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Abstract

Exposure to silver nanoparticles (AgNP) used in consumer products carries potential health
risks including increased susceptibility to infectious pathogens. Systematic assessments of
antimicrobial macrophage immune responses in the context of AQNP exposure are impor-
tant because uptake of AQNP by macrophages may lead to alterations of innate immune
cell functions. In this study we examined the effects of exposure to AgQNP with different parti-
cle sizes (20 and 110 nm diameters) and surface chemistry (citrate or polyvinlypyrrolidone
capping) on cellular toxicity and innate immune responses against Mycobacterium tubercu-
losis (M.tb) by human monocyte-derived macrophages (MDM). Exposures of MDM to
AgNP significantly reduced cellular viability, increased /L8 and decreased /L 70 mRNA
expression. Exposure of M.tb-infected MDM to AgNP suppressed M.tb-induced expression
of IL1B, IL10, and TNFA mRNA. Furthermore, M.tb-induced IL-13, a cytokine critical for
host resistance to M.tb, was inhibited by AgNP but not by carbon black particles indicating
that the observed immunosuppressive effects of AGNP are particle specific. Suppressive
effects of AGNP on the M.tb-induced host immune responses were in part due to AgNP-
mediated interferences with the TLR signaling pathways that culminate in the activation of
the transcription factor NF-kB. AgNP exposure suppressed M.tb-induced expression of a
subset of NF-kB mediated genes (CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA,
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NFKB1A). In addition, AgNP exposure increased the expression of HSPA1A mRNA and the
corresponding stress-induced Hsp72 protein. Up-regulation of Hsp72 by AgNP can sup-
press M.tb-induced NF-kB activation and host immune responses. The observed ability of
AgNP to modulate infectious pathogen-induced immune responses has important public
health implications.

Introduction

Increased use of nanoparticles (NP) as additives in consumer products may cause frequent
human exposures to NP. NP are single particles with diameters between 1 and 100 nm and
have unique characteristics that differ from the same material in bulk form [1]. Due to the
large specific surface areas, NP are potentially more reactive upon interaction with biological
systems than larger particles [2-4]. NP that are taken up by innate immune cells (such as mac-
rophages) can activate or suppress immune system functions [5] with potential consequences
for the development of cancer, inflammatory or autoimmune diseases and alterations of host
immune responses to pathogens [6]. Although the innate immune system is critical in sensing
exposure to NP and functions as a first line of defense against infectious pathogens, only a few
studies have assessed the interactions of NP with the human immune system [7-9].

Because of their antibacterial properties [10], silver (Ag) NP (AgNP) are among the most
widely used NP in consumer products such as textiles, disinfectant sprays, antibacterial oint-
ments, bandages and medical devices such as orthopedic implants. AgNP are also considered
as vehicles for drug delivery and tissue-targeting e.g. through intravenous application [11,12].
Human exposure to AgNP may occur by inhalation via the respiratory tract, by adsorption
through the skin, by ingestion through the digestive tract, by implantation, insertion of medical
devices or occupationally in the nano-Ag manufacturing industry [13]. Differential effects of
AgNP size and surface capping have recently been reported on cellular viability and inflamma-
tion and injury in murine lungs [14]. Physicochemical properties of AgNP such as surface
charge are largely determined by the capping agents used to prevent NP aggregation. AgNP
that are stabilized with weak capping agents such as citrate, which is weakly bound to the Ag
core and stabilizes by charge repulsion, tend to aggregate more than those stabilized with
strong capping agents such as PVP, which is strongly bound to the Ag core and sterically stabi-
lizes AgNP [15-17].

A recent study indicated that AgNP exposures alter the population of intestinal microbiota
and gut-associated immune responses in rats [18]. Anti-inflammatory effects of AgNP capped
with polyvinlypyrrolidone (PVP) have also been reported in Chlamydia trachomatis infected
mouse J774 macrophages [19]. However, the effects of AgNP on antibacterial human host
immune cell responses have not been systematically examined.

In the current study, we examined the effects of AgNP with different sizes (diameters 20 or
110 nm) and surface modifications (citrate or PVP-coated) on innate immune responses of
human monocyte-derived macrophages (MDM) to infection with Mycobacterium tuberculosis
(M.tb). M.tb causes tuberculosis (TB), a disease of major global health impact, and asymptom-
atically infects a third of the world population [20]. During natural infection, following inhala-
tion, M.tb is taken up by phagocytic cells including alveolar macrophages in the respiratory
tract with potential outcomes such as abrogation of the infection, latency of infection, progres-
sion to active disease or development of reactivation disease years after the primary infection
[21]. Epidemiological studies have shown that exposures to cigarette smoke and indoor
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pollution [22-25] increase rates of TB development in endemic settings. In vitro studies have
shown that cigarette smoke [26] and indoor air pollution particles [27] affect alveolar macro-
phages and MDM functions in response to M.tb. We have shown that exposure of immune
cells to diesel exhaust particles (DEP) and air pollution particulate matter adversely affects
human antimycobacterial immune mechanisms [28,29]. With this background, we hypothe-
sized that exposure to AgNP may alter human host immune responses to M.tb. To test this
hypothesis we examined the effects of four types of AgNP (Ag20-citrate, Agl10-citrate,
Ag20-PVP and Agl10-PVP) on innate M.tb-specific responses of human MDM, which are
widely used to study host immune responses to M.tb [30,31]. We demonstrate that AgNP sup-
press innate responses of MDM in response to M.tb infection including the production of IL-
1B. We propose that the upregulation of Hsp72 expression in MDM exposed to AgNP is
important for AgNP-induced inhibition of M.tb-induced host immune responses.

Materials and Methods
Ethics statement

Study protocol, consent procedures, and recruitment process were approved by the Institu-
tional Review Board of the legacy University of Medicine and Dentistry of New Jersey now Rut-
gers University under protocol number 0220100112. Written informed consent was obtained
from all study subjects on annually IRB-approved, dated and signed consent forms that
explained in detail the purpose of the study, the procedures, and the entirely voluntary charac-
ter of the participation prior to performing any procedures.

Generation of MDM

Peripheral whole heparinized blood was collected by venipuncture from healthy men and
women at Rutgers University (study protocol approved by the Institutional Review Board of
the legacy University of Medicine and Dentistry of New Jersey now Rutgers University under
protocol number 0220100112). Peripheral blood mononuclear cells (PBMC) were prepared
from whole heparinized venous blood by Ficoll gradient centrifugation [32] as described previ-
ously [28]. PBMC (5 x 10°) were plated in 6-well plates (BD Falcon, Franklin Lakes, NJ) in 3
mL of complete culture medium per well and incubated at 37°C in a humidified 5% CO, envi-
ronment for two hours. Following incubation, nonadherent cells were removed by washing
twice with RPMI1640 supplemented with Penicillin/Streptomycin/Glutamine (P/S/G). Plastic
adherent cells (monocytes) were cultured at 37°C in humidified 5% CO, environment for 7
days, which allows for differentiation into macrophages (MDM). Expression of macrophage-
specific surface markers CD11b, CD11c, CD14, CD16, CD163 and HLA-DR on MDM were
assessed by flow cytometry with a Gallios Flow Cytometer (Beckman Coulter, Miami, FL) and
data analyzed with Kaluza Analysis Software (Beckman Coulter). MDM revealed a typical, ear-
lier described [33-35], phenotype (S1 Table, S1 Fig).

