Supplementary Information for High-fidelity Carbon Dots

Polarity Probes: Revealing the Heterogeneity of Lipids in

3 Oncology

- 4 Jingyu Hu¹, Yuanqiang Sun¹, Xin Geng¹, Junli Wang¹, Yifei Guo¹, Lingbo Qu^{1,2}, Ke Zhang³ and
- 5 Zhaohui Li^{1,2,*}

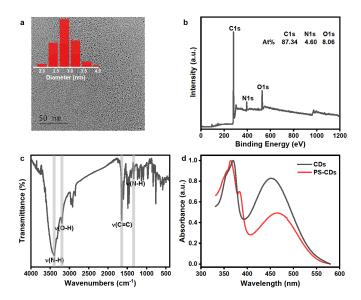
6

2

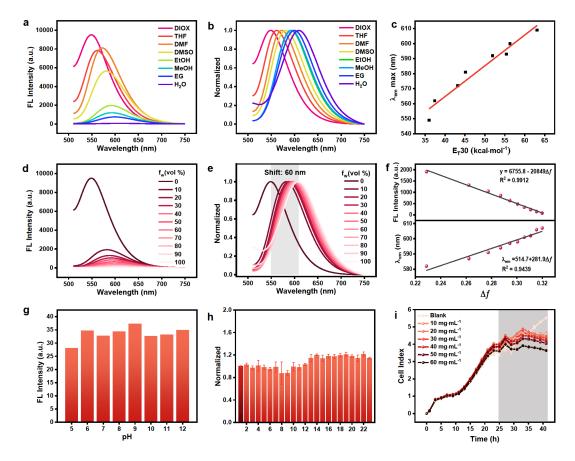
- 7 ¹College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key
- 8 Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University,
- 9 Zhengzhou, 450001, China.
- ²Institute of Chemical Biology and Clinical Application at the First Affiliate Hospital, Zhengzhou
- 11 University, Zhengzhou, 450001, China.
- ³Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115,
- 13 USA.
- 14 *Corresponding author. Email: zhaohui.li@zzu.edu.cn

S1 Materials and Methods

16 *Materials*:


15

- 2-Nitro-4-aminodiphenylamine, 2-Formylphenylboronic acid pinacol ester (2-
- 18 FAPE) were purchased from Energy Chemical. HCS LipidTOXTM Deep Red was
- 19 purchased from Thermo Fisher Scientific. Distilled water was used in all experiments.
- 20 All used chemicals are of analytical grade and don't need to be purified.
- 21 Apparatus:
- The FL spectra and UV-vis absorption were obtained from F-4600
- 23 spectrophotometer (Hitachi, Japan) and the TU-1810PC spectrophotometer (Beijing,
- 24 China). The Fourier Transform Infrared (FT-IR) spectrum was obtained from the
- 25 Bruker Tensor 27 FT-IR spectrophotometer (Bruker, Germany). The transmission
- 26 electron microscopic (TEM) image was collected from FEI-Tecnai G2 microscopy
- 27 (USA). And the X-ray photoelectron spectroscopy (XPS, Themo Germany) was used
- 28 to obtain the XPS spectrum. Cell images were obtained using the TCS-SP8 confocal
- 29 microscope (Leica, Germany). Cell viability was obtained by Agilent xCELLigence
- 30 RTCA DP System (Agilent, America).
- 31
- 32 *Endocytosis mechanism study:*
- 33 SMMC 7721 cells were cultured at 37 °C for 24 h and then, the cells were pre-treated
- with 37 °C (control group), 4 °C, and 10 mM NaN₃ for 2 h. After washing three times
- 35 with PBS solution, the cells were incubated with DMEM containing 50 μg·mL⁻¹ PS-
- 36 CDs for 6 min. Then fluorescent images were obtained by using SP-8X Leica laser
- scanning confocal microscope with the λ_{ex} as 476 nm, where the λ_{em} 485–525 nm.
- The endocytosis pathway of PS-CDs was studied by endocytosis inhibitors. Four
- 39 inhibitors were applied to block the endocytic pathway, including chlorpromazine
- 40 hydrochloride (CPZ), methyl-β-cyclodextrin (MβCD), Sulfobromophthalein (BSP),
- and amiloride (AMI). SMMC 7721 cells were pretreated at 37 °C with the cells culture
- 42 medium containing 5 μg·mL⁻¹ CPZ (2 h), 5 μg·mL⁻¹ MβCD (2 h), 250 μM BSP (10
- 43 min), and 10 μg·mL⁻¹ AMI (2 h), and then the cells were washed three times with PBS


