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Abstract: In rehabilitation, the Fugl–Meyer assessment (FMA) is a typical clinical instrument to
assess upper-extremity motor function of stroke patients, but it cannot measure fine changes of
motor function (both in recovery and deterioration) due to its limited sensitivity. This paper in-
troduces a sensor-based automated FMA system that addresses this limitation with a continuous
rating algorithm. The system consists of a depth sensor (Kinect V2) and an algorithm to rate the
continuous FM scale based on fuzzy inference. Using a binary logic based classification method
developed from a linguistic scoring guideline of FMA, we designed fuzzy input/output variables,
fuzzy rules, membership functions, and a defuzzification method for several representative FMA
tests. A pilot trial with nine stroke patients was performed to test the feasibility of the proposed
approach. The continuous FM scale from the proposed algorithm exhibited a high correlation with
the clinician rated scores and the results showed the possibility of more sensitive upper-extremity
motor function assessment.

Keywords: sensor-based motor function assessment; depth sensor; fuzzy inference system; sensitiv-
ity; rehabilitation

1. Introduction

In rehabilitation, upper-extremity motor function evaluation for stroke survivors is
important to plan effective rehabilitation intervention [1,2]. The most widely used in-
person assessment in clinics is the Fugl–Meyer assessment (FMA) due to its validity and
reliability [3–5]. Despite its popularity, FMA is (1) labor-intensive and time-consuming,
and (2) not sensitive enough to fine changes in motor function ability due to the coarse
three point grading scheme of the FM scale [4]. Although this grading scheme results in
high inter/intra-rater reliability, it also has lower sensitivity than other clinical instruments,
such as the medical research council muscle strength scale (six point scale) [4–6]. Many
clinical studies have reported this limitation, meaning that it is not possible to track fine
changes of a patient’s motor function using the FM scale [4,7–10].

Thanks to recent advances in sensor technologies, several works had reported an
automated FMA system to address labor-intensiveness and time consumption issues [11],
these, however, did not attempt to propose a more sensitive FM scale using the virtue of
sensor-based measurements to overcome the limitation on low sensitivity [12–18]. It might
be because most work to automate FMA showed inadequate accuracy even though the
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work focused on predicting the original three point FM scale. Another reason would be
that the machine learning methods used in the existing works for FMA are not appropriate
to handle this issue because (1) some of them (support vector machine [17,19] and Naive–
Bayes classification [20]) cannot be used for regression and (2) the others (extreme machine
learning [14], artificial neural network [15], and random forest [21,22]) require a large
amount of dimension-reduced training data for regression, which could not be collected
from numerous patients in practice.

A promising solution for a more sensitive FMA is to develop a continuous scoring
algorithm for sensor-based automated FMA. Meanwhile, from our first attempt to apply a
sensor-enabled body tracking to the FMA automation [17], we recently reported a sensor-
based automated FMA system with a rule-based expert with binary logics originated from
the linguistic grading guideline of FMA, which is different to the machine learning methods
used in the other existing works [13]. Importantly, the binary logic was verified by high
grading accuracy with the original FM scale [13] and could be applied to continuous scoring
through the fuzzy logic approach, such as designing an appropriate fuzzy inference system
(FIS) [23,24]. This FIS-based approach is promising because it (1) does not require collecting
a large amount of patients’ data, (2) can consider a clinician’s ambiguous judgement
mathematically [24,25] and (3) makes its reasoning process understandable [24].

The goal of this study was to check the feasibility of sensor-based continuous FM
scale scoring. For that, we firstly chose three representative FMA tests and developed a
novel scoring algorithm for the tests based on FIS defining the fuzzy variables and rules
from the FMA guideline [23–26]. Then, a sensor-based automated FMA system that can
provide continuous FM scale was implemented by using the scoring algorithm and a depth
sensor (Kinect V2). After investigating the achievable number of grades under the system
by considering the expected error of the sensor, we showed the feasibility of the proposed
scoring method through a pilot trial with nine stroke patients.