AgNP characterization

The NCNHIR (NIEHS Centers for Nanotechnology Health Implications Research) consortium
provided the AgNP that had been manufactured by nanoComposix, Inc (San Diego, CA) for
this study. All four AgNP had a 5-7 nm gold core that served as the nucleation centers during
the manufacture of the AgNP via base-catalyzed reduction of silver nitrate. Physicochemical
properties of the AgNP were characterized at the Nanotechnology Characterization Laboratory
(NCL, National Cancer Institute at Frederick, SAIC-Frederick, Inc. Frederick, MD 21702,
http://ncl.cancer.gov) under NIEHS-NCL Agreement NCL-NIEHS201111A. Additional
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analyses of the morphology and primary size distribution of the AgNP were performed at
Imperial College London, using a JEOL 2000 transmission electron microscope (TEM), oper-
ated at an accelerating voltage of 200 kV. AgNP suspensions were sonicated for 10 seconds, a
single drop of the suspension was deposited onto a 300 Cu Mesh grid with holey carbon sup-
port film, and left to dry under vacuum for TEM imaging and analysis. To assess the effects of
pH on the stability of the AgNP, the AgNP were incubated in pH 7, sodium perchlorate
(NaClOy)/perchloric acid (HCIO,, Sigma-Aldrich) solution at pH 7, 37°C for 24 h, in the dark
[36]. This solution was used to minimize the impact of anions on the stability of the AgNP. To
correspond approximately to the pH of extracellular media pH 7 was chosen. Before TEM
imaging and analysis, the AgNP in solution, were washed three times in DI-H,O using a centri-
fugation and re-dispersion process, to remove excess salts. A full description and discussion of
these methods and comparison of TEM results to in situ small angle x-ray scattering analysis,
including discussion of possible drying artefacts, are provided elsewhere [36].

Stability of AgQNP: dissolution kinetics

Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was employed to analyze
aliquots of Ag solutions at various time points from 1 hour up to 3 days (72 hours). The
amount of dissolved Ag was determined at pH 5 and 7, matching approximately the pH found
in the lysosomes and extracellular media, respectively. Non-interacting buffers were used to
minimize the impact of anions on the stability of the AgNP. Each of the AgNP suspensions
were incubated in a temperature controller at 37°C followed by centrifugation with 2kDa (< 4
nm) filter tubes (Sartorius Stedim VIVACON 500) at 13,000 rpm to separate any AgNP from
the solution. The concentration of released Ag” ions was assessed after the AgNP had been
removed at 1, 6, 24 and 72 hours (n = 3). In addition, deionized water (no AgNP) as well as
supernatant, after the removal of the AgNP, were analyzed in control experiments ensuring
that residual AgNP were removed during centrifugation and filtering.

Preparation of AQNP and M.tb for in vitro exposure and infection

For in vitro MDM exposure experiments, AgNP samples were diluted in complete cell culture
medium without antibiotics (RPMI1640 supplemented with 10% pooled human AB serum)
followed by sonication in a Branson 3510 water bath sonicator for 2 minutes prior to addition
to the cell cultures. To assess the potential contribution of the stabilizers PVP10 (used to stabi-
lize Ag20) and PVP40 (used to stabilize Ag110) to AgNP-induced cell toxicity or alterations of
immune responses, mass equivalents of PVP10 and PVP40 within the 5, 10, 20 and 50 pg/mL
exposure concentrations of Ag20-PVP and Agl10-PVP samples were calculated. Calculations
of the PVP10 and PVP40 equivalents based on data supplied by NCL according to which
PVP10 and PVP40 concentrations were 33.3 and 62.4 ug per 1 mg of Agin Ag20-PVP and
Agl110-PVP, respectively.

MDM were infected with avirulent M.tb strain (H37Ra, ATCC catalog number 25177) at a
multiplicity of infection (MOI) of ten bacilli (MOI 10) per cell.

MTS assay

Cell viability was assessed by Cell Titer 96 Aqueous One Solution Cell Proliferation Assay
[MTS, (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tet-
razolium), Promega,Madison WI] as per the manufacturer’s protocol. Briefly, MDM (44,000/
well) were incubated at 37°C in a humidified CO, environment for 3, 6 and 24 hours in pres-
ence of 0 (cells alone, negative control), 5, 10, 20 and 50 ug/mL of AgNP (Ag20-citrate,
Ag20-PVP, Agl10-citrate, Ag110-PVP) and PVP10 and PVP40 equivalents corresponding to
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the 5, 10, 20 and 50 pg/mL concentrations of Ag20-PVP and Ag110-PVP. Absorbance was
recorded at 493 nm with an ELISA reader (ThermoScientific Multiskan FC, Finland). Percent-
ages of viable cells were calculated as ratios of ODs of NP-exposed MDM (after background
subtraction) to the ODs of unexposed MDM (after background subtraction) x 100.

Lactate dehydrogenase (LDH) assay

Cell culture supernatants (50 puL) were collected following MDM exposures to AgNP and
PVP10 and PVP40 controls and transferred into 96-well assay plates. Fifty uL of substrate
(CytoTox 96 Non-radioactive cytotoxicity Assay, Promega, Madison, WI) was then added per
well. Following incubation at room temperature for 30 minutes in the dark, stop solution

(50 pL) was added to each well and absorbance recorded at 493 nm as described above. Cellular
toxicity was defined as percent (%) LDH leakage from cells calculated from the ratios of ODs
of NP-exposed MDM (after background subtraction) to the ODs of unexposed MDM (after
background subtraction) x 100.

Quantitative RT-PCR to determine cytokine mRNA abundance

The following primer sets were used for qRT-PCR, TNFA forward: GTGCTTGTTCCTCAGC
CTCTT, TNFA reverse: ATGGGCTACAGGCTTGTCATGC; IL1B forward: GAAGCTGAT
GGCCCTAAACAG, IL1B reverse: AGCATCTTCCTCAGCTTGTCC; IL8 forward: ACTGA
GAGT GAT TGA GAG TGG AC, IL8 reverse: AAC CCTCTGCACCCAGTTTTC; IL10 for-
ward: ACCTGCCTAAGATGCTTCCAG, IL10 reverse: CTGGGTCTTGGTTCTCAGCTT;
HSPAI forward: AAGTACAAAGCGGAGGACGAG, HSPAI reverse: CCACGAGATG
ACCTCTTGACA. For each of the mRNAs, fold-changes relative to unexposed MDM were cal-
culated as described previously [28].

Pathway-specific qRT-PCR arrays

Human Toll-like Receptor (TLR) signaling pathway-specific RT*-Profiler arrays (Cat. No.
PAHS 018E, Qiagen Sciences, MD) were used to screen for mRNA expression in AgNP and M.
tb-exposed and unexposed MDM [28]. Levels of cDNA were calculated by the relative quanti-
tation method (AAC; method) from the PCR array data using analysis software accessed from
http://sabiosciences.com/pcrarraydataanalysis.php. Statistical differences in fold-mRNA
expression levels between exposed and unexposed cells were calculated using the same
software.

ELISA for IL-1B detection

Following plastic adherence for 7 days (as described above), MDM were treated with 5 mM
EDTA/PBS for 5 minutes and then gently scraped from six-well plates and subsequently plated
into 96-well plates. On the next day, cells were exposed to 0, 1 and 10 pg/mL of NP with simul-
taneous infection with M.tb at MOI 10. Culture supernatants from M.tb-infected and unin-
fected MDMs were collected at 6 and 8 hours, centrifuged for 5 minutes at 5,000 rpm to
remove particles and bacteria, and assessed for IL-18 protein content by ELISA following the
manufacturer’s protocol (R&D Systems, Minneapolis, MN). Absorbance was recorded at 450
and 570 nm with an ELISA reader (ThermoScientific Multiskan FC, Finland).

Flow cytometry for Hsp72 detection

MDM were washed with flow cytometry staining buffer and fixed in IC (intracellular) fixation
buffer (eBiosciences, Inc. San Diago, CA). Fixed cells were permeabilized with 1x permeabilization
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buffer (eBiosciences) followed by staining with FITC conjugated anti-Hsp72 (cat. No. ADI-SPA-
810FI-D, Enzo Life sciences, Farmingdale, NY) or mouse IgGl isotype control (cat. No. ADI-
SAB-600FI-050, Enzo Life sciences) for 20 minutes at room temperature in the dark. After
washing, the expression of Hsp72 in MDM was evaluated by flow cytometry with a Gallios Flow
Cytometer (Beckman Coulter, Miami, FL) and analyzed with Kaluza Analysis Software (Beckman
Coulter).