- solution. The cells were incubated with DMEM containing 50 μg·mL⁻¹ PS-CDs for 6
- 45 min and fluorescent images were obtained by using SP-8X Leica laser scanning
- 46 confocal microscope with the λ_{ex} as 476 nm, where the λ_{em} is 485–525 nm.
- 47 *Co-localization experiments:*
- 48 SMMC 7721 cells were incubated with the commercial lipid droplets tracker HCS
- 49 LipidTOXTM Deep Red 637/655 (1:1000 dilution) at 37 °C for 30 min and then, the
- 50 cells were washed three times with PBS solution. Then the cells were incubated with
- 51 DMEM containing 50 µg·mL⁻¹ PS-CDs for 6 min and fluorescent images were obtained
- by using SP-8X Leica laser scanning confocal microscope with the λ_{ex} as 637 and 476
- 53 nm, where the λ_{em} is 645–665 and 485–525 nm.
- 54 SMMC 7721 cells were incubated with the commercial LysoTrackerTOXTM Deep
- Red 647/668 (50 nM) at 37 °C for 30 min and then, the cells were washed three times
- with PBS solution. Then the cells were incubated with DMEM containing 50 μg·mL⁻¹
- 57 PS-CDs for 6 min and fluorescent images were obtained by using SP-8X Leica laser
- scanning confocal microscope with the λ_{ex} as 647 and 476 nm, where the λ_{em} is 658 –
- 59 678 and 585 625 nm.
- SMMC 7721 cells were incubated with the commercial MitoTrackerTM Deep Red
- FM 644/665 (100 nM) at 37 °C for 30 min and then, the cells were washed three times
- with PBS solution. Then the cells were incubated with DMEM containing 50 μg·mL⁻¹
- 63 PS-CDs for 6 min and fluorescent images were obtained by using SP-8X Leica laser
- scanning confocal microscope with the λ_{ex} as 644 and 476 nm, where the λ_{em} is 655 –
- 65 675 and 585 625 nm.
- 66 SMMC 7721 cells were incubated with the commercial ER-TrackerTM Green
- 67 504/511 (1 μM) at 37 °C for 30 min and then, the cells were washed three times with
- PBS solution. Then the cells were incubated with DMEM containing 50 μg·mL⁻¹ PS-
- 69 CDs for 6 min and fluorescent images were obtained by using SP-8X Leica laser
- scanning confocal microscope with the λ_{ex} as 504 and 476 nm, where the λ_{em} is 510 –
- 71 530 and 585 625 nm.

SMMC 7721 cells were incubated with the commercial Hoechst 33342 (1:1000 dilution) at 37 °C for 30 min and then, the cells were washed three times with PBS solution. Then the cells were incubated with DMEM containing 50 μ g·mL⁻¹ PS-CDs for 6 min and fluorescent images were obtained by using SP-8X Leica laser scanning confocal microscope with the λ_{ex} as 405 and 476 nm, where the λ_{em} is 415 – 450 and 585 – 625 nm.

