr

(18–75)

X X NRM/OS

Grube et al. (76) 243 SC Ad/A

mean 48 yr

(16–69)

X X X NRM/OS

Moon et al. (99) 307 SC A

median 46 yr

(18–70)

X X X X

MMD

X X X X X X X X OS, revised

CIBMTR risk

score

A, adult; Ad, adolescent; aGvHD, acute graft- vs.-host disease; cGvHD, chronic graft- vs.-host disease; CIBMTR, Centre for International Blood and Marrow Transplant Research; GI, gastrointestinal; HLA, human leukocyte antigen;

LALC, lower absolute lymphocyte count; MC, multicentre; MMD, mismatched donor; NIH, National Institutes for Health; NR, not reported; NRM, non-relapse mortality; OS, overall survival; P, paediatric; PBSC, peripheral blood stem

cell; SC, single centre; UD, unrelated donor; yr, year.
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By far the most powerful predictor for the development of
cGvHD seems the severity of aGvHD (17, 24, 83). A lower
incidence and severity of aGvHD and cGvHDhas been associated
with the use of ex vivo or in vivo T-cell depletion (TCD).
However, use of TCD poses a risk of graft failure, infection and
relapse (12); further data in paediatric HSCT for ALL are needed.

Prognostic Factors Associated With Higher NRM

and/or Poorer OS
Regarding prognostic factors at the onset of cGvHD that
are associated with increased mortality, the development,
validation and the revision of the NIH consensus criteria for
diagnosis and staging of cGvHD (5, 6) have moved the field
forward substantially (see Supplementary Material). In children,
Cuvelier et al. reported on the feasibility and reliability of the
NIH consensus criteria and concluded that further refinement
was needed (14). The NIH global severity score of cGvHD has
been validated in various adult studies, but less so in children
(84, 85, 87, 90) and adolescents (76). In a large paediatric
Centre for International Blood and Marrow Transplant Research
(CIBMTR) study including 1,117 patients, Jacobsohn et al. found
the following variables to be associated with higher NRM in
a multivariate analysis: mismatched unrelated donor (MMUD),
PBSC as the stem cell source, Karnofsky/Lansky performance
score <80, and platelet count <100 × 109/L. Regarding worse
OS, the study reported age >10 years, an MMUD, advanced
disease at transplantation, Karnofsky/Lansky score <80; and
platelet count <100 × 109/L as significant risk factors (70).
Additional risk factors associated with poor prognosis are
direct progression from aGvHD to cGvHD and organ-specific
aspects such as lung and gastrointestinal tract involvement and
hyperbilirubinaemia (76) (Table 3).

Prior to publication of the NIH consensus criteria, a CIBMTR
cGvHD risk score had been developed (89, 100). Studies in adults
reported on improved prognostic stratification when combining
the CIBMTR cGvHD score with the NIH criteria (95, 101).

To address the question of risk factors for cGvHD in paediatric
patients, we studied retrospective data on 358 paediatric patients
who underwent HSCT between 1980 and 2012 at the St.
Anna Children’s Hospital, Vienna, and who survived relapse-
free beyond day +100. We identified in multivariate analyses
older donor age (>5 years), prior aGvHD of grade 2–4, and
a female donor for a male recipient as risk factors for the
development of cGvHD. Overall mortality was significantly
higher for patients >10 years old and for those with moderate-
to-severe global severity score, while sclerotic cGvHD was
independently associated with a lower risk of death (A.
Lawitschka, unpublished data).

Within the NIH 2020 initiative a summary has been provided
about the major advances in understanding of the aetiopathology
of cGvHD and future efforts (11, 102, 103). The field is
moving toward clinical studies targeting prevention strategies
that decrease the risk of morbid cGvHD such as moderate-to-
severe cGvHD without an increased risk of relapse or infection.
Regardless of the incidence of cGvHD, morbid forms of cGvHD
like fasciitis and lung GvHD lead to excess long-term morbidity
and a future aim is to avoid these. Therefore, it is important to

evaluate risk factors for the development and the outcome of
cGvHD and to predict the highly morbid forms.

The 2020 NIH cGVHD consensus group agreed on the
need for adoption of primary study endpoints measuring
survival without moderate-to-severe cGvHD, such as cGvHD-
free and relapse-free survival (CRFS). This remains challenging
as studies need a minimum of 1 year of follow-up to assess
relevant endpoints of cGvHD (12). In this regard, an important
consideration for paediatric studies may be that endpoints should
be tailored to non-malignant and malignant primary diseases
separately because patient and HSCT characteristics, GvHD
prophylaxis and treatment modalities differ distinctly between
those patient groups (104).

NIH-Defined Diagnosis, Organ Scoring and
Staging of cGvHD
The 2005 NIH Consensus Conference proposed new criteria
for diagnosing and scoring the severity of cGvHD in clinical
trials (6). The 2014 NIH consensus maintained the prior
framework but revised the criteria and provided guidelines for
cGvHD definition, endpoint reporting and trial design. The main
revisions were made for the subcategory of overlap cGvHD and
the distinction between active disease and past tissue damage (5).
Recently, a joint task force added some specifications to the NIH
consensus criteria, with focus in associated manifestations and
steroid sensitivity (105).

The 2014 NIH consensus criteria include clinical symptoms in
8 organs, laboratory findings and pulmonary function tests. Each
organ is graded from 0 to 3; the overall severity is classified as
mild, moderate or severe depending on the number of affected
organs and the involvement severity. Symptoms can be stratified
as diagnostic, distinctive and in common with aGvHD (5).

Patients who are lacking diagnostic signs of cGvHD require
histological confirmation if new systemic immunosuppressive
treatment is to be introduced, especially in the case of treatment
failure. Exclusion of differential diagnoses such as infection
is required (105). The most commonly affected organ is
the skin, followed by the eyes (14, 73). Patients may show
other immune-mediated manifestations also (termed “other,
associated” manifestations), which should be evaluated although
they do not contribute to grading. Regarding the type of onset
of cGvHD, the following definitions are applied: progressive
(progression from aGvHD without resolution), quiescent (prior
aGvHD with resolution), and de novo (without any history of
aGvHD) (105).

Applying and Adapting the NIH Criteria to Paediatric

Patients
Originally, the NIH consensus criteria were not validated in
patients under 18 years of age. Lee et al. attempted to implement
the 2005 criteria in paediatric patients (73). Furthermore, a
paediatric adaption has been developed by Lawitschka et al. (1),
which has been revised for clinical use within the paediatric
transplant centres of the German-Austrian-Swiss Consensus
Group (www.GVHD.de), but as yet is not validated. In 2019,
Cuvelier et al. (14) reported important data from a prospective
multi-institutional study on biomarkers in cGvHD in 302
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paediatric patients for which the 2014 NIH criteria were not only
applied but also reviewed by a study adjudication committee.
Although 28% of cGvHD cases were reclassified, the authors
reported that the application of NIH criteria was feasible and
reliable in a paediatric population. In that study cohort, the
incidence of late acute and classic cGvHDwas similar (25 vs. 21%,
respectively), which underlines the relationship between aGvHD
and cGvHD; in fact, very few children have true de novo cGvHD
and aGvHD of grade 2–4 is one of the main risk factors for
developing cGvHD (seeTable 2). The NIH criteria have also been
adjusted for paediatric patients for the diagnosis and staging of
pulmonary GvHD (14).

Treatment for Paediatric cGvHD
First-Line Classic Immunosuppressive Therapy
In mild cGvHD, patients may only require topical treatment
depending on the organs involved and the risk of relapse of the
underlying disease (106). In multiorgan involvement at cGvHD
onset, moderate-to-severe or/and high-risk cGvHD (see section
Risk Factors for the Development of cGvHD and Prevention
Strategies on risk factors) immunosuppressive treatment is
necessary. The recommended first-line immunosuppressive
treatment comprises a corticosteroid (prednisone 1 mg/kg/day)
with or without a calcineurin inhibitor (CNI) (107, 108), with
topical therapy wherever possible; this applies to moderate and
severe cGvHD at onset also (109). The addition of a CNI to
corticosteroid therapy does not increase the response rate but
allows for a reduction in corticosteroid dosing that can reduce
long-term side effects. Koc et al. compared in a randomised study
prednisone vs. prednisone plus cyclosporine in patients with
cGvHD (n= 307; age 0.9–57.1 years) without thrombocytopenia
and reported similar outcomes for both study groups, with
the exception that steroid-associated toxicity was lower with
prednisone plus cyclosporine (110).

Recently, rituximab was evaluated as a part of the first-line
therapy of cGvHD. In a phase 2, prospective trial (n= 24 adults)
it was added to a corticosteroid and CNI for newly diagnosed
cGvHD (111). The overall response rate (ORR) at 1 year was 83%
and the 1-year cumulative incidence of NRM was 14%. In two
other studies on rituximab as the frontline therapy of cGvHD
(112, 113), the cumulative incidence of cGvHD resolution at 3
years was 71–77% and the rate of NRM was 15–19%.

The efficacy of rituximab-based first-line treatment of cGvHD
needs further investigation. In this regard, paediatric data
are lacking. There is an ongoing clinical trial on the use
of itacitinib and extracorporeal photopheresis (ECP) in adult
patients (NCT04446182) as well as ibrutinib in patients over 12
years old (NCT02959944) as frontline cGvHD treatment.

