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Abstract: While it has been well evidenced that plant domestication affects the structure of the root-
associated microbiome, there is a poor understanding of how domestication-mediated differences
between rhizosphere microorganisms functionally affect microbial ecosystem services. In this study,
we explore how domestication influenced functional assembly patterns of bacterial communities
in the root-associated soil of 27 tomato accessions through a transect of evolution, from plant
ancestors to landraces to modern cultivars. Based on molecular analysis, functional profiles were
predicted and co-occurrence networks were constructed based on the identification of co-presences of
functional units in the tomato root-associated microbiome. The results revealed differences in eight
metabolic pathway categories and highlighted the influence of the host genotype on the potential
functions of soil bacterial communities. In general, wild tomatoes differed from modern cultivars
and tomato landraces which showed similar values, although all ancestral functional characteristics
have been conserved across time. We also found that certain functional groups tended to be more
evolutionarily conserved in bacterial communities associated with tomato landraces than those of
modern varieties. We hypothesize that the capacity of soil bacteria to provide ecosystem services is
affected by agronomic practices linked to the domestication process, particularly those related to the
preservation of soil organic matter.

Keywords: bacterial functions; co-presence networks; metagenomics; microbial ecology; plant do-
mestication

1. Introduction

The coevolutionary framework for analyzing interactions between plants and soil
microorganisms has mainly been used for organisms involved in rhizosphere processes.
Given that rhizosphere microbiomes are part of complex food webs affecting large numbers
of nutrients released by the plant, it has been suggested that plants attract and select
beneficial microbiomes by first releasing signals and then filtering species [1,2]. Rhizopshere
microbiota are well known to play a critical role in both the adaptation of plants to the
environment, but also contribute to a wide range of essential ecosystem services, such as
carbon and nutrient cycling, plant growth promotion, soil structure stability, food web
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interactions and soil-atmosphere gas exchange, which ultimately affect soil productivity
and sustainability [3].

In addition to plant genetics and developmental stage [4,5], other factors including
soil management, agronomic practices, pathogen presence, soil pH, nutrient content, and
moisture, have been suggested to affect root microbial community structure [6–8]. However,
the question of how the host and its environment regulate microbiome assembly and co-
occurrence in plant species has not been addressed yet. This is of particular interest for
crops in the context of plant–soil feedback, where plants can change soil biology and
chemistry in ways that could affect subsequent plant growth [9].

Crop genetic diversity is usually reduced during plant domestication, which is as-
sociated with the selection of certain morphological traits such as root architecture and
exudate composition, leading to striking differences between crops and their wild rela-
tives [10,11]. Therefore, domestication is expected to have a direct impact on the type
and diversity of below-ground microorganisms [9]. Indeed, domestication and genetic
selection have progressively differentiated the microbiota of modern crops from those of
their wild progenitors. It has also been postulated that crops are more likely to display
negative feedbacks as compared to wild relatives, as domestication potentially disrupted
beneficial rhizosphere associations [12]. Previous studies of cultivated plants evidenced
differences between bacteria associated with differing plant genotypes such as wheat
(Triticum aestivum L.), rice (Oryza sativa L.), barley (Hordeum vulgare L.) and tomato (Solanum
lycopersicum Mill.) [13–15], suggesting that traits selected during domestication could have
a significant influence on rhizosphere microbiota composition.

Although the structure of root-associated microbial communities is widely accepted to
depend, to a greater or lesser degree, on the plant genotype, little is known about whether
domestication-mediated differences between rhizosphere microorganisms functionally af-
fect microbial ecosystem services. In this scenario, an evaluation of functional soil microbial
genes could help to determine the effect of domestication on functional redundancy or co-
occurrence of basic metabolic capacity in the rhizospheres of crop varieties and their wild
ancestors [16]. This is essential to identify agricultural practices that resulted in reduced
trade-offs between agricultural productivity and the provision of ecosystem services.

This study aims to explore how plant domestication influences the assembly patterns
of soil microbial communities by metagenomic analysis of bacterial communities and
predicted functions in the rhizosphere of different tomato varieties along a domestica-
tion gradient.