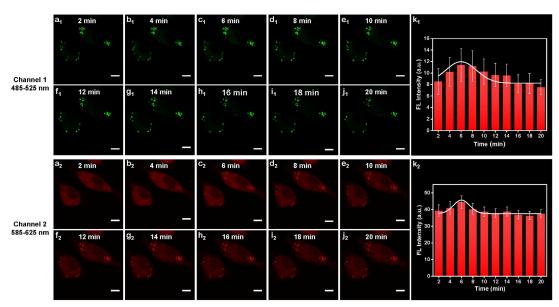
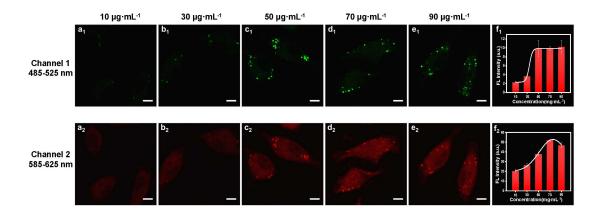
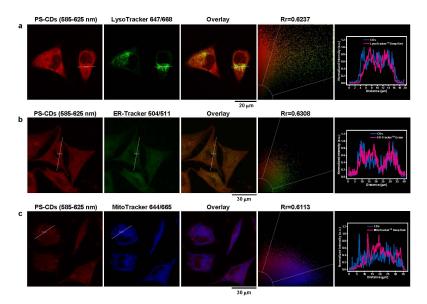
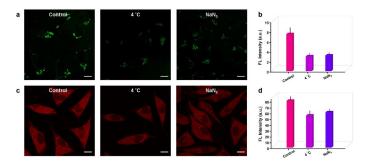
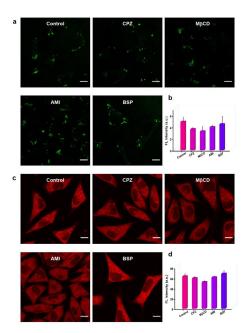

S2 Supplementary Figures

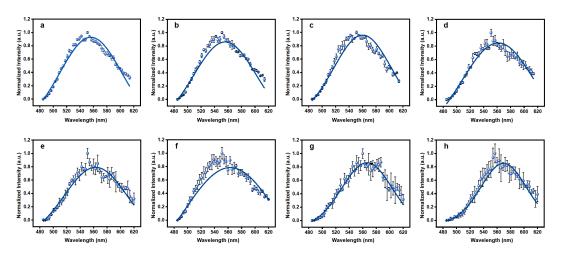
Figure S1. (a) TEM image of CDs and the size distribution. (b) XPS spectrum of CDs. (c) FT-IR spectra of CDs. (d) The UV-vis spectra of CDs and PS-CDs.

Figure S2. (a) Emission spectra of PS-CDs in different solvents. (b) Normalized emission spectra of PS-CDs in different solvents. (c) The linear relationship between the maximum emission wavelength and the solvent's polarity parameter E_T30 . (d) Emission spectra of PS-CDs in different 1,4-dioxane/H₂O ratios (0% – 100%). (e) Normalized emission spectra of PS-CDs in different DIOX/H₂O ratios (0% – 100%). (f) Linear relationship between the maximum emission fluorescence intensity, the maximum emission wavelength, and the solvent's Δf . (g) Fluorescence emission spectra of PS-CDs in various Britton-Robinson buffer solution at pH 5 – 12. (h) The fluorescence intensities of Bp-CDs to various analytes (1, PS-CDs 2, K⁺ 3, Ca²⁺ 4, Na⁺ 5, Mg²⁺ 6, Al³⁺ 7, Zn²⁺ 8, Fe²⁺ 9, Fe³⁺ 10, Cu²⁺ 11, Mn²⁺ 12, Ag⁺ 13, Ser 14, Asn 15, Val 16, Ile 17, His 18, Lys 19, Gln 20, Asp 21, Tyr 22, GSH 23, Cys in PBS (pH = 7.4), the final concentration of each analyte is 100 mM. (i) The cell index of SMMC 7721 in different concentration of PS-CDs at various time.

Figure S3. The cell imaging of 50 μg·mL⁻¹ PS-CDs for different times. (a₁) – (j₁) Confocal fluorescence imaging of SMMC 7721 cells treated with 50 μg·mL⁻¹ PS-CDs at different times. (λ_{ex} =476 nm, λ_{em} =485 – 525 nm). (k₁) The corresponding fluorescence intensities of 50 μg·mL⁻¹ PS-CDs with SMMC 7721 cells for different times. (a₂) – (j₂) Confocal fluorescence imaging of SMMC 7721 cells treated with 50 μg·mL⁻¹ PS-CDs at different times. (λ_{ex} =476 nm, λ_{em} =585 – 625 nm). (k₂) The corresponding fluorescence intensities of 50 μg·mL⁻¹ PS-CDs with SMMC 7721 cells for different times. Scale bar: 10 μm.