Colony forming unit (CFU) assay

To evaluate direct, AgNP-mediated antibacterial effects, M.tb was grown in cell culture media
in the presence or absence (control) of Ag20-citrate, Ag20-PVP, Agl110-ctrate, and
Ag110-PVP. Ten pL of M.tb stock (CFU 1 x 107/mL) were diluted to 1 mL with cell culture
media (RPMI1640 + 10% PHS) and incubated at 37°C with rotation on a revolver (Labnet
International, Inc., Edison, NJ) in the presence of 0, 10 and 25 pg/mL of AgNP and 15.7 and
39.25 pg/mL of AgNO; for 24 hours. AgNO; concentrations corresponded to the total amounts
of Ag” ions present in 10 and 25 pg/mL of AgNP, respectively. Ten pL of the culture media
samples were removed at 24 hours and serially 10-fold diluted in cell culture media without
antibiotics (RPMI1640 + 10% PHS) and plated in triplicate onto 7H10 agar plates and incu-
bated for 21 days at 37°C [37]. M.tb colonies (CFU) were counted using a stereo microscope at
40x magnification (Diagger Lab equipments, Vernon Hills, IL), and plotted as a function of the
AgNP concentration. M.tb grown in NP-free culture media served as a control.

M.tb uptake/internalization

Enriched CD14"CD3" PBMC were generated by negative selection through immunodepletion
of non-monocytes as described previously [28]. For generation of MDM, enriched monocytes
were plated onto 8-chamber (5x 10°/chamber) culture slides (BD-Falcon, Cat. No. 354118) and
allowed to differentiate for 7 days. Culture media were changed every 2-3 days during the
7-day incubation period. MDM were infected with M.tb at MOI 10 in presence of Ag20-citrate
(10 pg/mL) or Agl10-citrate (10 pg/mL) for 2 and 4 hours. Following incubation, extracellular
bacteria were removed by extensive washing with RPMI 1640 and slides were stained with
Kinyoun Staining fluid as described previously [28]. Proportions of MDM harboring phagocy-
tosed bacilli (stained in red) were assessed by oil immersion bright field microscopy (100X,
Zeiss Primo Star) in a total of 300 MDM for each experimental condition.

To determine the number of M.tb that had been internalized within individual MDM,
MDM (2 x 10° monocyte/well) were grown in 96-well culture dishes, infected with M.tb as
described above and washed after 4 hours to remove extracellular bacteria. MDM were then
lysed by addition of 0.1% sodium dodecyl sulfate (SDS) in 7H9 Milddlebrook medium for
10 min at room temperature after which SDS was neutralized with 20% Bovine Serum Albumin
(BSA). Lysed cells were serially diluted with 7H9 medium and plated out in triplicate onto agar
plates (Middlebrook 7H10 agar) and incubated for 21 days at 37°C. CFU numbers were then
determined as described above.

Statistical analysis

Mixed linear models that include a random effect for experiments, no fixed intercept and an
estimated common variance across doses were used to estimate the effect of dose within each
condition on the logarithm of the fold-change. Previous examination of summary statistics
demonstrated a relatively constant variance of the log-transformed fold-changes. Thus, with
the small sample sizes (n = 4) for each dose, this approach would potentially give the most sta-
ble variance estimates. Wald tests examined whether the log-fold changes were significantly
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different than zero or, equivalently, whether the fold-changes were significantly different from
one. Fold-changes of cytokine expression under exposure at doses of 1, 10 or 25 pg/mL relative
to expression at no exposure were calculated within each stimulus-by-M.tb exposure combina-
tion. To examine AgNP dose effects on percent viability and LDH leakage, mixed linear models
similar to those described above were used. Analyses were stratified by stimulus as well as
hour. The two-tailed, unpaired Student’s t-test was used to examine (i) the effects of AgNP, car-
bon black and Ag" ions on IL-1B expression, (ii) the effect of AgNP on M.tb phagocytosis/
internalization, and (iii) IL1B and HSPA1 expression.

Results
Characterization of AQNP

Physicochemical properties of AgNP are crucial determinants of their bioreactivities. Informa-
tion on size (determined by dynamic light scattering after diluting AgNP 10-fold in 2 mM
NacCl to measure the hydrodynamic diameter), charge (determined by Zeta potential measure-
ment at pH 7), and endotoxin concentration (analyzed by limulus amebocyte lysate assay) of
the AgNP (supplied by NCNHIR consortium) was provided by the NCL and is listed in

Table 1. Endotoxin levels in AgNP were low reducing the likelihood that any observed AgNP
induced immune modulations were endotoxin-induced. The primary size distribution of the
citrate and PVP-stabilized Ag20 and Agl10 in water (Fig 1A-1D) and pH7 solution (Fig 1E—~
1H) was compared by TEM performed at Imperial College, London. The size distributions of
the different AgNP preparations studied here indicate that the diameters of the majority of
Ag20 and Agl10 are >16 nm (Fig 1T and 1J) and >80 nm (Fig 1K and 1L), respectively. Assess-
ments confirmed that physicochemical properties of the as-received AgNP (dispersed in DI
water) were consistent with the specifications provided by NCL. Additional characteristics of
AgNP with gold core are discussed elsewhere by Botelho et al.[38].

Our previous work [36] showed that dissolved Ag" ions reprecipitate as insoluble Ag salts
(e.g. Ag,0O, AgCl and Ag,S) in the cell culture medium (RPMI and 10% pooled human serum)
used in this study. For this reason, we decided not to measure the amount of ionic Ag" in the
cell culture medium as it was expected that the amount of free Ag" ions in this medium would
be below the detection limit of ICP, and not representative of the actual Ag" ion-release. There-
fore, ICP was employed to measure the dissolution rates of the AgNP in inorganic buffers at
both pH 5 & 7. All AgNP showed a higher rate of dissolution at pH 5 than at pH 7 (Fig 2).
Except for Ag20-citrate, all other AgNP released less than 2% Ag" ions into the solution over a
three-day incubation period (72 h). Furthermore, Ag™ ion levels were undetectable in either
Agl110 citrate or Agl110 PVP in pH 7 buffer solutions, indicating that AgNP dissolution was
negligible. Other studies have reported a 5 to 15% dissolution from citrate-stabilized particles

Table 1. Physicochemical properties of AGNP.

Samples Diameter (nm)of >94% of particles Zeta potential (mV) Endotoxin conc.(EU/ml)
20 nm, Citrate-stabilized Ag 20921 -443+1.3 <0.05
20 nm, PVP-stabilized Ag 209+4.9 -38.2+1.6 22
110 nm, Citrate-stabilized Ag 1149185 -452 +04 <0.05
110 nm, PVP-stabilized Ag 117.4+8.6 -31.6+22 <0.05

Source: Characterization Data for Silver Nanomaterials, prepared by NCL, NCL-NIEHS201111A. AgNP size was determined by dynamic light scattering
after diluting AgNP 10-fold in 2 mM NaCl to measure the hydrodynamic radius. Charge and endotoxin contamination were determined by Zeta potential
measurement at pH 7 and limulus amebocyte lysate assay, respectively.

doi:10.1371/journal.pone.0143077.1001
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Fig 1. Characterization of AgNP by TEM. TEM images of citrate compared with PVP stabilized AgNPs (20
nm and 110 nm) in (a—d) DI water and (e—h) incubated in pH 7 perchlorate buffer solution at 37°C for 24
hours (magnification at 20 x); (i—1) show the corresponding (i, aand e; j, b and f; k, c and g; I, d and h) size
distribution histograms of AgNP in DI water (n = 200 repeat measurements).

doi:10.1371/journal.pone.0143077.g001

[39]. Discrepencies between these studies and our findings are probably due to differences in
methodology, dissolution medium, and separation techniques used to assess Ag* ion dissolu-
tion. As seen in Fig 2, Ag20-citrate showed greater dissolution than the other AgNP at all time
points at both pH 5 and 7 displaying >4% Ag" ion release into the solution after 72 hours of
incubation. In general the amounts of Ag" ion release were very low (<4% of total available
Ag) in the non-interacting solutions for all AgNP formats (4 hours) tested in this study.