2. Results
2.1. Bacterial Community Structure

Figure 1 shows the relative bacterial abundance of the tomato root-associated soils
based on the 16S rRNA gene. Two main bacterial classes, Alphaproteobacteria and Actino-
bateria, dominated the total bacterial community with no differences observed between
plant groups. Minority phyla such as Acidobacteria (F = 7.152, p = 0.002) and Gemma-
timonadetes (F = 4.720, p = 0.013) were significantly less represented in the rhizosphere
of wild tomato species than in tomato landraces and modern commercial cultivars. At
the family level, the relative abundance of the Gemmatimonadaceae (F = 4.133, p = 0.022),
Microbacteriaceae (F = 5.419, p = 0.007), and Streptomycetaceae (F = 4.752, p = 0.022) families
decreased, while Sphingomonadaceae (F = 7.887, p = 0.001) increased in wild tomato rela-
tives. Again, no differences between tomato landraces and modern commercial cultivars
were detected.

The relative abundances of Acidobacteria_Gp16_unclassified (F = 3.701, p = 0.031),
Hyphomicrobiaceae (F = 6.736, p = 0.002), and Nocardioidaceae (F = 4.179, p = 0.021) were
different between wild and commercial cultivars, while landraces had intermediate values,
generally not differing from the other two groups.
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Figure 1. Relative abundance of bacteria of tomato rhizosphere soils. WTRS: wild tomato related species; TL: tomato land-
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Figure 1. Relative abundance of bacteria of tomato rhizosphere soils. WTRS: wild tomato related species; TL: tomato
landraces; MCC: modern commercial cultivars.

Linear discriminant analysis (LDA) at the genus level showed Pedobacter (Sphin-
gobacteriaceae), Rodococcus, Skermanella and the proteobacterium Microvirga to be mainly
responsible for the differences between the three tomato clusters (Figure 2). In addition,
minor changes in bacterial diversity were observed at the OTU level (Table 1), as indicated
by a significant decrease in the evenness of crop wild relatives (F = 6.623, p = 0.003).
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Figure 2. (a) Linear discriminant analysis (LDA) scores and, (b) heatmap from blue (low) via white to
red (high) of genus relative abundances in root-associated soil of wild tomato related species (WTRS),
tomato landraces (TL), and modern commercial cultivars (MCC).
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Table 1. Richness estimates and diversity indices (means ± SE) for 16S rRNA libraries of tomato
rhizosphere soils. Different letters indicate a significant difference among tomato varieties (p < 0.05,
ANOVA, Dunn’s post hoc-Bonferroni corrected p values) when exist. WTRS: wild tomato related
species; TL: tomato landraces; MCC: modern commercial cultivars.

WTRS TL MCC

Shannon–Wiener Diversity Index 5.79 ± 0.26 6.23 ± 0.06 6.18 ± 0.09
Shannon Entropy 8.35 ± 0.37 8.98 ± 0.08 8.92 ± 0.12
Species Richness 3260 ± 346 3727 ± 155 3471 ± 231
Total Abundance 52,838 ± 3338 59,144 ± 1702 57,100 ± 2964

Simpson Diversity Index 0.031 ± 0.013 0.010 ± 0.001 0.011 ± 0.002
Evenness 0.719 ± 0.021b 0.759 ± 0.004a 0.764 ± 0.005a
Chao-1 4453 ± 450 4983 ± 241 4619 ± 329

2.2. Bacterial Community Functional Analysis

We used metagenomics analysis to predict the functional potential of the bacterial com-
munity and to explore associated metabolic pathway networks using Kyoto Encyclopedia
of Gene and Genome (KEGG) clusters.

At the level of functional units of gene sets, all tomato varieties shared all the 181 pre-
dicted functions related to soil bacteria (Table S1). However, 68 of them differed among
tomato domestication types (Table 2). In general, wild tomatoes differed from modern
cultivars and tomato landraces that usually showed similar values, but generally tomato
landraces had intermediate values between modern cultivars and wild relatives. For exam-
ple, the levels of the aromatic degradation metabolic pathway category, except for module
M00541 (benzoyl-CoA degradation), tended to be significantly higher in bacteria growing
in wild tomato accessions, indicating that tomato landraces drive bacterial communities
with similar levels of predicted functions as modern commercial cultivars. Similarly, while
the values for the metabolic categories of nitrogen, sulfur, cofactor/vitamin and purine
were decreased in modern cultivars with respect to wild varieties, no differences between
these wild and landrace cultivars were detected. By contrast, lipopolysaccharide and lipid
metabolic pathway levels were clearly higher in both landrace and modern cultivars with
respect to their wild relatives.