2. Materials and Methods
2.1. Target FMA Tests and Sensor Selection

As the targets for developing a continuous FM scale scoring algorithm, we selected
three tests out of the FMA tests automated in our previous study [13], which are listed in
Table 1. These tests consist of volitional movements with synergies and without synergy [3],
and all of them have quite different binary logics to prove the feasibility of the proposed
approach [13].

Table 1. Target FMA tests.

FMA Test Index

Elbow extension during hand to knee T1
Shoulder abduction 0–90◦ T2

Shoulder adduction/inward rotation during hand to knee T3

2.2. Continuous FM Scale Scoring Algorithm
2.2.1. Fuzzy Variables

Based on the features used in our FMA studies [13,17], we determined the fuzzy
input variables (X) for each target test as shown in Table 2. The fuzzy input variables
can be divided into three types: FVa and FVb for evaluating the selective/voluntary motor
performance in three and two stages, respectively, and FM for evaluating the ability to
maintain a specific constraint (posture) in two stages (Table 2). Therefore, the fuzzy set (R)
of the fuzzy input variables (X) can be summarized as shown in Table 2. Note that we used
the same feature extraction method [13] to obtain the variables.
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Table 2. Fuzzy input variables and their fuzzy sets.

Fuzzy Input Variables (X)

FMA Test Type Index Description

T1 FVa FVa Elbow extension ROM

T2

FVa FVa Shoulder abduction ROM

FM

FM_1 Shoulder abduction angle (mean, onset)
FM_2 Elbow flexion angle (mean, onset)
FM_3 Shoulder flexion angle (mean, onset)
FM_4 Elbow flexion angle (mean, motion)
FM_5 Forearm pronation angle (mean, motion)
FM_6 Elbow flexion (SD, onset)
FM_7 Shoulder flexion angle (SD, onset)
FM_8 Elbow flexion angle (SD, motion)
FM_9 Forearm pronation angle (SD, motion)

T3 FVb
FVb_1 Shoulder abduction ROM
FVb_2 Shoulder inward rotation ROM

Input Fuzzy Sets (R)

Type Index Description

FVa

R1 Performed fully
R2 Performed partially
R3 Not performed

FVb
R4 Performed
R5 Not performed

FM
R6 Maintained
R7 Not maintained

ROM denotes the range of motion; SD the standard deviation. ‘Onset’ and ‘motion’ denote the onset phase and
the motion phase, respectively.

The fuzzy output variables (Y) are the FM scores for the target tests. Each FM score
was assigned three levels (0: cannot be performed at all; 1: can be performed partially;
and 2: can be performed fully) according to the degree of motor function judged by the
clinician. This means that the fuzzy sets (S) of the fuzzy output variables were classified as
shown in Table 3.

Table 3. Fuzzy output variables and their fuzzy sets.

Fuzzy Output Variables (Y) Output Fuzzy Sets (S)

Index Description

FM score
S1 High motor function as FM score ‘2’
S2 Medium motor function as FM score ‘1’
S3 Low motor function as FM score ‘0’

2.2.2. Fuzzy Rules

The propositions expressed in words can be transformed into fuzzy rules for the
scoring FM scale by using the explicitation process [24,25]. All established fuzzy rules can
be defined as the following fuzzy canonical form:

IF X is R THEN Y is S (1)

From the viewpoint of the FMA, X is the clinician’s observation, R is the clinician’s
judgment regarding the performance level of each feature, Y is the degree of the patient’s
motor function, and S is the FM scale assigned by the clinician.

The fuzzy rules of the target tests are summarized in Table 4. T1 had the simplest
logical structure with three rules; an FVa is evaluated at three performance levels without
maintaining a specific posture. As for T2, two rules were added to the rules of T1 in order
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to consider the ability of posture constraint. T3 consisted of three rules, which were to
evaluate two FVb in two levels without posture constraint. It should be noted that the
weights among all fuzzy rules were set to 1.

Table 4. Fuzzy rules of each target FMA test.