For a risk-adapted, individualised approach to cGvHD
management, not only the risk of relapse and infectious
complications but additionally details of the pharmacological
immunosuppression at onset of cGvHD may be considered
(the intensity of any ongoing immunosuppression or time
since termination of immunosuppression). Furthermore, the risk
factors for cGvHD associated with poor prognosis (i.e., lung
involvement, gastrointestinal involvement, hyperbilirubinaemia,
thrombocytopenia and progressive onset) and the patient’s

general condition (Karnofsky/Lansky score) (91) may be of help
to calibrate the intensity of first-line treatment.

Particularly for paediatric patients, the toxicity of long-term
steroid therapy causes significant future problems (see Table 4)
(114–138), such as effects on themusculoskeletal system resulting
in growth and developmental retardation (117, 139). Therefore,
the addition of an effective steroid-sparing agent and topical
therapy is of crucial importance for long-term patient outcome.

Topical Treatment and Ancillary Care
In general, topical treatment and ancillary care for cGvHD is
less toxic than systemic therapy and can improve response,
thereby facilitating systemic dose reduction with the aim to
apply systemic immunosuppression at the lowest effective dose
for the shortest possible duration. This approach allows for
minimisation of treatment-related side effects, and, in case
of high risk of relapse or infection, it may spare systemic
immunosuppression saving the protective GvL effect. The latter
aspect is supported by consensus opinion predominantly, and
controlled data are scarce in this regard (140–142).

Ample topical treatment of cGvHD is important in mild
cGvHD as systemic immunosuppression may not be required,
while in moderate-to-severe cGvHD, topical treatment may
hasten local responses in addition to systemic therapy. In
patients with mixed responses (i.e., who have a response in one
organ yet stable disease/progression in another organ) remaining
symptoms may be addressed by topical treatment.

Of note, topical treatment in children bares two caveats: firstly,
systemic levels of topical agents must be considered in infants
because they have a larger surface area to body weight ratio
than older patients and, secondly, the parents’ assistance and
compliance must be gained. In Table 5 (106, 135, 139–143, 158–
167) we provide selected organ-specific modalities of topical
treatment and ancillary care for use in daily clinical practice,
providing paediatric data where possible. For more detail, we
refer readers to comprehensive publications by Dignan et al.,
Wolff et al., and Carpenter et al. (108, 142, 143).

Steroid Refractoriness
Treatment of cGvHD aims to reduce symptoms, control activity
of disease manifestations, improve OS and quality of life, and
prevent impairment and tissue damage. Untreated cGvHD leads
to disability and death. Steroids as first-line cGvHD therapy led
to a complete response (CR) in 30–50% of patients, which may
indicate that the remaining 50–70% have steroid-refractory or
steroid-dependent disease. Therapy is usually long-lasting. The
median duration of systemic cGvHD treatment was 28.7 months
in one study of paediatric and adult patients (86). Among patients
with cGvHD, approximately 50% discontinue systemic treatment
within 7 years, 10% require continued systemic treatment beyond
7 years, and 40% experience recurrent malignancy or NRM (158).

In 2018, the following definitions of steroid-refractory and
steroid-dependent cGvHD were suggested by the European
Society of Blood and Marrow Transplantation (EBMT)-NIH-
CIBMTR Task Force: (105).
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TABLE 4 | The main side effects of commonly used agents for cGvHD, other than infection risk.

Therapy Side effect

Blood Cardiovascular Visceral Mobility Neurological Hormonal Other

Steroids (114–117) Leucocytosis Hypertension,

metabolic syndrome,

thrombosis

Peptic ulcer Myopathy, avascular

bone necrosis

Depression,

behavioural changes

(264), sexual

dysfunction

Insulin resistance,

hyperglycaemia

Striae, weight gain,

hirsutism, glaucoma,

cataract, fatigue

Mycophenolate mofetil

(118–122)

GI toxicity, nausea

diarrhoea, abdominal

discomfort, hepatitis

Peripheral neuropathy Increased risk of skin

cancer, fatigue

Calcineurin Inhibitors

(114)

Anaemia,

thrombo-cytopenia

Hypertension,

transplant-related

microangiopathy

Acute and chronic

nephropathy, tubular

dysfunction

(hyperkalaemia,

hyponatraemia,

hypomagnesaemia,

hypercalciuria, and

hyperuricaemia)

Peripheral neuropathy

(264)

Central neuropathy,

tremor, psychosis,

PRES, seizures (264)

Impaired glucose

tolerance, diabetes

Hirsutism, increased

risk of skin cancer,

fatigue

Sirolimus (114, 123) Pancytopenia Hypertension,

hyperlipidaemia,

peripheral oedema

Renal insufficiency,

proteinuria, colitis,

pancreatitis

Avascular bone

necrosis

Pneumonitis, fatigue

Imatinib (124, 125) Leukopenia Peripheral oedema Nausea Abdominal

discomfort

Muscle spasms

Stiffness

Sexual dysfunction Oral ulcers, fatigue

Rituximab

(111, 113, 125–128)

B-cell aplasia, hypo- or

a-gammaglobulinaemia

Depression Fatigue

Ibrutinib (129) Low platelets, bleeding Hypertension, cardiac

arrhythmia

Nausea Muscle spasms,

peripheral neuropathy

Peripheral neuropathy Oral ulcers (137, 138),

fatigue

Ruxolitinib (130–132) Pancytopenia, bleeding Hypertension,

hyperlipidaemia

Hepatitis, GI bleeding Dizziness, headaches Weight gain, fatigue

ECP (133–135) Vascular access

complications,

thrombosis

This summary lists the most common or most severe persistent side effects of therapeutic regimens. For a full list of side effects for each agent, please refer to the most recent product information. cGvHD, chronic graft- vs.-host disease;

ECP, extracorporeal photopheresis; GI, gastrointestinal; PRES, posterior reversible encephalopathy syndrome (114–122).
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TABLE 5 | Topical treatment and ancillary care for cGvHD.

Organ Topical

therapy

References Patients, N

(age group)

Comments Ancillary care

Skin Steroids (108, 142,

143)

Review Lichenoid and sclerodermoid cGvHD

• Possible risk of cutaneous infection, skin

atrophy and steroid acne

• Interference with skin healing

• Systemic side effects

• Face: pimecrolimus preferred; if needed, low

potency corticosteroids

• Emollients

• Occlusive dressings

• Systemic antihistamines

• Exclusion of infection

• Sun protection

In erosions/ulcerations:

• Microbiologic cultures

• Topical antimicrobials, wound dressings

• Consultation of wound care specialist and

GvHD experienced dermatologist

Narrowband

UVB (311 nm)

(144) 10 (P/Ad) Lichenoid and sclerodermoid cGvHD

• Well-tolerated, feasible

• 3–5 times/week

• Does not reach the dermal layers involved in

deeper sclerotic cGvHD

• Voriconazole and cotrimoxazole: increased

phototoxicity

• Possible risk of cutaneous neoplasm

(145) 3 (P/Ad)

PUVA bath (146) 4 (P) • Well-tolerated

• 3 times/week

• Voriconazole and cotrimoxazole: increased

phototoxicity

• Possible risk of cutaneous neoplasm

UVA1 (147) 17 (P/A/Ad) • Sclerodermoid cGvHD

• Well-tolerated, feasible

• 3 times/week

• Voriconazole and cotrimoxazole:

increased phototoxicity

(148) 6 (P/A)

Pimecrolimus (149) 1 (Ad) Lichenoid and sclerodermoid cGvHD

(150) 1 (A)

Tacrolimus (108, 142,

143)

Review Lichenoid and sclerodermoid cGvHD

• No skin atrophy

• Possible systemic side effects in infants

Mouth Steroids (151) 22 (P/Ad) Caveat fungal overgrowth • Topical analgesics

• Therapy for oral dryness (e.g., salivary

stimulants, sialogogues)

• Routine dental care and prevention of related

complications (i.e., dental decay)

• Lips: topical tacrolimus or pimecrolimus

preferred because of

corticosteroid-associated atrophy of the

lip vermillion

Tacrolimus (152) 22 (P/Ad)

Eyes Steroids (153) 7 (P/A) Caveat corneal thinning, infectious keratitis,

glaucoma, cataract

• Exclusion of infection

• Consultation of a paediatric and GvHD

experienced ophthalmologist

• Artificial tears, ocular ointments

• Punctal occlusion, humidified environment,

occlusive eye wear, moisture chamber

eyeglasses, scleral contact lens

Cyclosporine (154) Review Burning sensation

Autologous

serum eye

drops

(143) Well-tolerated

(Continued)
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TABLE 5 | Continued

Organ Topical

therapy

References Patients, N

(age group)

Comments Ancillary care

Vulva and

vagina

Steroids (155) 33 (P/A) Caveat fungal overgrowth • Exclusion of coexisting infection

• Water-based or silicone lubricants

• Early gynaecology consultation

• Avoid glycerin, paraben, fragrance and other

additive products

Oestrogen

GI tract and

liver

Steroids (156) 15 (P/A) • Exclusion of coexisting infection or

gastroesophageal reflux

• Avoidance of hepatotoxins

• Dietary modification

• Enzyme supplementation for pancreatic

insufficiency

• Gastroesophageal reflux management

• Ursodeoxycholic acid

(157) 33 (P/A)

Lung Steroids (108, 142,

143)

Review • Exclusion of coexisting infection

• Fluticasone, azithromycin and montelukast

(FAM)

• To enhance mucociliary clearance: inhalation

with hypertonic saline 3–6%

• Optimal supportive care

• Immunoglobulin substitution

• Pulmonary rehabilitation

Inhaled

bronchodilators

A, adults; Ad, adolescents; cGvHD, chronic graft- vs.-host-disease; GI, gastrointestinal; P, paediatric; PUVA, Psoralen ultraviolet light A; UVB, ultraviolet light B.