Table 2. Functional units of gene sets in metabolic pathways (KEGG modules) of tomato rhizosphere soils differentially
represented among tomato varieties. Different letters indicate a significant difference among tomato varieties (ANOVA,
Dunn’s post hoc-Bonferroni corrected p values). WTRS: wild tomato related species; TL: tomato landraces; MCC: modern
commercial cultivars.

Pathway Modules WTRS TL MCC p-Value

Amino acid metabolism;
Arginine and proline
metabolism

M00015_Proline biosynthesis, glutamate
=>proline 1656a 1609b 1626b 0.02086

M00023_Tryptophan biosynthesis, chorismate
=> tryptophan 3173b 3234a 3205a 0.008801

M00037_Melatonin biosynthesis, tryptophan
=> serotonin => melatonin 69b 77a 74ab 0.04182

M00040_Tyrosine biosynthesis, chorismate =>
arogenate => tyrosine 508a 464b 467b 5.579 × 10−6

M00042_Catecholamine biosynthesis, tyrosine
=> dopamine => noradrenaline => adrenaline 95b 106a 104ab 0.02289

M00533_Homoprotocatechuate degradation,
homoprotocatechuate =>
2-oxohept-3-enedioate

491a 474b 473ab 0.04715

Amino acid metabolism;
Aromatic amino acid
metabolism

M00545_Trans-cinnamate degradation,
trans-cinnamate => acetyl-CoA 1048a 1004b 1014b 0.001853



Plants 2021, 10, 1942 5 of 17

Table 2. Cont.

Pathway Modules WTRS TL MCC p-Value

Amino acid metabolism;
Branched-chain amino
acid metabolism

M00036_Leucine degradation, leucine =>
acetoacetate + acetyl-CoA 7057a 6938b 6874b 6.597 × 10−5

Amino acid metabolism;
Cysteine and methionine
metabolism

M00017_Methionine biosynthesis, apartate =>
homoserine => methionine 5393b 5464a 5422a 0.006857

M00035_Methionine degradation 2031b 2101a 2065b 6.836 × 10−5

M00338_Cysteine biosynthesis, homocysteine +
serine => cysteine 233c 276a 257b 9.38 × 10−11

Amino acid metabolism;
Lysine metabolism

M00031_Lysine biosynthesis, mediated by
LysW, 2-aminoadipate => lysine 81b 106a 98b 1.069 × 10−5

Amino acid metabolism;
Other amino acid
metabolism

M00118_Glutathione biosynthesis, glutamate
=> glutathione 944a 876b 880b 7.781 × 10−8

M00027_GABA
(gamma-Aminobutyrate) shunt 2018a 1942b 1921b 1.037 × 10−5

Amino acid metabolism;
Polyamine biosynthesis

M00133_Polyamine biosynthesis, arginine =>
agmatine => putrescine => spermidine 865b 895a 879ab 0.01599

M00134_Polyamine biosynthesis, arginine =>
ornithine => putrescine 872a 838b 841b 0.008463

M00136_GABA biosynthesis, prokaryotes,
putrescine => GABA 677a 620b 636b 6.265 × 10−9

Amino acid metabolism;
Serine and threonine
metabolism

M00555_Betaine biosynthesis,
choline => betaine 1473a 1377b 1383b 4.206 × 10−11

Carbohydrate metabolism;
Central carbohydrate
metabolism

M00006_Pentose phosphate pathway,
oxidative phase, glucose 6P => ribulose 5P 1535ab 1523b 1546a 0.04953

M00077_Chondroitin sulfate degradation 105b 118a 123a 6.408 × 10−5

M00008_Entner–Doudoroff pathway,
glucose-6P => glyceraldehyde-3P + pyruvate 1993a 1905c 1928b 2.838 × 10−6

M00009_Citrate cycle (TCA cycle, Krebs cycle) 12,529a 12,667b 12,563a 0.0001383
M00011_Citrate cycle, second carbon oxidation,
2-oxoglutarate => oxaloacetate 9185b 9286a 9207b 0.001811

M00003_Gluconeogenesis, oxaloacetate =>
fructose-6P 5474b 5544a 5498b 0.008293

M00633_Semi-phosphorylative
Entner–Doudoroff pathway,
gluconate/galactonate => glycerate-3P