FMA Test # of Rules Description

T1 3

(1) IF FVa is R1 THEN FM score is S1
(2) IF FVa is R2 THEN FM score is S2
(3) IF FVa is R3 THEN FM score is S3

T2 5

(1, 2, 3) same as T1 fuzzy rules

(4) IF FM_1 is R7 OR FM_2 is R7 OR FM_3 is R7 OR FM_6 is R7
THEN FM score is S3

(5) IF FM_4 is R7 OR FM_5 is R7 OR FM_8 is R8 OR FM_9 is R7
THEN FM score is NOT S1

T3 3

(1) IF FVb_1 is R4 AND FVb_2 is R4 THEN FM score is S1
(2) IF FVb_1 is R5 OR FVb_2 is R5 THEN FM score is S2
(3) IF FVb_1 is R5 AND FVb_2 is R5 THEN FM score is S3

2.2.3. Fuzzy Inference System

We adopted the Mamdani method to implement FIS. This method has the characteristic
that inference results can be easily transformed into linguistic forms [25].

The fuzzy set R of X in (1) can be defined as follows:

R = {(x, µR(x)) : x ∈ X, µR(x) ∈ [0, 1]} with X : α ≤ x ≤ β; µR : X→ [0, 1] (2)

where x denotes the feature measured by the sensor; µR the membership function (MF)
for the fuzzification of X; and α and β are the minimum and maximum values within
the universe of discourse, respectively. Here, α was set to 0, and β was determined as
the desired feature value in the instructed motion or as 30 for the SD features (FM_6 to
FM_9) [13].

Like (2), the fuzzy set S of Y in (1) was defined as shown below:

S = {(y, µS(y)) : y ∈ Y, µS(y) ∈ [0, 1]} with Y : γ ≤ x ≤ δ; µS : Y→ [0, 1] (3)

where y denotes the degree of a patient’s motor function judged by a clinician; µS is the
MF for the implication of Y; γ and δ were 0 and 1, respectively.

For the MFs in (2) and (3), we adopted a triangular shaped function that is simple and
widely used for modeling the human’s reasoning process [27–29], as displayed in Figure 1.
The MF in the fuzzy set R1 for FVa was designed to satisfy the fact that a clinician’s judgment
approaches ‘performed fully’ when the measured feature value is closer to the desired
value in the instructed motion (Table 2). The opposite meaning, ‘not performed’, was
implemented as the MF in R3 using the complement of R1 (Figure 1). We also designed the
MF in R2 with the assumption that the clinician’s ‘performed partially’ judgement results
in the highest degree of membership when the measured feature value was half of the
desired feature value (Figure 1). The MFs of the fuzzy sets S for Y were also designed with
the same shape. Moreover, for FVb and FM, which have two stages in FMA, the MFs in R4
(R6) and R5 (R7) were designed as the same shape to the MFs of R1 and R3, respectively.
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Figure 1. The membership functions for each type of feature. (a) FVa, (b) FVb, (c) FM.

The logic rules AND/OR were formulated by the minimum/maximum functions. The
AND operation was applied for the truncate (implication) of S, and the maximum function
was used for aggregation operation [30]. The result of the designed FIS, continuous FM
scale, was provided as a constant value by using centroid defuzzification process [30,31].
The continuous FM scale scoring algorithm through FIS using the data acquired by the
sensor is represented as shown in Figure 2.
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Figure 2. Schematic diagram of the continuous FM scale scoring algorithm; COA denotes the center of area in the centroid
defuzzification method [31].

In summary, based on the rule-based logic obtained from the linguistic grading
guidelines of FMA [13], we have developed a novel continuous FM scale scoring algorithm
using a fuzzy logic approach. In contrast to a machine learning approach, our algorithm
can easily rate a continuous FM scale without requiring any training data including a
clinician’s three point FM score.

2.2.4. The Sensor-Based Automated FMA System’s Achievable Number of Grades

We implemented a sensor-based automated FMA system. Similar to our previous
study [13], the system consisted of a sensor, user interface, and scoring algorithm. A depth
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sensor, Kinect V2 (Microsoft, Redmond, WA, USA) was used to extract motion features
(Figure 2), which is an inexpensive and easy to use sensor that has been widely applied in
the rehabilitation area [13,15–17,32], and whose effectiveness was verified in our previous
FMA studies [13,17]. The system has the same user interface as our previous automated
FMA system [13], which provided an instruction video that was prerecorded by a well-
experienced clinician. In contrast to our previous system, the system in this study could
provide a continuous FM scale due to the proposed continuous FM scale scoring algorithm.