Figure S4. The cell imaging of PS-CDs with different concentrations. (a₁) – (e₁) Confocal fluorescence imaging of SMMC 7721 cells treated with different concentrations PS-CDs. (λ_{ex} =476 nm, λ_{em} =485 – 525 nm). (f₁) The corresponding fluorescence intensities of PS-CDs with SMMC 7721 cells for the different concentrations. (a₂) – (e₂) Confocal fluorescence imaging of SMMC 7721 cells treated with different concentrations PS-CDs. (λ_{ex} =476 nm, λ_{em} =585 – 625 nm). (f₂) The corresponding fluorescence intensities of PS-CDs with SMMC 7721 cells for the different concentrations. Scale bar: 10 μm.


Figure S5. Co-localization experiments. (a) Confocal images of SMMC 7721 cells stained with PS-CDs (50 μg·mL⁻¹) and LysoTracker Deep Red (50 nM), λ_{ex} (PS-CDs) =476 nm, λ_{ex} (LysoTracker) =647 nm, Scale bar: 20 μm. (b) Confocal images of SMMC 7721 cells stained with PS-CDs (50 μg·mL⁻¹) and ER-Tracker Green (1 μM), λ_{ex} (PS-CDs) =476 nm, λ_{ex} (ER-Tracker) =504 nm, Scale bar: 30 μm. (c) Confocal images of SMMC 7721 cells stained with PS-CDs (50 μg·mL⁻¹) and Mito Tracker Deep Red (100 nM), λ_{ex} (PS-CDs) =476 nm, λ_{ex} (Mito Tracker) =644 nm, Scale bar: 30 μm.

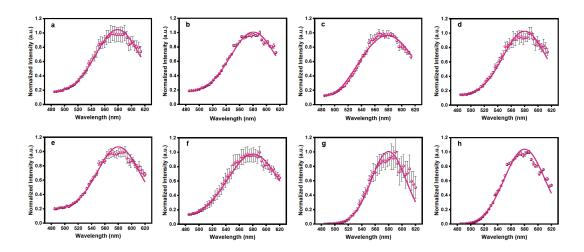

Figure S6. The cell imaging of PS-CDs under different conditions. (a) Confocal fluorescent images of living SMMC 7721 cells treated with 50 μg·mL⁻¹ PS-CDs at 37 °C, 4 °C, and NaN₃ for 2 h. λ_{ex} =476 nm, λ_{em} =485 – 525 nm. (b) The corresponding fluorescence intensities of (a). (c) Confocal fluorescent images of living SMMC 7721 cells treated with 50 μg·mL⁻¹ PS-CDs at 37 °C, 4 °C, and NaN₃ for 2 h. λ_{ex} =476 nm, λ_{em} =585 – 625 nm. (d) The corresponding fluorescence intensities of (c). Scale bar: 10 μm.

Figure S7 (a) Effects of endocytosis inhibitors (5 μg·mL⁻¹ CPZ, 5 μg·mL⁻¹ MβCD, and 10 μg·mL⁻¹ AMI for 2 h, 250 mM BSP for 10 min) with 50 μg·mL⁻¹ PS-CDs in SMMC 7721 cells were analyzed by confocal microscopy, respectively. λ_{ex} =476 nm, λ_{em} =485 – 525 nm. (b) The corresponding fluorescence intensities of (a). (c) Effects of endocytosis inhibitors (5 μg·mL⁻¹ CPZ, 5 μg·mL⁻¹ MβCD, and 10 μg·mL⁻¹ AMI for 2 h, 250 mM BSP for 10 min) with 50 μg·mL⁻¹ PS-CDs in SMMC 7721 cells were analyzed by confocal microscopy, respectively. λ_{ex} =476 nm, λ_{em} =585 – 625 nm. (d) The corresponding fluorescence intensities of (c). Scale bar: 10 μm.

Figure S8. *In situ* fluorescence emission spectrum of LDs in live SMMC 7721(a), Huh 7(b), HepG 2(c), HeLa(d), MCF 7(e), 4T1(f), HEK 293(g) and HL 7702(h) cells stained with PS-CDs. $\lambda_{ex} = 476$ nm.

Figure S9. *In situ* fluorescence emission spectrum of cytoplasm in live SMMC 7721(a), Huh 7(b), HepG 2(c), HeLa(d), MCF 7(e), 4T1(f), HEK 293(g) and HL 7702(h) cells stained with PS-CDs. $\lambda_{ex} = 476$ nm.