• Steroid-refractory cGvHD (SR-GvHD): progression of cGvHD
despite prednisolone ≥1 mg/kg/day for 1–2 weeks, or stable
cGvHD without improvement for 1–2 months while on
prednisolone ≥0.5 mg/kg/day

• Steroid-dependent cGvHD: two unsuccessful attempts,
separated by at least 8 weeks in time, to taper steroids.

The incidence of SR-cGvHD is difficult to estimate. A prospective
study by Martin et al. in adults (159) showed that >20%
of the patients achieve CR or partial response (PR) to first
line treatment based mostly on prednisone with or without
calcineurin inhibitors with no secondary systemic treatment or
recurrent malignancy at 1 year after the initial cGvHD treatment.
This indicates a great need to search for and design new first-line
treatment regimens.

Second- and Late-Line Therapy for cGvHD
So far there is no consensus regarding second and later lines of
treatment for SR-cGvHD. There are numerous drugs and cellular
therapy options that may be considered in this group of patients.
Most of them were studied in retrospective analyses or small
groups of patients, and there are very few prospective clinical
trials regarding paediatric populations with cGvHD.

Paediatric data on the use of immunosuppressive and
immunomodulating drugs in the treatment of cGvHD are
summarised inTable 6 (62, 119, 120, 124, 126, 130, 133, 136, 160–
205).

Second-line therapy should include agents with high
efficacy and a good safety profile. In ALL patients, it is also
important to spare the GvL effect. It is known that ECP
preserves the antiviral and anti-leukaemic effect (206) and has
a very low incidence of side effects. TKIs enhance the anti-
leukaemic effect and are highly effective in SR-cGvHD but some
studies reported a high incidence of infectious complications.
Anyway, classical immunosuppressive agents like high-dose
steroids, mycophenolate mofetil, rituximab, methotrexate,
cyclophosphamide, pentostatin and mTOR inhibitors still find
their place in SR-cGvHD management. Some of therapies are
more effective than others for specific cGvHD manifestations,
which also should be taken into account when selecting second
and later lines of therapy (Table 6).

New and Emerging Therapies
In recent years various novel agents have been tested in the
treatment of cGvHD. Among them tyrosine kinase inhibitors
(TKIs) found their place in the therapy of SR-cGvHD and were
approved by FDA in this indication. We discuss them below.

Belumosudil, a selective ROCK2 inhibitor, has been shown
to be effective in recipients over 12 years of age with persistent
cGvHD who failed 2–5 prior systemic lines of treatment and was
approved by FDA in this age group (198). It decreases production
of IL-17 and IL-21, which are pro-inflammatory cytokines and
mediators of autoimmune disorders like rheumatoid arthritis
and systemic lupus erythematosus. In a phase II clinical trial
of 65 participants with predominantly severe cGvHD complete
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TABLE 6 | Immunosuppressive and immunomodulatory agents used in the treatment of paediatric cGvHD.

Therapeutic agent Mechanism of action Response Comments

Mycophenolate mofetil

(MMF)

Depletes guanosine nucleotides in T and B

lymphocytes leading to inhibition of their

proliferation (119)

ORR 60% in a study of 15 paediatric patients

3–16 years (220). Best responses in GI tract

(60% CR), mouth (33% CR) and

non-sclerodermatous skin involvement (43%

CR). ORR 69% in a prospective study of

imatinib + MMF for 13 paediatric patients (age

5–20 years) with sclerotic / fibrotic SR-cGvHD

(160)

No benefit was found from adding MMF to

first-line treatment for cGvHD (120)

Rituximab Humanised chimeric monoclonal anti-CD20

antibody that induces killing of CD20+ cells by

direct and indirect mechanisms (126)

ORR 86.4% in 37 patients (age 8–57 years):

8/37 CR, 24/37 PR. The responses were better

for skin, oral cavity and musculoskeletal

involvement (161)

Attention must be paid to anti-infectious

prophylaxis.

Methotrexate Multiple actions: (1) suppresses many

inflammatory and immune reactions; (2)

induces T-cell apoptosis; (3) increases the

expression of long non-coding RNA p21, which

regulates many immune and inflammatory

processes; (4) modulates signalling pathways

in T cells, macrophages, endothelial cells and

fibroblast-like synoviocytes (162)

Meta-analysis by Nassar et al. (163) of 125

patients (age 2–60 years): ORR 77.6%, CR

49.6%, PR 28%. Best responses were

achieved in skin (77%) and liver (72%); 2 out of

2 patients with pulmonary involvement

responded.

Grade III–IV haematologic toxicities observed in

17.6%.

Methotrexate is one of the most cost-effective

drugs used in the treatment of SR-cGvHD (164)

Tacrolimus Calcineurin phosphatase inhibitor (inhibits

T-lymphocyte signal transduction and IL-2

transcription) (165, 228).

ORR 46% in combination with MMF for

refractory cGvHD in 26 patients (7 patients

under 20 years old) (166)

79% treatment failure in 39 patients treated

with tacrolimus after first-line treatment failure

(CsA + prednisone) (167)

Cyclophosphamide Alkylating agent ORR 53% in 13 patients (age 28–67) with

SR-cGvHD (CR 1/13, PR 6/13) (168)

Very few retrospective studies. Three of three

adults with cGvHD showed response in liver

and oral cavity (169)

mTOR inhibitor

(sirolimus, everolimus)

Inhibits mTOR, a kinase regulating mRNA

translation and protein synthesis; stops

cytotoxic T-cell proliferation and dendritic cell

activity; promotes generation of Tregs; and has

antifibrotic, antineoplastic and antiviral effects

(170)

ORR 48.6% in 138 patients (7 patients under

20 years old) at 6 months when used with

prednisone as frontline cGvHD therapy (171)

ORR 63–81% in SR-cGvHD in adult studies

(172, 173)

Main adverse events include renal toxicities

(when used with CNIs), hyperlipidaemia,

cytopenia and thrombotic microangiopathy.

Pentostatin Inhibitor of adenosine deaminase which is

active mainly in lymphoid system cells,

especially T cells.

ORR 53% in paediatric phase 2 trial of

pentostatin for SR-cGvHD in 51 children,

median age 9,8 years (175).

ORR 55% in a prospective phase 2 trial (174) of

58 patients (age 5–64 years)—the response

rate was better among patients <33 years old

vs. >33 years old (77 vs. 37.5%).

Toxicity requiring drug discontinuation occurred

in 25%.

The drug had a significant steroid-sparing

effect (175)

Belumosudil Selective Rho-associated

coiled-coil–containing protein kinase 2

(ROCK2) inhibitor, decrease of IL-17 and IL-21

Best ORR 74–77% in 65 patients aged >12

years with persistent cGvHD after 2 to 5 prior

systemic treatment lines (198)

Overall median time to response was 5 weeks

(range, 4–66)

38% of subjects had ≥1 SAE; the most

common was pneumonia (7%), nausea,

diarrhoea, asthenia.

Bortezomib Reversible proteasome inhibitor. Inhibits T cells

and prevents activation of dendritic cells that

mediate antigen presentation and cytokine

transcription

ORR 80% (10% CR, 70% PR) in 22 adults

receiving bortezomib+prednisone for initial

therapy (199)

successful discontinuation of steroids in 2 of 3

paediatric patients with skin GVHD (200)

Main side effects: nausea, diarrhoea,

thrombocytopenia, peripheral neuropathy

Pomalidomide Derivative of thalidomide (4,000-fold greater

inhibition of TNF-α than thalidomide)

ORR 67% in 24 adults with SR-cGvHD at 6

months (201)

ORR 54% in 13 adults with SR-cGvHD (only

PR) (202)

Lack of paediatric data

The most frequent adverse events:

lymphopenia, infection, and fatigue, muscle

cramps, tremors, neuropathy.

May cause cutaneous inflammation early

after HSCT

Abatacept Blocker of costimulatory signal—it binds to the

costimulatory receptors CD80 and CD86 on

antigen presenting cells and counteracts the

costimulatory signal mediated by the ligand

CD28 > T cell activation inhibitor

Best ORR 40% in a retrospective study of 15

adults (209)

ORR 44% (PR) in a phase I study of 16 adults

with SR-cGvHD (203)

Lack of paediatric data

Serious infectious complications in 20%

(mostly pulmonary)

(Continued)
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TABLE 6 | Continued

Therapeutic agent Mechanism of action Response Comments

Tocilizumab IL-6 receptor inhibitor ORR 70% (PR) in a retrospective study of 11

adults with severe SR-cGvHD (204)

¾ paediatric patients with refractory cGvHD

decreased NIH overall Grade by one (205)

Neutropenia, infectious complications

Imatinib Tyrosine kinase inhibitor; inhibits BCR-ABL1

fusion protein and inhibits other tyrosine

kinases of the PDGFR and TGF-β pathways

which play a role in fibrosis.

ORR 79% (37/42% CR/PR) in refractory

cGvHD with fibrotic features (19 patients, age

10–62 years) (124)

ORR 76.9% in 13 paediatric patients with

bronchiolitis obliterans (136)

36% PR (≥25% improvement) in range of

motion of joints limited by skin fibrosis (20

patients, age 7-60 years) (62).