85b 91ab 95a 0.03837

Carbohydrate metabolism;
Other carbohydrate
metabolism

M00061_D-Glucuronate degradation,
D-glucuronate => pyruvate +
D-glyceraldehyde 3P

1694a 1654b 1680ab 0.01455

M00081_Pectin degradation 113b 129a 132a 6.318 × 10−5

M00114_Ascorbate biosynthesis, plants,
glucose-6P => ascorbate 2958ab 2995a 2949b 0.0271

M00131_Inositol phosphate metabolism,
Ins(1,3,4,5)P4 => Ins(1,3,4)P3 => myo-inositol 1003a 969b 968ab 0.02686

M00550_Ascorbate degradation, ascorbate =>
D-xylulose-5P 27a 19b 18b 1.195 × 10−5

M00554_Nucleotide sugar biosynthesis,
galactose => UDP-galactose 199b 207ab 217a 0.005133

M00565_Trehalose biosynthesis,
D-glucose 1P => trehalose 3380b 3603a 3666a 2.2 × 10−16
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Table 2. Cont.

Pathway Modules WTRS TL MCC p-Value

Energy metabolism;
Carbon fixation

M00170_C4-dicarboxylic acid cycle,
phosphoenolpyruvate carboxykinase type 1302c 1357a 1321bc 1.883 × 10−5

M00172_C4-dicarboxylic acid cycle,
NADP—malic enzyme type 3505a 3444b 3445b 0.03007

M00173_Reductive citrate cycle
(Arnon-Buchanan cycle) 10,778b 10,891a 10,850ab 0.004089

M00374_Dicarboxylate-hydroxybutyrate cycle 7259b 7345a 7333a 0.01178
M00620_Incomplete reductive citrate cycle,
acetyl-CoA => oxoglutarate 2168b 2224a 2231a 0.0007637

Energy metabolism;;
Methane metabolism

M00344_Formaldehyde assimilation,
xylulose monophosphate pathway 913b 944a 942ab 0.03158

M00345_Formaldehyde assimilation,
ribulose monophosphate pathway 749b 808a 800a 6.137 × 10−7

M00346_Formaldehyde assimilation,
serine pathway 3166b 3234a 3226ab 0.006593

M00356_Methanogenesis,
methanol => methane 22b 26ab 27a 0.03877

M00358_Coenzyme M biosynthesis 177b 190a 198a 0.0004887
M00378_F420 biosynthesis 82b 93a 89ab 0.05467
M00563_Methanogenesis, methy-
lamine/dimethylamine/trimethylamine
=> methane

465a 434b 464a 3.724 × 10−6

Energy metabolism;
Nitrogen metabolism

M00530_Dissimilatory nitrate reduction,
nitrate => ammonia 1864a 1823b 1848a 0.01764

Energy metabolism;
Sulfur metabolism

M00176_Assimilatory sulfate reduction,
sulfate => H2S 2814a 2741b 2766ab 0.006395

Glycan metabolism;
Glycosaminoglycan
metabolis

M00076_Dermatan sulfate degradation 115b 129a 135a 2.073 × 10−5

M00077_Chondroitin sulfate degradation 105b 118a 123a 6.408 × 10−5

M00078_Heparan sulfate degradation 191b 215a 224a 2.272 × 10−7

M00079_Keratan sulfate degradation 475b 526a 547a 1.002 × 10−12

Glycan metabolism;
Lipopolysaccharide
metabolism

M00060_KDO2-lipid A biosynthesis,
Raetz pathway, LpxL-LpxM type 3058b 3132a 3124a 0.001684

M00064_ADP-L-glycero-D-manno-heptose
biosynthesis 692b 743a 771a 3.151 × 10−7

Lipid metabolism;
Fatty acid metabolism

M00082_Fatty acid biosynthesis, initiation 3785b 3861a 3842ab 0.01467
M00083_Fatty acid biosynthesis, elongation 9121b 9218a 9214a 0.01719
M00086_beta-Oxidation, acyl-CoA synthesis 1699b 1743a 1746ab 0.01575

Lipid metabolism;
Lipid metabolism M00113_Jasmonic acid biosynthesis 428b 454a 438b 0.002276

Metabolism of cofactors
and vitamins;
Cofactor and vitamin
metabolism

M00116_Menaquinone biosynthesis,
chorismate => menaquinol 943b 1026a 977b 1.104 × 10−10

M00117_Ubiquinone biosynthesis,
prokaryotes, chorismate => ubiquinone 2772a 2703b 2707ab 0.01037

M00122_Cobalamin biosynthesis,
cobinamide => cobalamin 2143a 2105b 2153a 0.00244

M00128_Ubiquinone biosynthesis, eukaryotes,
4-hydroxybenzoate => ubiquinone 74a 64b 67ab 0.01119

Nucleotide metabolism;
Purine metabolism M00546_Purine degradation, xanthine => urea 2126a 2089b 2125a 0.01079
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Table 2. Cont.