The continuous FM scale due to the scoring algorithm (FMCA), which comes from the
fuzzy result value of the FIS, would be a solution for better sensitivity of the FMA. However,
the inaccurate input value due to measurement error of the depth sensor could restrict the
achievable number of FM grades. To investigate this restriction, the confidence range of
fuzzy result value was analyzed as follows. After simulating the expected maximum (worst)
feature errors by using the reported tracking error of the depth sensor used (Kinect V2) [33]
considering the effect of sensor position [34] and anthropometric data [35] (Table 5), we
estimated the possible maximum fuzzy result errors and number of grades, as represented
in Table 6. The results showed that FMCA could be interpreted up to seven scale in all the
target FMA tests (Table 6), which implies that motor function could be more sensitively
evaluated than the conventional three point FM scale.

Table 5. Information used to estimate fuzzy result error due to sensor inaccuracy.

Joint Tracking Error of Kinect V2

Kinect V2 Landmark Mean Error (Standard Deviation) FMA Tests Related

Shoulder 1 cm (1 cm) T1, T2, T3
Elbow 2 cm (1 cm) T1, T2, T3
Wrist 2 cm (1 cm) T1

Spine shoulder 1 cm (1 cm) T2, T3
Spine mid 1 cm (1 cm) T2, T3

Shoulder internal rotation 16 deg T3

Used Anthropometry

Body segment Length FMA tests related

Upper arm (shoulder to
elbow) 27.2 cm T1, T2, T3

Lower arm (elbow to wrist) 29.4 cm T1
Torso 90.1 cm T2, T3

Note that anthropometry data were from a 40 year old Asian female [35].

Table 6. Estimated fuzzy result error and possible number of grades for each FMA test.

Target FMA
Tests Feature Maximum Feature

Error (Deg)
Maximum Fuzzy

Result Error
Possible # of

Grades

T1 FVa 23.382 0.104 9

T2

FVa 14.432

0.128 7

FM_1 14.432
FM_2 23.382
FM_3 14.432
FM_4 23.382
FM_5 7.81
FM_6 6.222
FM_7 2.934
FM_8 6.222
FM_9 4.52

T3
FVb_1 14.432

0.081 12FVb_2 16

Note that the features for each test can be found in Table 2.
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2.3. Experiment
2.3.1. Experimental Setup

We conducted an experiment using the implemented system with stroke patients to
test the feasibility of the proposed continuous FM scale scoring algorithm. Figure 3 shows
the experimental setup. A Kinect V2 sensor was installed one meter in front of the subject
(Figure 3), and data were recorded at a sampling rate of 30 Hz. The instructions were
delivered to the subject through the instruction video. For the purpose of showing the
video, a monitor (visual) and speaker (auditory) were installed near the sensor (Figure 3).
The sensor data were automatically recorded after the start of the video, and this recording
was finished when the subject’s movement was completed.
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Figure 3. Experimental setup. Note that another Kinect that is located beside the monitor was just
used to record depth images during FMA tests.

2.3.2. Protocol

Nine stroke patients (ages 49 to 77 years) participated in the experiment, whose
biographical information is summarized in Table 7. This experiment was approved by the
Samsung Medical Center institutional review board (SMC-2018-02-053), and all subjects
gave their consent prior to the experiment.

The subjects sat in a chair without an armrest or wheelchair (Figure 3). They were
asked to follow the motions in the instruction video, and thus they mimicked the motion
while the video was being played. During the subjects’ motion, a well-experienced (more
than 10 years) clinician observed the motion, and rated the conventional three point FM
scale (FM3) as well as the following extended seven point FM scale (FM7):

0: cannot be performed at all (same to FM3);
0+: can be performed a little bit but close to level that cannot be performed at all;
1−: can be performed partially but close to level that cannot be performed;
1: can be performed partially (same to FM3);
1+: can be performed partially but close to level that can be performed well;
2−: can be performed well but not perfectly;
2: can be performed perfectly (same to FM3).