Oedema and fluid disturbances

Ibrutinib Tyrosine kinase inhibitor. Inhibits Bruton’s

tyrosine kinase which promotes B cell survival

and IL-2-inducible T cell kinase which is

involved in the selective activation of T cells.

ORR 85% (PR) at 6 months in 14 paediatric

patients (median age 13,5 years) with cGvHD

who completed the study (8/22 stopped

ibrutinib by 3 months due to side effects or

death) (129) ORR 41.1% at 48 weeks in a

prospective study of 193 patients >12 years

old in the first-line treatment (177)

FDA approval for adults with refractory cGvHD

–ORR 67% in a study by Miklos et al. (176)

High incidence of infections, bleeding disorders

and hepatotoxicity.

Paediatric pharmacokinetic studies are needed.

Ruxolitinib Selective JAK1/JAK2 inhibitor. JAK signalling

plays a role in B-cell development and

activation (178) and dendritic cell differentiation

and migration (179). Ruxolitinib decreases

T-cell proliferation and activation and reduces

cytokine release (180). Data from murine

models suggest that ruxolitinib does not inhibit

GvL activity (181).

ORR 70–91% High incidence of infection. Phase 3 REACH3

study: (197) significantly greater ORR

compared to best available therapy (49.7 vs.

25.6%) at week 24. The most common

adverse events were anaemia (29.1%),

thrombocytopenia (21.2%), hypertension

(15.8%), and pyrexia (15.8%).

Ruxolitinib for cGvHD in paediatric patients

References N Age range (years) Response

Mozo et al. (182) 19 2–16 ORR 91%, CR 8.3%

Yang et al. (183) 36 3–17 ORR 80.6%, CR 27.7%

Wang et al. (130) 20 5–26 ORR 70%, CR 10%

Moiseev et al. (184) 17 2–17 ORR 81%, CR 20%

Uygun et al. (185) 29 0.3–17 ORR 80%

Gonzalez Vicent et al.

(186)

9 0.5–18 ORR 89%

Escamilla Gomez et al.

(196)

56 (7 patients <14 years old) 0–73 Best ORR 57,1%

Zeiser et al. (197) 330 12+ REACH 3—Phase III randomised study

(NCT03112603)

Best ORR 49,7%

ECP for the second-line

treatment of cGvHD

References

N Age range (yrs) Corticoid sparing ORR (%)

Salvaneschi et al. (187) 14 5.4–18.1 Yes 64

Seaton et al. (188) 28 18–51 No 36

Couriel et al. (189) 71 5–70 Yes 61

Kanold et al. (133) 27 5–18 No 73

Perseghin et al. (190) 12 9–17 NA 80

Dignan et al. (191) 82 14.1–69.5 Yes 79

Hautmann et al. (192) 32 6–67 No 44

Berger et al. (193) 10 7–18.5 Yes 40

Perotti et al. (194) 23 Mean 11.8 Yes 69.5

Messina et al. (195) 44 0.3–20.5 Yes 73

ALL, acute lymphoblastic leukaemia; cGvHD, chronic graft- vs.-host disease; CML, chronic myeloid leukaemia; CNI, calcineurin inhibitor; CR, complete response; CsA, cyclosporine A;

ECP, extracorporeal photopheresis; GI, gastrointestinal; JAK, Janus kinase; MMF, mycophenolate mofetil; mTOR, mammalian target of rapamycin; N, number of patients; ORR, overall

response rate; PDGFR, platelet-derived growth factor receptor; PR, partial response; SR, steroid refractory; TGFβ, tumour growth factor β.
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resolution was observed in 6% of patients and partial response in
69%, with a duration of response for a median of 50 weeks.

Bortezomib is a reversible proteasome inhibitor and has an
inhibitory effect on B cells and plasma cells (207). It showed
efficacy in murine models of cGvHD with maintained graft vs.
tumour effect (208). Its efficacy in the initial therapy of cGvHD
(together with prednisone) was evaluated in a study of 22 adults
and showed 80% ORR (199). Paediatric data on its use in cGvHD
treatment are very scarce.

Pomalidomide is a thalidomide derivative with 4,000-fold
greater inhibition of TNF-alpha, which was originally used in the
treatment of multiple myeloma. It has been evaluated in several
adult studies for the treatment of SR-cGvHD with 54–67% ORR
observed (201, 202). Paediatric data are lacking.

Abatacept, a costimulatory signal blocker which inhibits T
cell activation, has been also evaluated in small cohorts of adult
patients with SR-cGvHD and showed 40–44% ORR. As for
pomalidomide, paediatric data are missing (203, 209).

Tocilizumab, a humanised IgG1 interleukin 6 (IL6)-receptor
antibody, has shown efficacy in aGvHD and cGvHD. IL6
plays a significant role in the initiation of the inflammatory
response, leads to increased immunoglobulin production by
B cells and decreased differentiation of Tregs (210). It was
investigated in a retrospective adult study showing ORR of
70%, as well as in a retrospective paediatric case series (204,
205). Infections were the primary adverse events associated with
tocilizumab administration.

Tyrosine Kinase Inhibitors
TKIs are considered promising drugs in the treatment of SR-
cGvHD. Tyrosine kinases play a role in cell processes such
as differentiation, proliferation, anti-apoptosis, and B- and T-
cell signalling. TKIs have the potency to block B- and T-cell
activation and to inhibit the transcription of genes encoding
pro-inflammatory cytokines (211). They have been used in
the treatment of haematological malignancies including acute
leukaemia, B-cell lymphoma, chronic lymphocytic leukaemia and
chronic myeloid leukaemia (CML). Their inhibitory effect on B
and T cells led to their use in preclinical and clinical trials of
cGvHD treatment. The use of imatinib, ibrutinib and ruxolitinib
for cGvHD treatment in paediatric patients is summarised
in Table 6.

In a mouse model of cGvHD, it was shown that animals
lacking BTK in B cells or IL-2-inducible kinase in T cells did
not develop cGvHD. In addition, activation of T and B cells
from patients with active cGvHD was inhibited by ibrutinib
blockade of BTK and IL-2-inducible kinase. Based on these pre-
clinical data, the first clinical trials with ibrutinib in cGvHD
were designed (212). In 2017, ibrutinib became the only drug
approved by US Food and Drug Administration (FDA) for the
treatment of SR-cGvHD in adults; this approval was based of
the study data by Miklos et al. (176). There are ongoing clinical
trials on the use of ibrutinib for cGvHD, including in paediatric
patients (NCT02959944).

Ruxolitinib was approved by the FDA in 2019 for salvage
therapy in patients with aGvHD. Several retrospective studies
have evaluated ruxolitinib in the treatment of SR-cGvHD

in adults, with a 85.4% ORR observed in one multicentre
retrospective survey (131). There was also a low recurrence rate
of the underlying malignancy. Ruxolitinib has been evaluated
also in paediatric patients with cGvHD, with a 70–91% ORR
observed (see Table 6). The favourable results of the phase 3,
randomised, multicentre study REACH 3, which investigated
the efficacy of ruxolitinib in SR-cGvHD patients ≥12 years of
age as add-on therapy to steroids and in comparison to best
available therapy, formed the basis for the FDA approval of
ruxolitinib in September 2021. Prospective clinical trials and
pharmacokinetic studies of ruxolitinib in paediatric patients are
currently ongoing [REACH 4 in aGvHD and REACH 5 in
cGvHD (132)].

Immunomodulatory Interventions

Extracorporeal Photopheresis
ECP is an immunotherapy using the recipient’s leukocytes
to modulate inflammatory immune dysregulation in persons
with cGvHD (213). The main technique fundaments of ECP
are comprehensively outlined in Figure 1. This technique was
approved by both the FDA and European Medicines Agency
(EMA) for T-cell cutaneous lymphoma treatment (216). In the
post HSCT setting, ECP can be applied both for the treatment of
acute and chronic SR-GvHD (217).

The exact working mechanisms of ECP are incompletely
understood but its effects might be considered on different levels,
as outlined below.

Firstly, ECP might have a mechanical effect (irrespective of
the disease for which it is applied) driven by the movement of
blood through plastic tubing. Changes inmonocyte and dendritic
cell differentiation and maturation have been documented when
blood is processed over plastic, probably via activated platelet
signalling (213). Additionally, 8-MOP and exposure to UVA
induces cross-linking damage to DNA in leukocytes, which
induces apoptosis. The uptake of apoptotic cells by activated
dendritic cells leads to changes in dendritic cells and a switch to a
more tolerogenic phenotype (217, 218). This change in dendritic
cell morphology and function has been demonstrated in several
different diseases and likely represents the primary effect of ECP
(213, 214, 217).