Cytotoxic effects of AQNP on human MDM

Because AgNP are reported to be cytotoxic to a variety of human cells [40-42], we first exam-
ined whether AgNP exposures would affect the viability of MDM. MDM were exposed to 0
(unexposed control), 5, 10, 20, 50 pg/mL of AgNP or the stabilizers PVP10 or PVP40 alone for
periods of 3, 6 and 24 hours. The AgNP dose ranges were similar to those (6.25, 12.5, 25 and

50 ug/mL) recommended by the NCNHIR consortium and used previously in in vitro studies
by others [14]. An increase in metabolic activity (p<0.05) was observed in MDM exposed to

50 pg/mL of Agl10-citrate and to 10, 20 and 50 pg/mL of Ag110-PVP for 3 hours (Fig 3A) and
20 and 50 pg/mL of Agl10-PVP for 6 hours (Fig 3B) relative to unexposed control MDM as
determined by MTS assays. A dramatic reduction in the proportion of viable cells was observed
in MDM exposed to all four AgNP for 24 hours starting at concentrations as low as 5 pg/mL
(Fig 3C). Neither of the capping agents (PVP10and, PVP40) had statistically significant effects
on the viability of MDM during 3, 6 or 24 hour cell exposures (Fig 3A-3C). The significance of
the increase in metabolic activity relative to control cells is not clear. MTS assays rely on a
mitochondrial reductase to convert the tetrazole to formazan, which is dependent on the num-
ber of viable cells. As the exposure of MDM to AgNP may result in increased enzymatic activity
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Fig 2. Dissolution kinetics of AgNP. Ag* ion release from citrate and PVP-capped Ag20 and Ag110 NP
incubated in perchlorate acid/ perchlorate buffer solutions (pH 5, and 7).

doi:10.1371/journal.pone.0143077.g002

without actually having an effect on cell number or cell viability we also performed LDH cyto-
toxicity assays (see below) to complement the results of the MTS assays.
LDH leakage from the cells, a measure of cytotoxicity, was not significantly increased fol-
lowing MDM exposure to AgNP for periods of 3 and 6 hours compared to unexposed control
cells (Fig 3D and 3E). Nevertheless, levels of LDH release nearly doubled in MDM exposed to
each of the four AgNP types for 24 hours relative to unexposed MDM (Fig 3F). Interestingly, a
gradual decrease of LDH release in MDM exposed to increasing concentrations of Ag20-citrate
and Ag20-PVP but not to Agl10-citrate or Ag110-PVP was noted (Fig 3F). This unexpected
finding may be explained by interferences of the dark Ag20-citrate and Ag20-PVP suspensions
with the OD readings of the LDH concentrations (Fig 3F) in the assay. As expected, LDH
release was inversely correlated with the MTS assay measurements of MDM viability after 24
hours of AgNP exposure (compare Fig 3C and 3F).
Taken together, these results indicate that AgNP, but not their stabilizers (PVP10 and
PVP40), were cytotoxic for MDM during extended exposure periods (24 hours) while shorter
exposure periods (3 or 6 hours) did not induce significant toxicity. Unlike studies with cultured
cell lines that show greater toxicity upon exposure to smaller AgNP [14], no differences in size
and/or stabilizer-associated AgNP toxicity were observed in primary MDM in the current

study.

Cytokine expression in M.tb-infected MDM in response to AQNP

exposure

Since macrophages are capable of phagocytosing M.tb and act as primary mediators of antimy-
cobacterial immune responses, we set out to assess AgNP effects on inflammatory responses of
MDM to M.tb. Because of their important roles in protective antimycobacterial immunity, IL-
1B, IL-8, TNF-o. and IL-10 were assessed as macrophage products in this study. MDM were
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Fig 3. Cytotoxic effects of AgNP in MDM. MDM were exposed to 5, 10, 25 and 50 pg/mL of Ag20-cit, Ag20-PVP, Ag110-citrate, Ag110-PVP and the
stabilizers PVP10 (0.2, 0.3, 0.7 and 1.7 pg/mL) and PVP40 (0.3, 0.6, 1.3 and 3.1 pg/mL) for 3, 6 and 24 hours at 37°C in a humidified 5% CO, environment.
MDM cultured in complete culture media without NP exposure (0) were used as unexposed controls. Cell viability (panels a, b and ¢) and cytotoxicity
proportional to LDH leakage (panels d, e and f) were measured by MTS and LDH assays, respectively. Percentages of viable cells were calculated as ratios
of ODs of NP-exposed MDM (after the subtraction of background) to the ODs of unexposed MDM (after background subtraction) x 100. Toxicity was defined
as percent (%) LDH leakage from cells calculated from the ratios of ODs of NP-exposed MDM (after background subtraction) to the ODs of unexposed MDM
(after background subtraction) x 100. Each data point represents the mean + SD from three independent experiments. Statistical significance relative to
unexposed control MDM are shown as * (p<0.05) or ** (p<0.01). Horizontal dashed lines represent the level of viable cells (a, b, and ¢) or LDH (d, e, and f)
leakage in unexposed MDMs.

doi:10.1371/journal.pone.0143077.9003

first exposed to AgNP at concentrations of 0, 1, 10 and 25 pg/mL for 4 hours, a time period
during which no significant AgNP-mediated cytotoxicity on MDM had been observed (see sec-
tion on cytotoxic effects above). The abundance of mRNAs encoding IL1B (Fig 4A) and TNFA
(Fig 4C) changed moderately and significantly (p<0.05) at the 25 pg/mL concentration only.
Interestingly, a dose-dependent increase in the expression of mRNA encoding IL8 (Fig 4B) was
observed with increasing concentrations of all four AgNP types. In contrast, the abundance of
mRNA encoding IL10 (Fig 4D) was reduced in the presence of AgNP relative to unexposed
MDM. Taken together, these data indicate that inflammatory cytokine responses were
increased in the presence of AgNP in a concentration-dependent manner.
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Fig 4. Effect of AGNP on cytokine mRNA expression by MDM in the absence and presence of M.tb.
MDM from four healthy human blood donors were exposed to 0, 1, 10 and 25 pg/mL of Ag20-citrate,
Ag20-PVP, Ag110-citrate, Ag110-PVP and 1.7 pg/mL PVP10 and 3.1 ug/mL PVP40 in the absence (a, b, ¢ and
d) or presence (e, f, g, and h) of M.tb (MOI 10) for 4 hours at 37°C in a humidified 5% CO, environment.
Following incubation, RNA was extracted and the abundance of mRNA encoding IL1B, IL8, TNFA and IL10
examined by gRT-PCR using gene-specific primer sets as described [28]. For primer sequences see Materials
and Methods. Results are shown as fold-changes relative to controls (MDM in culture media without AQNP

(0 pg/mL) in a-h. In panels e-h, 0 pg/mL data points represent MDM exposed to M.tb MOI 10 in absence of
AgNP. Each data point (Y-axis) represents mean fold-changes + SD from four independent experiments.
Statistically significant changes relative to unexposed MDM are marked by * (p < 0.05) or ** (p <0.01).

doi:10.1371/journal.pone.0143077.g004
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Next, MDM were exposed to AgNP and simultaneously infected with M.tb. Expression of
mRNAs encoding IL1B, TNFA and IL10 was significantly (p<0.05) reduced in AgNP-exposed
and M.tb infected MDM compared to unexposed MDM infected with M.tb only (0 pug/mL
AgNP) (Fig 4E, 4G and 4H). No statistically significant effects on mRNA encoding IL8 were
observed in MDM exposed to any of the four AgNP types and infected with M.tb relative to
MDM infected with M.tb alone (Fig 4F). It is worth noting that AgNP-induced inhibitory
effects on IL10 mRNA expression in the presence of M.tb were observed starting at lower doses
with Ag20 (p <0.05, 1 pg/mL) than with Ag110 (p <0.05, 10 pg/mL) (Fig 4H). Exposure of
MDM to M.tb and the stabilizers PVP10 or PVP40 (in equivalent amounts present in 25 ug/
mL of Ag20-PVP and Agl110-PVP), respectively had no significant effects on the expression of
IL1B, and TNFA (compare with 0 ug/mL AgNP, Fig 4E and 4G), indicating that the observed
AgNP-induced suppressive effects on M.tb-induced IL1B and TNFA mRNA expression were
specific to AgNP and not to interferences of the NP stabilizers with the cytokine mRNA expres-
sion in MDM.