The reason why we used the FM7 above was that it would not be enough to evaluate
the proposed FMCA using FM3, considering the achievable number of grades estimated.
In order to reduce the clinician’s scoring difficulty, FM7 was made as a straightforward
extension by adding ‘0+’, ‘1−’, ‘1+’ and ‘2−’ to the FM3.
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Table 7. Biographical information of participated stroke patients.

Age/Sex Affected
Side

Time Since
Stroke (Month) Etiology MMSE UE–FMA

S1 49/F Left 15 Rt. FT ICH 30 12
S2 54/M Left 18 Rt. LS inf. 28 27

S3 57/M Right 32 Lt. Pons
inf. 29 62

S4 69/F Right 3 Lt. Pons
inf. 27 63

S5 58/F Right 50 Lt. BG ICH 25 23

S6 61/M Left 1 Rt. MCA
inf. 29 37

S7 77/F Left 3
Rt.

Thalamus
ICH

24 9

S8 65/M Left 1
Rt.

Thalamus
ICH

28 12

S9 68/M Right 1 Lt. MCA
territory 27 8

F and M denotes female and male, respectively; MMSE denotes Mini Mental State Examination score; UE–
FMA is the total sum of conventional three point FM scale (FM3). Rt = Right; Lt = Left; FT = Frontotemporal;
LS = Lenticulostriate; BG = Basal ganglia; MCA = Middle cerebral artery; F = Frontal; ICA = Internal cerebral
artery; CR = Corona radiata; ICH = Intracerebral hemorrhage; inf. = Infarction.

2.3.3. Data Analysis

Sensor data of 27 trials (three target FMA tests with nine patients) were recorded
during the experiment. The high frequency spikes and jitters in the data were removed
through a third-order low-pass Butterworth filter (10 Hz cutoff frequency) [16]. Then,
two different FM scales were obtained from the data: (1) a three point FM scale using the
automated FMA algorithm in our previous study (FM3A) [13], and (2) FMCA (continuous
FM scale due to the proposed FIS-based scoring algorithm) (Figure 2). Here, the FIS was
implemented by using a fuzzy logic toolbox in Matlab (Mathworks, Natick, MA, USA),
and the fuzzy result value (FMCA) was linearly normalized to have the range from 0 to 1.

In order to validate the quality of the collected data in this experiment, we investigated
whether the data could provide an accurate three point FM scale. The agreement and
Cohen’s kappa were calculated between the FM3A and FM3. From this analysis, one can
indirectly deduce whether the inaccurate FMCA is due to low data quality or erroneous
fuzzy rule/FIS design.

The proposed FMCA needs to have the following clinical characteristics: FMCA cor-
responds to the patients’ degree of motor function evaluated by a clinician. For that, we
calculated the Pearson’s correlation coefficient between the FMCA and FM3/FM7 [30].
Moreover, in clinic, since FMA used the total sum of the FM scale for each FMA test to
evaluate a patient’s overall motor function [4], the Pearson’s correlation coefficient between
the sum of FMCA and sum of FM3/FM7 was calculated to check whether the proposed
FMCA could also follow the overall evaluation method [13–16]. The statistical analysis was
performed using SPSS version 20 (IBM, Chicago, IL, USA).

3. Results

All the subjects’ FM scales were automatically rated with three point level (FM3A) and
continuous level (FMCA) by using our automated FMA system developed in [8], along
with the manually scored FM3 and FM7 as summarized in Table 8.
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Table 8. Rated FM scores by clinician and implemented sensor-based system.