Other effects of ECP occur downstream and reflect the disease
process that is being treated, the age of the patient and extent of
organ damage. Importantly, ECP can induce changes not only in
cells in the inoculum which are directly exposed to 8-MOP and
UVA but also in cells that are not directly harvested, suggesting
that the immunomodulatory effects of ECP propagate beyond
directly treated cells. ECP has been shown to induce a switch
from a Th1- to Th2-type response with immunomodulatory
cytokines in GvHD (213, 215). A switch from proinflammatory
to anti-inflammatory cytokine production (with a decrease in
IFN-γ, TNF-α, and IL-2 secretion and an increase in TGF-
β serum levels) as well as increase in Treg numbers has been
described (214, 216). Additionally, some authors have postulated
that ECP impacts on B-lymphocyte homeostasis, with a decrease
in CD19+/CD21− B-lymphocyte subsets, where others have
described the possible expansion of CD8+ memory cells and
differentiation of monocytes to immature antigen-presenting
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FIGURE 1 | Proposed procedure of ECP and its hypothesised mechanism of action. 1. Collection of mononuclear cells (MNC) during leukapheresis from the

peripheral blood and activation of platelets by the plastic surfaces of the tubing system. 2. Ex vivo incubation of leukapheretic product with a photosensitizing agent

8-methoxypsoralen (8-MOP) followed by ultraviolet-A light (UVA) irradiation which initiates apoptosis in MNC including lymphocytes. 3. Reinfusion of the ECP product.

4. Process of apoptosis continues in ECP exposed cells for days resulting to phagocytosis by antigen presenting cells (APC). Activated platelets engage with

monocytes promoting their differentiation into dendritic cells (DC). 5. The internalisation of apoptotic cells decrease the inflammatory reaction of phagocytes, induces

antigen specific immunotolerance and lower production of proinflamatory cytokines while increasing antiinflamatory cytokines production (213, 214). ECP- induced

DC initiate T-cell tolerance with an increase of Th2 cytokines including IL-4, IL-10, IL-13 and TGF-β, while production of Th1 cytokines is suppressed (215). 6. APC

promote generation of regulatory T-cells (Tregs) (216). MNC, mononuclear cells; 8-MOP, 8-methoxypsoralen; UVA, ultraviolet A light; APC, antigen presenting cells; DC,

dendritic cells; Tregs, regulatory T-cells.

cells (219, 220). Therefore, the immune modulatory effect of ECP
appears to be a complex response to the whole procedure, as
depicted in Figure 1.

In contrast to conventional immunosuppression, ECP is safe
and has limited side effects, confined mainly to risks associated
with use of an indwelling central venous catheter (including
infection), hypotension and photosensitivity related to 8-MOP
exposure (215). In small children, the leukapheresis procedure
itself may be technically challenging (215, 221).

Currently, there are three techniques in use for ECP: the
in-line method (“closed” system), the off-line method (“open”
system) and so-called mini-ECP which we briefly describe in
Figure 2.

Importantly, ECP is not associated with an increased risk
of infectious complications, likely because it spares antigen-
specific activity against novel and recall antigens. Further
benefits are the potential preservation of the GvL effect and—in

contrast to systemic immunosuppressive treatment—the absence
of metabolic or toxic side effects (222, 223).

Abu-Dalle et al. published a systematic review of the
literature in 2014 including 9 studies (1 randomised trial)
of ECP for cGvHD in 323 patients aged 1.4–67 years. In
a pooled analysis, the ORR for cGvHD overall was 64%
(95% confidence interval [CI], 47–79%) and the proportion
of patients with CR in various organs was 26% (95% CI,
5–55%). The ORR for skin manifestations was 71% (95%
CI, 57–84%), for gut it was 62% (95% CI, 21–94%), for
liver it was 58% (95% CI, 27–86%), for oral mucosa it was
63% (95% CI, 43–81%), for the musculoskeletal system it
was 45% (95% CI, 18–74%) and for the lung it was 15%
(95% CI, 0–50%) (224). The majority of reported paediatric
data are predominantly derived from non-randomised, single-
centre or retrospective studies and are summarised in Table 6.
Treatment schedules and durations of ECP for paediatric cGvHD
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FIGURE 2 | Different approaches to extracorporeal photopheresis.

management vary but most often involve two procedures
applied every other week. The optimal approach has not been
established yet.

The benefits of ECP include reduction in the need for
conventional immune suppression, with corresponding
reduction in the risk of infection, secondary malignancies
and adverse effects attributable to those conventional
immunosuppressive therapies. For example, patients reducing
or ceasing glucocorticoids may have normalisation of blood
pressure and blood glucose. Based on its efficacy and the excellent
safety profile, several expert groups have reached the consensus
that ECP has an established place as second-line or adjuvant
therapy in cGvHD (216).

In 2013–2014, the Paediatric DiseasesWorking Party (PDWP)
of the EBMT conducted a survey on the use of ECP in paediatric
GvHD treatment in routine clinical practice; 52 EBMT centres
responded (19%). Results of the analysis revealed that the
majority of centres used ECP as an “add on” treatment during
various lines of GvHD therapy in patients with a high risk
of relapse or infection (81%) or with comorbidities (88%). Of
note, 85% of responding centres agreed that, in children, a non-
malignant disease and no need of GvL may be an indication
for early implementation of ECP within a multimodal GvHD
treatment schedule (Lawitschka et al., unpublished results).

TheNIH 2020 initiative set the stage for future GvHD research
projects including the further evaluation of ECP within a pre-
emptive therapeutic setting for well-defined forms of highly
morbid cGvHD, since ECP does not increase risk of relapse or
infection. The expert group recommended the evaluation of ECP
as a first-line therapeutic agent, applying rigorous biomarker
panels pre- and post-intervention. Databases including biobanks
should be analysed for a predictive biomarker of response to ECP
(12, 13, 225, 226).

Mesenchymal Stromal Cells
Mesenchymal stromal cells (MSCs) are a heterogeneous
precursor cell population with some degree of pluripotency.
Potential usefulness for treatment of GvHD was suggested early
on as MSCs can modulate immune responses (227). Tissue
regeneration properties were also noted.

According to current hypotheses, MSCs are injected as a “pro-
drug.” They do not begin to secrete relevant mediators until
they are immersed in an environment with certain cytokines,
specifically IFNγ (228, 229), which is not a dominant mediator
in cGvHD (230).

Clinical outcomes of studies provide conclusions that are
limited only for the specific MSC product applied and clinical
situation for which they were studied. In meta-analysis by Tarifa
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et al. infusion of MSCs (of variable provenance, variable dose,
schedule, etc.) was associated with reduced cGvHD incidence
(relative risk, 0.64; 95% CI, 0.47–0.88; I2 = 0%) and a trend
toward lower incidence of extensive cGvHD (relative risk, 0.50;
95% CI, 0.25–0.10; p = 0.05), both in adults and children (231).
Fisher et al. came to essentially similar conclusions (232) as
does the meta-analysis by Wang et al. (233), albeit restricted
to children.

Outcomes were reported in several case series comprising
fewer than 100 patients and MSCs of various provenance and
dose. While they may appear overall satisfactory, it is very
important to bear in mind that all of these studies lack control
groups, which could have answered the question of attributability
of the improvement to the MSC infusion, i.e., could have
distinguished between “improvement” and “response.”

Alternatively, proving the hypothesis that prophylactic
infusion of MSCs might be able to prevent cGvHD is hampered
by the poor predictability of (severe) cGvHD and its relatively
low prevalence. Work by Lazarus et al., reports a high frequency
of cGvHD (of 61% in patients surviving to day 90, almost a
quarter of whom had severe cGvHD) which does not suggest
a prophylactic benefit (234). In that study, MSCs were co-
administered with the graft. A later double-blinded trial of
umbilical cord blood MSCs (235) investigated this issue further.
In a 1:1 randomised assignment, 124 haploidentical transplanted
patients received umbilical cord blood MSCs or control (saline).
Although the treatment schedule itself is described in somewhat
vague terms, a signal indicating efficacy is reported. Whether
dose, schedule (especially timing relative to the transplantation),
source of MSCs or any other quality attribute of the MSCs
is responsible remains elusive. The promising data certainly
encourage further exploration of the issue.

To summarise, the role of MSCs in cGvHD treatment is
unclear. For a specific preparation of umbilical cord blood
MSC efficacy was demonstrated in a prophylactic setting in
haploidentical transplantation, which begs confirmation.

Real-World Response Evaluation
The appropriate assessment of cGvHD treatment response is
essential for making optimal therapeutic decisions and, thus, for
optimising final outcomes of cGvHD treatment. The 2014 NIH
consensus criteria on diagnosis and grading include definitions
of overall and organ-specific therapeutic response in cGvHD for
use in clinical trials (135).

The NIH consensus project recommends that clinicians
assess organ-specific response for the skin, mouth, liver, upper
and lower gastrointestinal tract, oesophagus, lung, eye, and
joint/fascia (236).

Three general categories of overall response are proposed:

• CR: resolution of all manifestations in each organ
• PR: improvement in at least 1 organ or site without

progression in any other organ
• lack of response: unchanged, mixed response, or progression

Regarding timepoints for assessment, response should not be
assessed earlier than 8 weeks after induction of treatment.
Subsequent measurements should be made at regular intervals,

for example every 3 months, and whenever a new systemic
immunosuppressive treatment is started or the patient stops
treatment (1, 236). Generally, a measure of success in cGvHD
treatment is the complete discontinuation of therapy or complete
disease control on unimodal immunosuppressive treatment at a
low dose.

Tapering Systemic Immunosuppressive Treatment
There is no “gold standard” for tapering schedules of cGvHD
treatment because randomised prospective trials are lacking.
Therefore, expert-based recommendations compensate for the
lack of evidence-based data.

The choice to taper treatment should be patient specific and
may start with the agent that is either less well-tolerated by
the patient or that has more toxic side effects. The schedule
of taper may best be guided by the organ pattern and severity
of cGvHD as well as the patient’s individual risk of poor
outcomes of cGvHD, concomitant comorbidities and infectious
complications. In paediatric patients, tapering should usually
start with steroids because of the broad spectrum of possible
adverse effects with these agents and to allow for best possible
growth and development of the child.