To examine whether changes detected at the level of mRNA were also reflected at the pro-
tein level, we focused on IL-1B, a cytokine critical for host resistance to M.tb [30,43,44]. Assess-
ment of IL-1p expression in MDM exposed to Ag20-citrate and infected with M.tb for 6 and 8
hours by ELISA revealed that the expression of IL-1f protein was inhibited in the presence of
Ag20-citrate in a concentration-dependent manner (Fig 5A) while exposure to carbon black
particles (chemically inert control particles in the size range of the Ag20 NP) had no statisti-
cally significant effects on M.tb-induced IL-1f production (Fig 5B). No cytotoxic effects (as per
MTS assay) were observed after 8-hour exposures to AgNP or CB (data not shown). Taken
together, these data indicate first that M.tb-induced inflammatory cytokine responses are
inhibited by AgNP in a concentration-dependent manner and second that suppression of the
M.tb-induced proinflammatory cytokine response is specific to AgNP, as carbon black particles
failed to inhibit M.tb-induced IL-1p production.

(a) meh (b)

Ag20-citrate 8h Carbon Black
' Kk |
100 - *¥ 200 No statistical significance
— 80
g - E 60 -
E 60 -| g
é: 40 | gl- 40
= 20 - = 504
0 - o0 -

cBlug/my]  *°

Fig 5. Effect of AGNP and CB on IL-18 production. After differentiation for 7 days, MDM were harvested, counted, and plated at concentrations of 0.7—1 x
10° cells per well into 96-well plates. The next day, MDM were incubated with 0, 1 and 10 pg/mL of Ag20-citrate (a) or CB (b) in the presence of M.tb at MOI
10 at 37°C and 5% CO, in a humidified environment. MDM cultured in complete media served as negative control. Culture supernatants were collected at 6
and 8 hours and analyzed by IL-18 ELISA as described in Materials and Methods. Each data point (Y-axis) represents pg/mL of IL-18 + SD from three
independent experiments. Statistically significant changes relative to M.tb-exposed MDM (0 on X-axes) were determined by two-tailed unpaired t-test and
marked by ** (p < 0.01) or *** (p <0.001).

doi:10.1371/journal.pone.0143077.9005

1
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Contribution of Ag™* ions to the AgNP-mediated suppression of host
immune responses to M.tb

To determine whether Ag” ions, released as a result of dissolution of AgNP, contribute to
AgNP-mediated effects, MDM were exposed to AgNO; corresponding to 0.125, 0.25 and

0.5 pg/mL of Ag” ions in the absence or presence of M.th. As shown in Fig 2, 1.25 and 2.5% Ag
are released at 6 hours at pH 7 and pH 5, respectively, from 10 pg of Ag20-citrate, which shows
the highest rate of dissolution compared to all other AgNP tested in this study. Culture super-
natants from MDM collected at 4, 6 and 8 hours were assayed for IL-1 production. Exposure
of MDM did not inhibit M.tb-induced expression of IL-1p in presence of 1.25 or 2.5% Ag" (Fig
6). A consistent decrease in IL-1P expression, although not statistically significant with the
exception of the 4-hour time point, was observed at the 5% level of Ag", which reflects a greater
amount of dissolved Ag" than that actually found from Ag20-citrate during a 72-hour period
(Fig 2). Thus, the AgNP-mediated suppressive effect on M.tb-induced IL-1f expression is
unlikely to be due to the presence of Ag" ions.

Effect of AGNP on the viability of M.tb

As live M.tb induces greater host immune responses in MDM than heat-killed M.tb [45-47],
we examined whether the observed AgNP dose-dependent suppression of M.tb-induced host
responses (Figs 4 and 5) could be related to a direct mycobactericidal effect of AgNP. Because
AgNP are known to exhibit antibacterial properties we assessed AgNP effects on M.tb growth
in CFU assays. M.tb growth was reduced by 10-20% only upon 24-hour exposure of M.tb to
any of the AgNP at the 10 pg/mL concentration (Fig 7) at which AgNP-mediated suppression
of M.tb-induced mRNA and protein expression were observed (Figs 4 and 5). As our AgNP
suppression studies were done at 4-hr time points, these data strongly indicate that the

Hno M.tb

IL-1p [pg/mL)
g

o 8 8 8 8

7AM.tb

% Ag+ ion released from 10 pug AgNP

Fig 6. Effect of Ag* ions on M.tb-induced IL-1B expression. MDM were exposed to AGNO3 corresponding
to 0.125, 0.25 and 0.5 ug/mL of Ag* ions in the absence or presence of M.tb at MOI 10. Culture supernatants
collected at 4, 6 and 8 hours after infection with M.tb + Ag* ion exposures were assessed for IL-13
production. Results are expressed as means + SD from four independent experiments. Statistically
significant changes relative to M.tb-exposed MDM (0 on X-axes) were determined by two-tailed unpaired t-
test and marked by ** (p < 0.01).

doi:10.1371/journal.pone.0143077.g006

PLOS ONE | DOI:10.1371/journal.pone.0143077 November 18,2015 13/28



el e
@ ) PLOS ‘ ONE AgNP Exposure and Innate Immunity

--¢-- Ag20-cit
--o- Ag20-PVP
120 - --&-- Ag110-cit
100 - —<— Ag110-PVP
--m- AgNO3
80 ey .o ____
- | g“"‘:;-- ~~~~~~~~~~ J
oD 604 N R T i
o ‘\\ sssss :::::-~-\ %
) 40 . Sl
< \ ‘
> 20-
0 I A
10 T 25
-20 - Conc. (ng/mL)

Fig 7. Effect of AgNP on the viability of M.tb. Ten ul of M.tb stock suspension (107 CFU/mL) was diluted to
1 mL with cell culture media (RPMI1640 + 10% PHS, reflecting the environment in which AgNP and M.tb
interacted with the MDM in vitro) and incubated at 37°C on a rotating shaker in the presence of 0, 10 and

25 pg/mL of AgNP and 15.7 and 39.25 pg/mL of AgNOs. The amounts of AgNO; corresponded to the amount
of Ag* ions present in 10 and 25 pg/mL of AgNP, respectively. M.tb culture samples (10 pL) were removed at
24 hours, diluted 10-fold by serial dilution, plated in triplicate onto 7H10 agar plates and incubated for 21 days
at 37°C. CFU were determined as described in the Materials and Methods and plotted as a function of AQNP
or Ag* ion concentration. Mean values from two independent experiments + SD are shown.

doi:10.1371/journal.pone.0143077.g007

observed AgNP-mediated suppression of M.tb-induced MDM responses resulted from inter-
ferences of AgNP with M.tb-induced host cell signaling pathways and not from direct myco-
bacteriocidal effects of the AgNP. AgNOj; used as a positive control for M.tb killing (see
Material and Methods) completely abrogated M.tb growth.