T1 T2 T3

FM3 FM3A FM7 FMCA FM3 FM3A FM7 FMCA FM3 FM3A FM7 FMCA

S1 1 1 1− 0.490 1 1 1− 0.396 1 1 1 0.511
S2 1 1 1− 0.390 1 1 1+ 0.585 1 1 1− 0.437
S3 2 2 2 0.864 2 2 2− 0.849 2 1 2 0.564
S4 1 1 1+ 0.543 2 2 2 0.978 2 2 2 0.888
S5 2 2 2 0.791 1 1 1 0.484 2 2 2− 0.846
S6 2 2 2− 0.623 1 1 1− 0.367 2 2 2 0.970
S7 1 1 1− 0.360 1 1 1− 0.381 1 1 1 0.523
S8 0 0 0 0.061 1 1 1− 0.364 0 0 0 0.008
S9 0 0 0 0.245 0 0 0 0.259 0 0 0+ 0.319

Note that the bold numbers mean the disagreement between FM3 and FM3A. FM3, FM3A, FM7, and FMCA denote
clinician rated three point scale, system rated three point scale, extended seven point scale, and the proposed
continuous scale, respectively.

3.1. Validity of Collected Data

The agreement between FM3A and FM3 was 96.3%, and Cohen’s kappa was 0.940, as
summarized in Table 9. This result was similar to our previous result for the automated
FMA system (92% agreement; 0.877 Cohen’s kappa) [13]. It supports the validity of the
quality of data collected in this study. Disagreement only occurred in a T3 trial in which
the clinician rated score ‘2’ (Table 9).

Table 9. Agreement of FM3 and FM3A.

FM3A (System)

0 1 2 Total

FM3
(in-person)

0 5 0 0 5
1 0 13 0 13
2 0 1 8 9

Total 5 14 8 27
Cohen’s kappa = 0.940; 96.3% agreement; Note that the bold text represents the number of agreed FM trials. FM3
and FM3A denote clinician rated three point FM scale and system rated three point FM scale, respectively.

3.2. Continuous FM Scale

Figure 4 shows the correlations between FMCA and FM3/FM7 in the 30 trials. Overall,
a high Pearson’s correlation coefficient was observed for FM3 (r = 0.904) and FM7 (r = 0.933)
(Figure 4), and it was also valid for each FMA test (T1: r = 0.930 for FM3, r = 0.959 for
FM7, T2: r = 0.897; for FM3, r = 0.966; for FM7; and T3: r = 0.896; for FM3, r = 0.903; for
FM7). These results showed that the proposed FMCA corresponded to the FM7 rated by
the clinician.
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The correlations between the total sum of FMCA and FM3/FM7 for each subject are
shown in Figure 5. Note that there was no subject who had a total sum of FM3 as two
or four (Figure 5a). The high correlation results (r = 0.940; with FM3 and r = 0.976; with
FM7) show that the proposed FMCA system can estimate overall motor function accurately
(Figure 5). Here, the total sum of FM7 in Figure 5b was calculated through the conversion
of FM7 as ‘1−’ to ‘2’, ‘1’ to ‘3’, ‘1+’ to ‘4’, ‘2−’ to ‘5’ and ‘2’ to ‘6’. It should be note that all
correlation analyses above showed significant correlation (p < 0.001).
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4. Discussion

In this study, we used FM7 along with FM3 to evaluate the proposed FMCA. The
clinician reported that the rating of FM7 was not difficult because FM7 is a simple scale
expansion of FM3. The extended scales in FM7 (0+, 1−, 1+, and 2−) appeared in 51.9%
of the total FMA tests (14 out of 27). This means that there is a clear demand in clinic for
evaluating motor function by using a more sensitive FM scale than the existing FM3. It
should be noted that FM7 could not currently be regarded as a validated clinical tool.

The T3 FMA test resulted in lower correlation (r = 0.903) than T1 and T2, because of
a disagreement in a trial between FM3A and FM3 highlighted in Table 8. The correlation
becomes much higher (r = 0.984) when this trial is excluded. Since the FM7 of the trial were
‘2’, FMCA had the greatest deviation for trials that belong to score ‘2’ (Figure 4). We believe
that the lower performance in T3 was caused by inaccurate tracking of the motion sensor
used (Kinect V2). For T3, we extracted two FVb features when the subject moved the hand
to the knee. Here, one of the features, shoulder inward rotation ROM, could not be precisely
extracted because when the subject’s distal segment of the upper limb was moving along
the proximal direction, the subject’s loose patient uniform, made the measurement of the
angle unreliable (about a 16 degree error) [13]. If the proposed system was applied to 26
FMA tests, we expect that 22 of 26 tests would be free from the sensor inaccuracy problem
above based on the characteristics of the inaccurate tracking investigated in [13], except the
following tests: shoulder adduction/inward rotation during hand to knee (T3), shoulder
external rotation during hand to ear, forearm supination during hand to ear, and forearm
pronation/supination with elbow 0◦.