Generally, drugs should be withdrawn gradually, one at a
time, after gaining an objective clinical response to therapy. In
our opinion, regular clinical examinations in shorter intervals,
such as once or twice weekly in moderate-to-severe cGvHD,
are important. Discussions and shared management decisions
within a multidisciplinary team are strongly recommended. We
have summarised different published approaches to tapering in
Table 7 (106, 139, 141, 237).

If cGvHD exacerbation occurs during the taper, other
contributing causes, especially infections, must be excluded
followed by a swift dose escalation. In the event of
unresponsiveness or progression of cGvHD after 4 weeks, a
new agent should be introduced. The same applies after two
unsuccessful attempts to taper therapy. Ineffective treatment
should be tapered and discontinued after successful induction of
the new treatment to avoid unnecessary immunosuppression.

However, management of paediatric cGvHD requires
continuous recalibration of immunosuppressive treatment in
order to avoid over- or undertreatment. Usually, in paediatric
patients the treatment intensity decreases over time and a specific
threshold can be set individually for each patient by repetitive
attempts to decrease treatment intensity.

Anti-infectious Prophylaxis
It is important to recognise that the complete management
of cGvHD includes optimal supportive care. During
cGvHD, patients are immunocompromised due to both
immunosuppressive medication and immune dysregulation
by cGvHD itself. The prolonged use of immunosuppressants
in cGvHD is common (with only 18% of patients being off
immunosuppressive therapy after 2 years in a combined
paediatric/adult study) and is associated with an increased
incidence of infection and mortality (238). cGvHD is a risk factor
for bacterial, fungal and viral infections (239–241) and increased
TRM (240, 242).
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TABLE 7 | Summary of recommended approaches for the taper of immunosuppressive agents used in the treatment of cGvHD (review of recent literature).

References Timing of taper initiation Approach to taper Approach to dose increase in the

event of cGvHD relapse or

exacerbation

Sarantopoulos et al.

(141)

After 3–4 weeks of the initial

prednisone dose.

Not specified Not specified

Wolff et al. (139) As soon as disease control has been

achieved.

Not specified If cGvHD flares during steroid taper,

increasing the dose by 1 or 2 taper

steps may be enough to control

symptoms.

Jacobsohn (106) After 2 weeks of the initial prednisone

dose.

Taper to alternate-day prednisone by

1–2 months.

Not specified

Flowers and Martin

(237)

As soon as clinical improvement is

achieved.

20–30% dose reduction every 2

weeks, with smaller absolute

decrements toward the end of the

taper schedule; the prednisone dose

is reduced to 0.1 mg/kg every other

day within 22 weeks; it equates to

adrenal replacement therapy and is

continued for at least 4 weeks.

2-log increase in dose with daily

administration for 2–4 weeks,

followed by resumption of

alternate-day administration which is

continued for at least 3 months

before next attempt of taper.

cGvHD, chronic graft vs. host disease.

Therefore, prophylaxis against multiple types of infection
is indispensable to minimise the risk of life-threatening
infections (243). The 2014 NIH consensus project included
recommendations on ancillary therapy and supportive care in
cGvHD, including the strength of each recommendation (143).
Recently, paediatric expert recommendations stemming from
workshops of the EBMT PDWP were published regarding the
prevention of infections in patients after HSCT (244).

Antibacterial Prophylaxis
In patients with cGvHD, the risk of infections caused by
encapsulated bacteria is more than double that in those without
cGvHD (245).

Prolonged antibiotic prophylaxis is recommended only for
preventing infection with S. pneumoniae among cGvHD patients
receiving active cGvHD treatment (level A-III) (243, 245,
246). Oral phenoxymethylpenicillin has been shown to prevent
encapsulated bacterial infection and, thus, may be suitable (level
A-III) (243, 245). However, it is recommended to make a choice
of antibiotic agent according to local antibiotic susceptibility data
(243, 246).

Pneumocystis Jirovecii Prophylaxis
In general, patients with active cGvHD taking
immunosuppressive treatment (especially multimodal treatment
including steroids) and/or with neutropenia and/or with
CD4+ T cells <200 × 109/L may be at risk of Pneumocystis
jirovecii infection, taking into account that the initially HIV-
derived CD4+ T-cell threshold has been not evaluated in the
cGvHD setting and Pneumocystis jirovecii infections have
been observed in patients above the proposed threshold. For
prophylaxis against Pneumocystis jiroveci interstitial pneumonia,
trimethoprim/sulfamethoxazole is recommended (level A-I) (7).

Antifungal Prophylaxis (Systemic and Topical)
If tolerated, a mould-active azole is recommended for
prophylaxis in patients undergoing treatment for cGvHD
(level A-I) (7, 243). Suitable agents include posaconazole and
voriconazole (level A-I) or itraconazole with regular monitoring
of plasma levels (level B-II) (243). If there is a history of invasive
aspergillosis, secondary prophylaxis using antimycotics that are
active against Aspergillus (level B-I) including weekly or biweekly
liposomal amphotericin B should be administered (7, 247).

Antiviral Prophylaxis
In at-risk patients, the stringent monitoring of cytomegalovirus
(CMV) levels by quantitative polymerase chain reaction (qPCR)
should be continued throughout the period of cGvHD (level B-I)
to enable pre-emptive treatment or maintenance of prophylactic
management if needed (89, 243). Due to the high risk of post-
transplant lymphoproliferative disease, it also is reasonable to
monitor patients with cGvHD on T cell suppressive agents (i.e.,
a CNI, mycophenolate mofetil, or ruxolitinib) for Epstein-Barr
virus reactivation by qPCR (243, 248).

In patients who are seropositive for herpes simplex virus
or varicella zoster virus, acyclovir is recommended to prevent
reactivation (level B-II) (7).

Toxoplasmosis Prophylaxis
In patients who were seropositive for toxoplasma pre transplant,
there is a risk of reactivation during cGvHD treatment. Regular
monitoring by qPCR is recommended. Of note, Pneumocystis
jirovecii prophylaxis with trimethoprim/sulfamethoxazole
potentially may be protective against toxoplasmosis because the
majority of post-transplant cases occur in patients not receiving
this prophylactic medication (243).

Tuberculosis Prophylaxis
If there is a history of tuberculosis, secondary prophylaxis using
isoniazid should be used (level C-III) (7).
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Intravenous Immunoglobulin
Substitution of polyvalent immunoglobulins either intravenously
or subcutaneous is recommended in the presence of
IgG deficiency (below 400 mg/dL) post transplant, post
rituximab treatment and in patients with recurrent infections
(7, 244). Immunoglobulin substitution does not inhibit the
immune response to inactivated vaccines. For live virus
vaccines, vaccination should be delayed until the patient is
immunocompetent (at least 24 months post HSCT).

Vaccination of Patients and Close Contacts
There are data on vaccination responses in children after HSCT
but very limited data are available specifically in children with
cGvHD. A prospective study by Meisel et al. reported on
the safety and immunogenicity of a heptavalent pneumococcal
conjugate vaccine (7vPCV) administered to 53 children. Patients
were immunised with 3 consecutive doses (at monthly intervals)
starting 6–9 months after HSCT (249). Ten of the 53 patients
had been on systemic immunosuppressive treatment, while
patients with uncontrolled cGvHD were excluded. There were
indications that the responses to 7vPCV in patients with
active cGvHD were suboptimal, with low B cells and low IgG
being risk factors for a suboptimal response (249, 250). Data
from a combined paediatric/adult cohort where pneumococcal
conjugate vaccination was triggered by milestones in immunity
(CD4+ cells >200× 106/L and IgG >0.5 g/L), show that cGvHD
patients respond just as well as patients without cGvHD to
vaccination but are vaccinated significantly later after transplant
than patients without cGvHD (the median time 1.8 vs. 1.1 year
post HSCT, respectively) (251).

Importantly, there is no evidence that inactivated vaccines
induce or aggravate GvHD (252, 253) and, therefore, the
start of vaccination (or revaccination) with a diphtheria,
tetanus, acellular pertussis, polio, hepatitis B and Haemophilus
influenzae type B combination vaccine (DTaP/IPV/HBV/Hib)
and 13-valent pneumococcal conjugate (PCV13) vaccine is
recommended 6 months after allogeneic HSCT for patients
with and without cGvHD (7, 244, 254). Cordonnier
et al. showed that a fourth dose of PCV13 increased
antibody levels significantly in children and this has been
implemented in the current EBMT recommendations
(level A-ll) (169, 255). The additional effectiveness of
the polysaccharide vaccine Pneumo23 is potentially
limited in patients who suffer from cGVHD after HSCT
(244, 255).

In view of the especially high risk of encapsulated bacterial
infection in cGvHD, all patients with cGvHD should receive
vaccination against Haemophilus influenzae (level B-1) and
Streptococcus pneumoniae (level A-ll) (243, 249, 254). Conjugate
vaccines, which also achieve good vaccination success in infants,
are preferred (7, 254).

Serum tests are recommended to monitor response to
vaccination in patients receiving immunosuppression to assess
the immunologic response to vaccination and/or need for
subsequent booster immunisation (7, 244, 254).

Recommendations for optional and conditional vaccines can
be found in the EBMT recommendations by Ifversen et al. (244).