Effect of AGNP on the internalization of M.tb in MDM

To rule out the possibility that AgNP-mediated inhibition of M.tb-induced immune responses
resulted from a reduced infection efficiency (internalization) of M.tb in MDM in the presence
of AgNP, we compared the number of MDM that internalized M.tb in the absence or presence
of 10ug/mL Ag20-citrate or Agl10-citrate. No statistically significant effect of AgNP was
observed in the proportions of MDM that had internalized M.tb at 2 and 4 hours (Fig 8A and
8B) compared to AgNP-unexposed MDM infected with M.tb only. In addition, no significant
difference was observed in CFU numbers from lysed MDM that had been infected with M.tb in
the absence or presence of Ag20-citrate or Agl10-citrate (Fig 8C). Taken together, these results
indicate that the observed suppression of M.tb-induced responses in presence of AgNP (Figs 4
and 5) is not due to an AgNP-mediated reduction in the M.tb uptake by MDM.

Interactions of AgNP with M.tb-induced TLR signaling pathways

To examine whether AgNP exposure interferes with M.tb-induced activation of TLR signaling
pathways in MDM, RNAs from MDM exposed to Ag20-citrate (10 pg/mL), Agl10-citrate
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internalized M.tb in MDM, MDM infected with M.tb (MOI 1) alone, MDM infected with M.tb and exposed to
Ag20-citrate (10 pg/mL) and MDM infected with M.tb and exposed to Ag110-citrate (10 ug/mL) were lysed
following a 4-hour incubation. MDM lysates were then plated onto agar plates and CFU determined as
described in Materials and Methods. Panel ¢ shows the mean number of CFU * standard deviation from three
independent experiments.

doi:10.1371/journal.pone.0143077.g008

(10 pg/mL) in the absence and presence of M.tb, and M.tb alone (0 ug/mL AgNP) were com-
pared with those from uninfected MDM using a human TLR signaling pathway specific RT*
profiler array as described previously [28]. Expression profiles of 84 genes (examined by the
TLR signaling pathway array) were assessed across 30 MDM samples from five study subjects
clustered in four exposure groups: unexposed, AgNP-exposed, M.tb-infected and AgNP-
exposed + M.tb-infected (Fig 9A). The exposure of MDM to Ag20-citrate and Agl10-citrate
induced the expression of several genes related to TLR-mediated signal transduction pathways
including IL8, IL6, IL1A and IFNBI mRNA, which are NF-«B target genes (Fig 9B). Interest-
ingly, HSPA1A mRNA encoding the stress-inducible Hsp72 was greatly increased (p<0.05) in
MDM exposed to both Ag20-citrate (140-fold) and Agl10-citrate (70-fold) relative to unex-
posed MDM (0-line) (Fig 9B).

Infection of MDM with M.tb altered the expression of 33 mRNAs (out of 84 genes examined
by the TLR signaling pathway array) as defined by > 2-fold increases or decreases (p < 0.05)
relative to uninfected MDM (Fig 9C and 9D). These 33 mRNAs included TLRs and TLR-inter-
acting effectors (IRAK2, TLR3, TLR4, TLR8, and TLR5) and downstream targets of the TLR sig-
naling pathway (CSF2, CSF3, IL6, IL1A, IL1B, PTGS2, TNFA, IL8, IFNG, IL12A, NFKBA1,
NFKBI, NFKB2, IFNA, LTA, REL, IRF1, MAPK4K4, MAP2K3, TNFRSFA1I), as well as key
mediators of the TLR signaling pathway including adaptors and proteins that interact with
TLRs (HSPA1A, SARM1, BTKI). M.tb also altered the expression of CD80, RIPK2 and CD180,
which are involved in the regulation of adaptive immunity (Fig 9C and 9D). Exposure of M.tb-
infected MDM to Ag20-citrate or Ag110-citrate inhibited (p<0.05) the expression of several of
the M.tb-induced mRNAs including CSF2, CSF3, IL6, IL1A, IL1B, TNFA and IFNG (Fig 9B and
9C). Effects of Ag20-citrate and Agl10-citrate on M.tb-induced mRNA expression are com-
pared and mean fold-changes (> 2-fold) and related p-values are summarized in Table 2.
Genes induced by the activation of the NF-kB pathway by M.tb are shown in Table 2(marked
by asterisks). Clearly, MDM exposure to Ag20-citrate reduced M.tb-induced gene expression
to a greater extent (p<0.05) than MDM exposure to Agl10-citrate (Fig 10) further indicating
that smaller-sized AgNP conferred greater immunomodulatory effects than larger ones.

AgNP-induced Hsp72 expression—inverse correlation with IL-13
expression in MDM

Results of the PCR array assessments (Fig 9) were validated by qRT-PCR and flow cytometry
(Fig 11). ILIB mRNA expression was shown to be suppressed by AgNP (Fig 9A) while AgNP
induced the expression of HSPA1 mRNA which encodes for Hsp72 (Fig 11B). Interestingly,
the expression of IL1B mRNA was inversely correlated with that of HSPAI (compare Fig 11A
and 11B). Increases in HSPAI mRNA expression corresponded to increases in Hsp72 protein
production in MDM exposed to AgNP (Fig 11C). MDM exposed to heat shock are shown as a
positive control (Fig 11D).

Discussion

Innate host resistance plays a crucial role in controlling the initial M.tb infection and shaping
its clinical outcome. Here we demonstrate, for the first time that the exposure of MDM to
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Fig 9. Comparison of AgNP-induced TLR signaling pathway-specific gene expression in MDM in the absence and presence of M.tb. MDM from five
donors were exposed to Ag20-citrate + M.tb, Ag110-citrate + M.tb, M.tb, or left unexposed for 4 hours at 37°C in a humidified 5% CO, environment followed
by RNA extraction. The final concentration of AQNP was 10 pg/mL and M.tb was used at a MOI 10. RNA was analyzed by TLR pathway specific RT? profiler
arrays (Cat. No. PAHS 018E, Qiagen Sciences, MD) [28]. Levels of cDNA were calculated with the relative quantitation method (AAC; method) from the PCR
array data using analysis software accessed from http://sabiosciences.com/pcrarraydataanalysis.php. Statistical differences in fold-mRNA expression levels
between AgNP-exposed and unexposed and uninfected cells were calculated using the same software. (a) Non-supervised clustering of the entire dataset
showing the overall pattern of expression of 84 genes across 30 MDM samples from five human subjects with each row and column representing a gene and
samples, respectively. A dendrogram including all 30 samples are shown. (b) Mean fold-changes (> 2-fold) of MRNA from MDM exposed to 10 pg/mL of
Ag20-citrate or Ag110-citrate relative to unexposed MDM are shown. Statistically significant changes (p < 0.05) relative to AGNP-unexposed MDM are
marked by an asterisk (*). (c) and (d) M.tb-induced alteration of mMRNA expression with mean fold-changes >2-fold and p<0.05 relative to uninfected MDM
were compared with that from MDM treated with M.tb + Ag20-citrate or M.tb + Ag110-citrate. Panel ¢ shows mRNA fold-changes induced by M.tb alone that
are > 100-fold and panel d shows mRNA fold-changes induced by M.tb alone that are < 100-fold. Statistically significant changes (o < 0.05) relative to M.tb-
induced expression are marked by an asterisk (*).

doi:10.1371/journal.pone.0143077.g009

AgNP inhibits M.tb-induced expression of ILIB, TNFA, and IL10 mRNA, cytokines of critical
importance in antimicrobial immunity. Such AgNP-mediated alterations of M.tb-induced host
immune responses, may potentially attenuate protective immunity against M.tb and increase
risks to public health. Inhibition of cytokine mRNA expression was confirmed in assessments
of M.tb-induced IL-1f protein expression, which, like the expression of IL-13 mRNA, was sup-
pressed by AgNP. Combined, these observations are reminiscent of earlier studies from our lab
showing DEP-mediated suppression of immune responses to M.tb in human PBMC [28]. Sup-
pression of IL1B, TNFA, and IL10 expression appeared to be specific to AgNP exposure since
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Table 2. Modulation of M.tb-induced TLR pathway activation by AgNP.