As mentioned, this paper proposed a novel continuous FMCA scoring algorithm based
on the fuzzy logic derived from our previous rule-based expert (binary logics). One can ex-
pect that several existing studies on automated FMA could be extended for the continuous
FM scale. For instance, a linearized model that is obtained from the correlation analysis
between the extracted feature (i.e., range of motion) and original FM scale rated by clinician
could enable the scoring of the continuous scale [16]. Those approaches, however, would
suffer from inaccuracies due to the complexity of FMA (i.e., Pearson’s correlation coefficient
r = 0.03 in some tests [16]), as follows. Based on the Bobath concept [3,4], the instructions
of FMA usually ask the patient to perform a certain joint motion while constraining the
other joint motions for evaluating the selective/voluntary motor performance. Hence, the
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FM scale is rated by clinician’s comprehensive inference based on multiple features with
different types: FVa, FVb, and FM, and thus it makes the dimension reduction used in those
approaches (i.e., using principal component analysis [16]) difficult. Note that this statement
is supported by the complex binary logic for automating some FMA tests that were shown
in our previous work [13].

The aim of the proposed sensor-based continuous-scaled FMA system is to automate
the evaluation of motor function more objectively and sensitively. From a clinical point
of view, along with its convenience and time efficiency, the proposed system has the
potential to improve the limited sensitivity of the conventional FM scale, which would be
a novel instrument for better practice of rehabilitation. Moreover, the proposed system
can contribute to effective robot-aided rehabilitation therapy due to its better sensitivity.
For instance, thanks to FMCA, the intensity and difficulty of the robotic therapy can be
precisely chosen, and the fine monitoring of the motor function after the therapy could be
used to accurately investigate its therapeutic effect. In addition, the proposed system is
promising to be utilized as a key measure for achieving precise big data for upper-extremity
motor function.

This study could still be improved. We only implemented three FMA tests for the
proposed continuous FM scale so as to investigate its feasibility. Since the rule-based binary
logic, the basis of FIS, for most FMA tests was already found in our previous work [13],
it is promising that the unimplemented tests could be covered in a similar manner in the
near future. As for the sensor system, the performance could be improved when we use a
state-of-art depth sensor, such as RealSense (Intel, Santa Clara, CA, USA) or Leap motion
controller (Leap Motion Inc., San Francisco, CA, USA) [36], both of which have better
resolution than Kinect only. Moreover, the reliability (consistency) test of the proposed
FMCA with repeated trials and various environment would be needed to confirm the
feasibility of the proposed approach. In addition, the limited number of subjects in this
study could be solved through an additional clinical trial with a larger population.

5. Conclusions

FMA, a well-known clinical instrument for stroke patients, still has low sensitivity, so
it cannot evaluate fine changes of motor function. As a solution to this limitation, this study
showed the possibility that sensor-based automated FMA system with the proposed FIS-
based algorithm could provide a continuous FM scale (FMCA), which is highly correlated
with the conventional FM scale (FM3) as well as the extended FM scale (FM7). It means that
the designed FIS in the system for scoring FMCA faithfully reflects the clinical knowledge
of FMA. This is additionally supported by the high correlations between the total sum of
FMCA and FM3/FM7. To our knowledge, this study is the first attempt (1) to develop the
continuous FM scale and (2) to apply fuzzy logic approach (i.e., FIS) for automated and
more sensitive FMA. Therefore, we expect that the proposed system could be a basis to
improve the quality of motor function assessment for stroke patients significantly.
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