Of the recommended inactivated vaccines, influenza vaccine can
be given from 4 to 6 months post transplant and immunisation
should be repeated on an annual basis (7, 243, 244, 253).
However, it has been observed that a greater percentage of adults
with cGvHD do not respond to the H1N1 vaccine in comparison
to healthy individuals (256). This is of particular interest in the
light of the coronavirus pandemic and mass vaccination with
COVID-19 vaccine of all patients with ALL, where impaired
responses have indeed also been observed to the COVID-19
vaccine. The recommendations are continuously updated but the
EMA currently advises to give three doses of COVID-19 vaccine
to all adult immunocompromised patients (recommendations
published on 04/10/2021, https://www.ema.europa.eu/en/
news/comirnaty-spikevax-ema-recommendations-extra-doses-
boosters) (257). As the vaccine has recently been EMA-
approved for use in children over 5 years old it is likely
that this recommendation will soon include children with
ALL of 5 years and older, and after transplant regardless
of cGvHD development (258). There are strong indications
that patients with B cell depleting therapies impairing their
antibody responses, are still able to mount adequate T cell
responses against natural infection and COVID-19 vaccination
(259, 260).

A strong recommendation is that live vaccines must not be
administered in patients with cGvHD (level A-I) (243, 244, 254).

Household contacts should also receive routine vaccinations
plus the seasonal influenza vaccine (254) and the COVID-19
vaccine (see EBMT website, COVID-19 vaccines).

PERSONALISED MANAGEMENT OF
PAEDIATRIC cGVHD

The 2020 NIH initiative clearly set out all the unmet needs
in paediatric cGvHD management and pointed out that future
efforts must aim for prompt recognition and intervention to limit
organ damage and significant morbidity (11, 12).

Nonetheless, despite the advances brought through and
driven by the 2014 NIH consensus conference, the diagnosis
of paediatric cGvHD remains challenging in daily clinical
practice since clinical onsets can be infection associated
and insidious. Moreover, patients may present with clinical
manifestations of cGvHD beyond the NIH-defined diagnostic
and distinctive features. These are referred to as “associated
cGvHD symptoms” and may consist of endothelial dysfunction
and polyserositis, immune-mediated cytopenias, and atypical
manifestations regarding the kidneys, the central and peripheral
nervous system and others (226) (see supplemental cGvHD
documentation form in Supplementary Material). However,
standardised diagnostic criteria for associated manifestations
are lacking and may be missed as being cGvHD associated.
These atypical cGvHD manifestations are understudied in
paediatric patients but may contribute significantly to morbidity
and mortality and may share cGvHD pathophysiology (67).
An additional challenge can be the differentiation of cGvHD
manifestations from pre-existing toxicities and specific residual
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phenotypes of inborn errors appearing alongside paediatric
cGvHD symptoms.

Another problem specific to cGvHD is the waxing
and waning nature of the disease with high inter- and
intraindividual heterogeneity. This impedes clinicians’
decisions on when and how to best implement
therapeutic agents, with the added difficulty of a lack of
standardised recommendations, including taper schedules
for treatments.

A further difficulty lies in how and when to best implement
therapeutic approaches for the individual patient. Many research
activities have provided new pathophysiological insights allowing
for therapeutic approaches that may more accurately target
involved pathways. However, substantially fewer data are
available on how the various pathways intersect and how
they apply to the various phenotypes of cGvHD. Of note,
single-target inhibitors may have a beneficial or detrimental
effect at different phases of immune cell development and
immune dysfunction. In this regard the results of a randomised
phase 2 trial evaluating the response of pomalidomide in 34
adult patients with moderate to severe cGvHD may serve as
an example: authors reported that the use of pomalidomide
early after HSCT may cause cutaneous inflammation in
contrast to the treatment responses observed in late sclerotic
cGvHD (201).

Another difficulty is that the rather promising results from
early studies of these agents are yet to be confirmed in large
prospective studies, and our understanding of drug interactions
in children is currently incomplete. The FDA approval of
ruxolitinib as the first agent for SR-cGvHD in patients over
the age of 12 years in September 2021 will likely change the
cGvHD field, but paediatric data from large prospective trials
are missing. There is an ongoing REACH 5 trial evaluating
ruxolitinib in patients under the age of 18 years with moderate
to severe cGvHD.

Moreover, with respect to difficulties in the clinical
management of paediatric cGvHD, a plethora of potential
infections and drug-induced toxicities make a patient-
specific approach of crucial importance. In this regard,
the 2020 NIH initiative has emphasised the benefit of
applying immunomodulatory agents as opposed to broad
immunosuppressive agents (225).

A comprehensive review on the management of cGvHD
in children was provided by Jacobsohn (106), but since
that publication major advances, as outlined in detail
within this manuscript, have been made and an update is
pending. Recently, an individualised and patient-centred
cGVHD management offering continuing care embedded in a
multidisciplinary team has been described (103, 141). To fill this
gap regarding paediatric cGVHD patients was the central aim of
this manuscript.

In consideration of the unmet needs as outlined above,
coupled with the debilitating morbidity of the disease, we
have developed a model for a personalised approach for
the management of paediatric cGvHD. This model integrates
published evidence, expert opinions, clinicians’ experience and
patient-specific considerations.

Holistic View of Paediatric cGvHD and
Associated Manifestations (The See-Saw
of cGvHD)
We propose that clinicians take a holistic view of paediatric
cGVHD interpreting classical cGvHD, atypical cGvHD and other
manifestations not only in the context of allo/auto-immunity
after HSCT but rather as a kind of chronic graft dysfunction. This
chronic graft dysfunction of the transplanted immune system
involves multiple layers and effectors of the innate and adaptive
aberrant immune system (30) which interfere with functional
tolerance; chronic inflammation mediated by GvHD and/or
infections play a central role.

Figure 3 illustrates the possible insidious onset of cGvHD
and the complex interplay with functional correlates. With better
insight, the individualised clinical management of paediatric
cGvHD and enhanced early intervention may be supported.

Risk of ALL Relapse
The association between cGvHD and leukaemic disease control
has long been debated and study results are contradictory. A
study of Boyiadzis et al. performed in cohort of 7,489 patients
with leukaemia including 599 paediatric patients with ALL
demonstrated a protective effect of cGvHD against late relapse
only for patients with CML (4). Moreover, the presence of
cGvHD was associated with significantly higher TRM and worse
OS across all diseases studied. Kato et al. described a cohort of
1,030 paediatric patients with ALL in which cGvHD was not
found to reduce the risk of post-transplant relapse (3). However,
most recently, Yeshurun et al. studied the impact of the GvL
effect on survival in 5,215 patients with ALL. In this study were
1,619 paediatric patients and 2,593 adults in CR1/CR2 as well as
1,003 patients with advanced ALL (i.e., CR3 or greater or active
disease) (261). The study demonstrated that, both for patients in
CR1/CR2 and for patients with advanced ALL, development of
cGvHD was associated with a lower risk of relapse.

Thus, it is important to identify the setting in which cGvHD
would be most beneficial for leukaemia control by means of
developing better cGvHD prevention and therapies in order to
improve leukaemia- and event-free survival (4). In addition, it is
important to monitor as precisely as possible the post-transplant
ALL status of patients during the treatment of cGvHD and to
assure early detection of impending relapse and early therapeutic
intervention where possible.

Monitoring of ALL Status
All subjects with active cGvHD undergoing immunosuppressive
treatment should be systematically screened for ALL relapse
based on physical examination and results of routine
haematological tests, post-transplant haematopoietic chimerism
and minimal residual disease (MRD) level. In patients on
distinct immunosuppressive treatment for cGvHD, MRD
monitoring should be prolonged, especially in those patients
who demonstrate a high- or very-high risk score for post-
transplant ALL relapse, as proposed by Bader et al. (262). To
date, no general recommendation can be given on the best
methods or frequency of MRD monitoring in patients with
active cGvHD but careful and meticulous execution of the
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FIGURE 3 | The see-saw of cGvHD.

above-mentioned approaches should allow the timely detection
of any leukaemia relapses in these patients.

cGvHD-Related Immune Impairment and Risk of

Infection
Murine studies in combination with biomarker studies
have demonstrated a role for T cells as well as B cells
in cGvHD. Increased percentages of peripheral naïve
CD4+CD45RA+CD31− Th cells and naïve CD8+CD45RA+PD-
1+ cytotoxic T cells as well as activated T cells (CD3+CD69+)
were observed in children with cGvHD compared with patients
without cGvHD post HSCT (67). Increased levels of T cells have
been observed also in severe compared to moderate cGvHD in
children and adolescents (45).

However, GvHD biomarker studies suggest that the hallmark
of cGvHD-related immune dysregulation is a profoundly
disturbed B-cell profile, with low numbers of transitional
memory B cells and lack of differentiation to the switched
memory B cell phenotype (56). The most severe cGvHD disease
in children and adolescents correlated significantly with a
distorted B cell profile consisting of increased CD19+CD21low B
cells along with an increased CD19+CD21low to CD19+CD27+

B cell ratio (45). Elevated percentages of CD21low B cells have
been shown to correlate with the occurrence of severe infections

(56). In a third of adult cGvHD patients, this perturbed B
cell differentiation leads to significant hypogammaglobulinaemia
(57). Conversely, hypergammaglobulinaemia can occur in a
subgroup of patients with cGvHD and is associated with
the occurrence of allo/autoantibodies, targeting various tissues.
Bacterial infections are common in cGvHD andmay be the result
of dysgammaglobulinaemia aggravated by a degree of functional
asplenia (263).