Gene symbol Ag20 + M.tb Ag110 + M.tb

Fold-change p-value Fold-change p-value
FOS 13 0.008958 11 0.056398
HSPA1A 47 0.000001 52 0.00033
JUN 4 0.000199 4 0.010921
CD180 3 0.000329 - -
TLR10 4 0.002096 3 0.061568
TLR9 6 0.010852 3 0.124455
IFNB1 - - 3 0.229726
CD80 -4 0.001071 -3 0.00722
CHUK -5 0.365355 - -
CLEC4E -5 0.001016 - -
CSF2* -30 0.013778 -7 0.021065
CSF3* -31 0.016669 -5 0.041353
CXCL10 -3 0.072188 - -
FADD -3 0.002378 - -
IFNG* -6 0.003102 -2 0.0245
IL10%* -27 0.000721 -17 0.000856
ILTA* -16 0.013459 -10 0.015569
IL1B* -6 0.004802 -3 0.01435
IL6* -7 0.013154 -3 0.01926
IRAK2 -12 0.020478 -2 0.080313
IRF1 -2 0.014488 - -
MAP3K7 -9 0.3465 -7 0.346541
NFKBT1* -2 0.074226 - -
NFKBIA* -5 0.000742 -2 0.003095
PTGS2 -3 0.01948 - -
TIRAP -2 0.009272 - -
TNF* -5 0.023304 -3 0.041209

The abundance of TLR pathway-specific mMRNAs was compared in MDM exposed to Ag20-citrate + M.tb or Ag110-citrate + M.tb with that from MDM
infected with M.tb only. Mean fold-changes of mMRNA > 2-fold and p-values relative to MDM infected with M.tb only are shown. The NF-kB target genes
are marked by an asterisk (*). The p-values are calculated based on a Student’s t-test of the replicate 2/(- Delta Ct) values for each gene in the M.tb-
infected and each of the M.tb + AgNP-exposed groups.

doi:10.1371/journal.pone.0143077.1002

carbon black, an inert nanoparticle of similar size, did not inhibit M.tb-induced IL-1p protein
expression (compare Fig 5A and 5B).

In early stages of M.tb infection, interactions between macrophages and M.tb leading to
induction of proinflammatory cytokines are crucial, not only as components of protective
innate host immunity, but also in inducing subsequent adaptive immunity [48]. Proinflamma-
tory IL-1B and TNF-o. production are instrumental in containing M.tb infection in granulo-
mas, and in preventing dissemination of M.tb. M.tb-induced IL-1, which functions in an
autocrine fashion in human macrophages, is also pivotal in limiting intracellular M.tb growth
by increasing TNF signaling and through subsequent upregulation of caspase-3 [30,44,49].
Furthermore, acute susceptibility to M.tb observed in mice deficient in either IL-1f or IL-1R
indicates the importance of IL-1 signaling in protective immunity to M.tb [50]. Therefore, the
observed AgNP-mediated suppression of the production of M.tb-induced proinflammatory
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Fig 10. Comparison of Ag20 and Ag110 exposure effects on M.tb-induced gene expression. Scatter plots comparing the normalized expression of
genes from M.tb infected MDM against that from MDM exposed to Ag20-citrate + M.tb (a) and Ag110-citrate + M.tb (b) are shown. The central lines
represent unchanged gene expression. Upregulated and downregulated genes are indicated in red and green colors, respectively.

doi:10.1371/journal.pone.0143077.g010

cytokines including IL-1f (Figs 4 and 5) may lead to deregulation of efficient host immune
responses to M.tb. Our data indicate that the suppression of M.tb-induced cytokine expression
is neither due to microbicidal effects of AgNP (Fig 7) nor to a reduced uptake of M.th in MDM
in presence of AgNP (Fig 8).

Innate antimycobacterial host immunity is conferred to a large extent by activation of
TLR2, TLR4 and TLRY [51,52] through binding of M.tb-derived ligands such as lipoarabino-
mannan (LAM) and mycobacterial 19 kDa protein [53], M.tb heat shock proteins 65 and 71
[54], and mycobacterial DNA [55], respectively. TLR engagement on monocytes, alveolar mac-
rophages, and dendritic cells [56] leads to the activation of mitogen-activated protein (MAP)
kinases, transcription factors NF-xB and the interferon regulatory factor (IRF) family [57] and
subsequent release of proinflammatory cytokines and chemokines [21,56,58]. Here we show
that AgNP attenuate the NF-kB pathway as indicated by the down regulation of NF-«B target
genes CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA, and NFKBIA, and subsequently inhibit
M.tb-induced proinflammatory responses (Fig 9C and 9D). Thus, the suppression of M.tb-
induced proinflammatory cytokine production may in part be a consequence of AgNP-medi-
ated inhibition of M.tb-induced activation of TLR pathways.

We also observed a robust upregulation of HSPAIA mRNA encoding Hsp72 in MDM
exposed to both Ag20-citrate and Agl10-citrate (Figs 9B and 11). This observation is consistent
with reports showing induction of Hsp72 by AgNP both in Drosophila melanogaster [59] and
the human alveolar type II epithelial cell line A549 [42]. Interestingly, the reported induction
of Hsp72 in A549 cells appears to be specific to AgNP as exposure to TiO, NP [60] did not
induce Hsp72 expression. AgNP specificity of this effect is further supported by our findings
that neither carbon black particles nor DEP induce the expression of Hsp72 in MDM (data not
shown) or PBMC [28], respectively.

A correlation between ROS induction and expression of Hsp72 by AgNP in Drosophila has
been reported [59]. The immunomodulatory effects of Hsp72 vary depending on its cellular
localization. Extracellular Hsp72 has been reported to be immunostimulatory and
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Fig 11. Validation of Hsp72 expression induced by AgNP in MDM. RNA from the samples used for TLR
arrays (Fig 7) was used to validate array results by gqRT-PCR using primers corresponding to /L 7B (a) and
HSPAT (b) (see Materials and Methods). Each data point (Y-axis) represents mean fold-changes + SD from
MDM of 5 independent subjects. Statistically significant changes relative to unexposed MDM are marked by
* (p <0.05) or *** (p <0.001). Unexposed (blue line) and Ag20-citrate exposed (10 pg/mL for 4 hours at 37°C
at 5% CO, in a humidified environment, red line) MDM were stained with anti-Hsp72 Ab or control IgG (grey
line) (c). Data shown in (c) are representative of the FACS profile from one experiment, which was repeated
twice using MDM from a total of three different donors. MDM exposed to 42°C heat shock for 1h followed by
incubation at 37°C for 3h stained with anti-Hsp72 Ab served as a positive control (d). Blue and red lines
represent the unexposed and heat shocked anti-Hsp72-stained MDM. Unexposed MDM stained with
Isotype-matched IgG Ab are shown by gray lines in (¢) and (d), representative of two independent
experiments).

doi:10.1371/journal.pone.0143077.g011

proinflammatory in mammalian cells [61] including human PBMC, monocytes and macro-
phages [62,63] while intracellular Hsp72 is reported to be immunosuppressive [64]. However,
the immunostimulatory effects of extracellular Hsp72 have been attributed to contaminating
LPS in the Hsp72 preparation in a recent study [65]. Intracellular Hsp72 exerts anti-inflamma-
tory effects by inhibiting the MAPK and NF-kB pathway [66] and blocking NF-«xB-binding to
the target genes leading to their activation and consequently the production of proinflamma-
tory cytokines.

We noted an inverse correlation between IL1B and HSPAI mRNA expression in AgNP-
exposed MDM that were infected with M.tb (Fig 11), which suggests that upregulation of
Hsp72 mRNA (Fig 11B) and protein expression (Fig 11C) may interfere with or suppress IL1B
expression.

A plausible mechanism by which upregulation of Hsp72 may potentially block the expres-
sion of proinflammatory cytokines in response to external stimuli (M.tb) could be the inhibi-
tion of the cytoplasmic translocation of High-Mobility-Group-Box 1 (HMGB1), an ubiquitous
non-histone nuclear protein. Overexpression of intracellular Hsp72 has been shown to strongly
inhibit LPS and TNF-a-induced cytoplasmic translocation and subsequent release of HMGB1
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to the promoter of HSPA1A. Intracellular Hsp72 potentially suppresses the cytoplasmic transport and secretion of HMGB1 proteins as well as the activation
of MAPK and NF-kB pathways [66] leading to the suppression of M.tb-induced cytokine expression in presence of AQNP. Hsp72 can be secreted and bind to
TLR4 and activate MAPK and NF-kB pathways [88]. Red dots represent phosphorylation of HSF-1 and IkB proteins. The potential inhibitory effects of Hsp72
are shown with red solid lines. Signaling pathways that are reported to be induced by specific ligand receptor interactions and the more hypothetical
pathways are shown with solid and dashed lines, respectively.

doi:10.1371/journal.pone.0143077.9012

that has been implicated in many inflammatory diseases [66,67]. Secretion of HMGB1 has
been observed in M.tb-infected murine bone marrow-derived macrophages (BMDM) and
bronchoalveolar cells of M.tb-infected guinea pigs. Moreover, incubation with anti-HMGB1
antibodies decreases M.tb-induced IL-1f and TNF-o production in BMDM [45] indicating the
importance of HMGBI in promoting M.tb-induced inflammatory responses. HMGB1 binds to
TLR2, TLR4, TLRY and receptor for advanced glycation end-products (RAGE) leading to the
activation of downstream signaling cascades involving p38 mitogen-activated protein kinase
(MAPK), c-Jun NH(2)-terminal kinase (JNK) and NF-«B implicated in the activation of NF-
kB pathway in rodent and human cells [68-72]. Recently, HMGB1 was used as an adjuvant for
M.tb protein ESAT6 in the design of an anti-tuberculous vaccine candidate, which induced
potent cell-mediated immunity against subsequent M.tb challenges [73]. Taken together, we
speculate (Fig 12) that AgNP suppress M.tb-induced host immune responses by blocking the
NEF-«B pathway via upregulation of Hsp72 and subsequent suppression of HMGB1 production
in M.tb-infected macrophages. In addition to transcriptional activation through TLR-mediated
pathways, other pathways such as M.tb-induced caspase-1 dependent inflammasome activa-
tion [47,74] as well as both TLR and caspase-1 independent mechanisms [44] are shown to be
important for IL-1B production. Our schematic model involving Hsp72 (Fig 12) is speculative
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and requires future confirmation. Nevertheless, it resolves the apparent contradiction that
AgNP alone induce the expression of IL-1f (at least at the mRNA level at 25 pug/mL dose, Fig
4) while inhibiting the M.tb-induced expression of both IL-18 mRNA and protein. Exposure of
MDM to AgNP induces expression of IL1B as well as Hsp72, which is shown to inhibit NF-xB
activation. Thus, during simultaneous exposure to AgNP and infection with M.tb of MDM,
AgNP-induced Hsp72 may potentially inhibit M.tb-mediated NF-xB activation. More research
is needed to provide further insight into the mechanisms of AgNP-mediated suppression of
antibacterial innate immunity.

Size, charge, and surface modifications of metallic NP have been shown to affect their cyto-
toxicity [14,75-77] and toxicity of AgNP has been reported in in vitro studies [41,78,79]. How-
ever, the relative contribution of Ag" ions released from AgNP or the particulate nature of the
AgNP to cytotoxicity is not clear. Our data show that all AgNP studied here (Ag20-citrate,
Ag20-PVP, Agl10-citrate, and Ag110-PVP) reduce the viability of primary human MDM
(80% reduction over a 24-hour exposure period, Fig 3) compared to unexposed MDM or
MDM exposed to PVP only, even at the lowest concentration (5 pg/mL) examined. It is note-
worthy that the AgNP-mediated suppression of M.tb-induced immune responses observed in
our study occurred during 4-hour exposure periods during which AgNP toxicity was not
detected. In contrast to reports indicating that smaller AgNP (15-30 nm) are more toxic than
larger AgNP (55 nm) [4,41,80] in murine and human cell lines, we observed no significant dif-
ferences in cytotoxicity between Ag20 and Agl10 at any of the concentrations examined.
Studying the same AgNP used in our study (from NCNHIR), Wang et al. reported that
Ag20-citrate and Ag20-PVP were more cytotoxic than Agl10-citrate and Ag110-PVP in
BEAS-2B and RAW cell lines [14]. Wang et al. also demonstrated greater Ag" ion release from
Ag20 (>5%) than from Ag110 in water corresponding to higher toxicity of the smaller parti-
cles. In contrast, we observed a maximal 2% Ag" ion release from Ag20-citrate and negligible
levels from Ag20-PVP, Agl10-citrate and Agl10-PVP when incubated for 24 hours at pH7
(Fig 2). It is of note that in order to avoid an overestimation of the amount of Ag" ions released
into solution, we centrifuged and filtered AgNP through a 2kDa membrane, to ensure that the
Ag" ions were separated from the AgNP (Materials and Methods).

Discrepancies between earlier published work and our current study findings, regardin-
gAgNP size and coating effects on AgNP-mediated cytotoxicity, may be due to differential sus-
ceptibility of cultured cell lines vs. primary cells, such as the MDM used here. In MDM even
the lowest concentration of AgNP (5 ug/mL) may have masked the differences in toxicity
between AgNP with different size and surface coating. Interestingly, in contrast to AgNP, cyto-
toxicity of TiO, NP in THP-1 cells is proportional to its particle size with the smallest size
being the least toxic [41]. Thus, size, stability and chemical composition of NP have to be taken
into account in the evaluation of NP cytotoxicity [81,82].

ROS production due to oxidative stress, results in cellular toxicity upon NP exposure [83]
and has been proposed to be a direct or indirect cause of AgNP-induced cytotoxicity [41,79].
Nonetheless, in a study involving five different types of NP in hematopoietic and cancer cell
lines, Diaz et al. did not observe any direct correlation between cytotoxicity and ROS produc-
tion and concluded that the cytotoxicity of NP depends on the cell types in which it is studied
[84]. Indeed, in addition to AgNP-induced ROS production, other mechanisms such as p38
activation, DNA damage, cell cycle arrest and apoptosis have been shown to be underlying
causes of AgNP-mediated cellular toxicity [85,86].

It has been shown recently that 20 nm Ag shell on gold core particles, such as those used in
this study, have a higher solubility than 20 nm pure Ag particles. Since biological properties
depend on NP and the Ag" ions dissolved from them, pure Ag and Ag shell on gold core parti-
cles may differ in their biological properties [87].

PLOS ONE | DOI:10.1371/journal.pone.0143077 November 18,2015 22/28



@’PLOS ‘ ONE

AgNP Exposure and Innate Immunity

In summary, the current study demonstrates that AgNP exposure can potentially impair M.
tb-induced activation of TLR signaling in MDM as suggested by the suppression of target gene
expression downstream of TLR pathway. Hsp72-mediated inhibition of the activation of NF-
kB pathway may have contributed to the observed suppression of the M.tb-induced host
response in presence of AgNP. Our findings clearly establish that AgNP exposure confers a
suppressive effect on M.tb-induced immune responses that in large part is due to the physico-
chemical properties of the AgNP not Ag” ions released from the NP.

This work was performed with avirulent M.tb laboratory strain H37Ra as it was not feasible
with virulent M.tb (which causes clinical TB) under BSL-3 safety work conditions at present.
Nonetheless, the current study addresses the less explored question whether AgNP exposure
affects host immune defenses against infectious pathogens with complex pathogenesis such as
that of M.tb.

The emergence of AgNP as one of the most commonly used NP in consumer products may
increase the risk of human exposures that have the capacity to significantly alter inflammatory
immune responses required for the abrogation of bacterial infections.
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