Skin cGvHD was demonstrated to be a specific risk factor
for late Staphylococcus aureus bacteraemia in a paediatric cohort
receiving BM transplants, probably as a result of skin barrier
breakthrough (264).

Both aGvHD and cGvHD are risk factors for viral infection
and reactivation in paediatric transplant patients, with the
highest cumulative incidence for CMV (265, 266). Other
pathogens for which risks of infection/reactivation are increased
by GvHD include Epstein-Barr virus, adenovirus, BK virus and
varicella zoster virus, as well as respiratory infections. Even
varicella zoster virus can be fatal in patients with active GvHD
on immunosuppressive therapy (267).

A continued risk of invasive fungal infection exists in patients
with cGvHD and also paediatric patients who receive high-
dose steroids post HSCT (268–270). For patients who develop
pulmonary aspergillosis post HSCT yet who continue to need
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FIGURE 4 | Individualised risk assessment and aggregated considerations (cheque as appropriate). *Platelets < 100 Gil. GI, gastrointestinal tract; PBSC, peripheral

blood stem cells; HSCT, hematopoietic stem cell transplantation; MMD, mismatched donor; TBI, total body irradiation; IST, immunosuppressive therapy.

immunosuppressive treatment, the risk of mortality is high, with
reports varying from 50–70% (268–270).

Infections in Association With Specific Treatment Options
Treatments for cGvHD are often combined making it near
impossible to ascertain the risk of infection associated with each
separate drug, with the exception of rituximab which in known
to cause hypogammaglobulinaemia that directly correlates to
increased risks of bacterial and viral infections (271). Most
secondary agents are given on a backdrop of some level of
steroids. With regards to the newer small molecule therapies,

in a study of 22 paediatric patients on ibrutinib for cGvHD,
severe bacterial infection (n= 2), Epstein-Barr virus reactivations
(n = 1), and no fungal infections were seen (129). However,
data from lymphoma treatment with ibrutinib provide a warning
regarding the risk of Pneumocystis jirovecii pneumonia and
fungal infections (including Aspergillus) (272).

Patients with bronchiolitis obliterans syndrome may be at
particularly high risk of opportunistic infections when treated
with ruxolitinib (273). In an adolescent/adult cohort receiving
ruxolitinib/steroid treatment for bronchiolitis obliterans
syndrome, a serious infection of grade 2 or higher occurred in
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47% of patients, with two thirds of these being fungal infections
(273). The myelosuppressive side effects of ruxolitinib result
in neutropenia; moreover, its mechanism of action of widely
blocking innate and specific immune intracellular cytokine
signalling makes cGvHD patients receiving this therapy more
prone to developing all types of infection (especially viral
infections but also candida, fungal and mycobacterial infections)
(186, 273, 274).

Of all treatments for cGvHD discussed above, ECP appears to
be associated with the lowest rate of infection (275).

cGvHD-Related Organ Toxicity and the Risk of

Complications and Late Effects
Both the highly inflammatory state and immune dysregulation
seen in cGvHD and the side effects of medications can damage
organ systems. This can lead to new organ dysfunctions that
will require new medical interventions over time. The long-term
toxicities and complications of paediatric cGvHD are the result
of a complex interplay of symptoms and dysfunctions which
impact on physical functioning and quality of life, with inferior
outcomes associated with severe cGvHD (2). A summary of the
main treatment-related toxicities is shown in Table 4.

The long-term consequences of these late complications in
children are possibly: (i) an impairment of future developmental
potential within a growing organ system (276), and (ii) an
increase in morbidity of chronic health conditions occurring
throughout life (277). The occurrence and patterns of late toxicity
and complications associated with cGvHD and its treatment
depend on the intensity of conditioning (especially TBI-based
conditioning) and patient age at transplant (278, 279) and at
beginning of complications. These complications contribute to
late comorbidities (280). Nearly any organ might be affected
by them, including the development of secondary malignancies
(15, 281, 282). As the life expectancy of paediatric patients post
HSCT continues to increase, these chronic health conditions are
a significant burden in the population of transplant survivors.

Proposal for the Personalised Management of

Paediatric CGvHD From the Clinicians’ Viewpoint

A Checklist for Individualised Risk Evaluation With

Aggregated Considerations
As intervention and treatment decisions in daily clinical
practice are both clinician and patient specific, we summarise
here the most important aspects including evaluation of
the individual’s risk and prognostic indicators as well as
an assessment of aggregated considerations. The evaluation
of individual risk and prognostic indicators covers details
of GvHD and immune reconstitution, the primary disease
and relapse risk, comorbidities and infectious complications.
Aggregated considerations cover details of the patient’s individual
psychosocial and socio-economic circumstances and take into
account their personal tolerance and preferences. To capture all
these details, we created a comprehensive colour-coded checklist
for routine clinical use (Figure 4). This walk-through checklist
will provide the clinician with a summary of the patient’s status
and should be used at baseline and each timepoint of clinical

evaluation, helping the clinician to identify various co-existing
aspects at one glance.

The rationale behind this approach is to better identify
the appropriate time point for the most appropriate treatment
approach in a patient-centred manner, keeping in mind that
prevention of severe cGvHD is of utmost importance (11).

A Treatment Algorithm for Paediatric cGvHD Patients at

High Risk of Relapse
The desirable therapeutic approach to managing paediatric
cGvHD patients at high risk of relapse would consist of a safe
treatment with minimum short-and long-term adverse events,
embedded within an evidence-based protocol and supported
by reliable predictors of response. Currently, data are not
available to support such a therapeutic approach and it is
likely that therapeutic interventions will not benefit all patients.
Therefore, we propose a treatment algorithm to inform the
personalised management plans of high-risk patients, which we
developed based on the literature and joint clinical experience
(Figure 5). The algorithm uses representative paediatric patients
with cGvHD following HSCT for ALL who are at high risk
of relapse.

We recommend that, for patients at high risk of relapse,
clinicians use both our checklist for risk evaluation and our
treatment algorithm to inform personalised management plans.
Given the variety of organ-specific cGvHD manifestations
and comorbidities that patients may present with and various
patient-specific considerations, we recommend that each
patient’s cGvHD management plan is discussed within a
multidisciplinary team.

DISCUSSION

Similarly to adults, cGVHD in children presents as a complex
multi-system disease with high interindividual heterogeneity
and with a distinctly inconsistent intraindividual disease course.
Given the debilitating consequences and the potentially life-
threatening nature of cGvHD, recognition of the earliest signs
and symptoms and an early timepoint of intervention are of
utmost importance. The prevention of severe and highly morbid
forms of paediatric cGvHD is a main goal of management (11–
13). Within the limits of this review, current knowledge has
been summarised and gaps in knowledge have been identified.
To facilitate the early recognition of this complex disease for
the clinician, we have put forth a theory of a holistic view of
paediatric cGvHD and its associated manifestations.

Improved understanding of the immunobiology of cGvHD,
more precise diagnosis by the application of various biomarkers,
and the identification of new therapeutic targets is required.
Beside this, the treatment choices of paediatric cGvHD—and
especially SR-cGvHD—remain clinician and patient specific in
daily clinical practice. As no standardised recommendations exist
regarding when and how to modify treatment, and in light of
a risk of relapse, infection and comorbidity, we developed an
individualised cGvHDmanagement plan aiming for the titration
of immunosuppressive treatment according the current status of
the patient.

Frontiers in Pediatrics | www.frontiersin.org 26 February 2022 | Volume 10 | Article 808103

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Sobkowiak-Sobierajska et al. Management of cGvHD in Paediatric ALL HSCT

FIGURE 5 | Treatment algorithm for paediatric cGvHD patients at high risk of relapse.

We have proposed a walk-through checklist for individualised
risk evaluation with aggregated considerations to provide the
clinician with a summary of the patient’s status. Ideally this
checklist should be used at baseline and each timepoint of clinical
evaluation, helping the clinician to identify various co-existing
aspects at one glance during clinical follow up.

Moreover, using representative cases of paediatric cGvHD
after HSCT for ALL, we have proposed a treatment algorithm
for those patients at high risk of relapse. ECP with its GvL
sparing and immunomodulatory effect and no serious side effects
seems beneficial for this patient group, although standardised
recommendations regarding the ECP treatment schedule in
paediatric patients are lacking. The mode of vascular access, the
benefit of earlier introduction of ECP after paediatric HSCT, and
the broader use of mini ECP remain areas where further research
is warranted.

Our proposed approach is mainly based on the literature and
expert opinions and will require confirmation via well-designed
studies. In lieu of the evidence-based data needed to inform
individualised cGvHD management in paediatric patients, we
hope our proposed approach that focuses on patients’ individual
needs will help clinicians to improve their clinical management
of cGvHD.

Evidence-based data from ongoing studies are eagerly awaited,
especially regarding the recently FDA-approved treatment

ruxolitinib, allowing more targeted treatment. The possible risk
of infectious complications with ruxolitinib must be taken into
account, again pointing out a possible advantage of ECP in
this regard.

In conclusion, as a complex multiorgan disease with
manifold pathogenetic pathways and the presentation of multiple
manifestations over time, paediatric cGvHD requires optimal
patient-adjusted management with flexible regimens chosen for
specific clinical findings according to each patient’s risk profile
and circumstances.
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