Pathway Modules WTRS TL MCC p-Value

Xenobiotics
biodegradation;
Aromatics degradation

M00537_Xylene degradation,
xylene => methylbenzoate 215a 199b 200ab 0.01542

M00541_Benzoyl-CoA degradation,
benzoyl-CoA => 3-hydroxypimeloyl-CoA 59b 67a 67ab 0.02392

M00548_Benzene degradation,
benzene => catechol 27a 20b 21b 0.0002254

M00551_Benzoate degradation, benzoate =>
catechol/methylbenzoate => methylcatechol 124a 108b 110b 0.003958

M00568_Catechol ortho-cleavage, catechol =>
3-oxoadipate 445a 421b 433ab 0.01165

M00569_Catechol meta-cleavage, catechol =>
acetyl-CoA/4-methylcatechol =>
propanoyl-CoA

466a 441b 430b 0.001843

M00637_Anthranilate degradation,
anthranilate => catechol 90a 73b 82b 1.726 × 10−5

Amino acid metabolism pathways exhibited no clear tendency, although in modern
commercial cultivars, cysteine and methionine pathway levels were higher and those of
other amino acid pathways were lower. A similar variable pattern was observed with
respect to both central carbohydrate and other carbohydrate metabolic pathways in the
category of carbohydrate metabolism.

Finally, a marked increase in the carbon fixation and methane metabolic subfunc-
tions and in the metabolic pathway categories glycan metabolism and lipid metabolism,
respectively, was observed in the modern commercial cultivars.

2.3. Functional Networks of KEGG Orthologous Groups

Figure 3 and Table 3 show the co-presence networks and the topological proper-
ties of functional networks, respectively, for the modern:wild, landraces:wild and mod-
ern:landraces pairs. An increase in the average number of neighbors and a decrease in the
characteristic path length were found in landraces:wild pairs (Table 3). Additionally, an
increase in the network radius and diameter were detected in the pair modern:landraces.
Finally, the pair modern:wild showed the largest number of KEGG-module nodes and the
largest number of edges or inter-node connections in the network. The clustering coeffi-
cient, which reflects the tendency of organisms to form relatively high-density clusters,
was zero. Co-occurrence networks are generated by connecting pairs of terms using a set of
criteria defining co-occurrence. These networks connect across, rather than between, nodes.
Every node, in which none of whose neighbors connect to each other, has a clustering
coefficient of zero.

Highly connected clusters were retrieved for every network, four for the pair mod-
ern:wild and three for the other two pairs (Figures 4–6). On a closer analysis, we detected
some links in highly connected clusters. Thus, bacterial functional units M00026 (histidine
biosynthesis, PRPP => histidine), M00032 (lysine degradation, lysine => saccharopine =>
acetoacetyl-CoA), M00141 (C1-unit interconversion) and M00376 (3-hydroxypropionate bi-
cycle) were highly connected in the soil of tomato landraces and wild relatives (Figure 4a),
whereas modern varieties and wild relatives were connected by modules M00141, M00376,
M00021 (cysteine biosynthesis, serine => cysteine) and M00089 (triacylglycerol biosyn-
thesis) (Figure 5a–c). Finally, modules M00026 and M00141 were highly represented in
modern varieties and tomato landraces (Figure 6a,b).
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Table 3. Topological properties of pairwise functional networks. WTRS: wild tomato related species;
TL: tomato landraces; MCC: modern commercial cultivars.

MCC:WTRS TL:WTRS MCC:TL

Number of nodes 133 116 132
Number of edges 1005 1003 1001

Average number of neighbors 15,113 17,293 15,167
Network diameter 6 6 7

Network radius 3 3 4
Characteristic path length 2.542 2.371 2.577

Clustering coefficient 0.000 0.000 0.000
Network density 0.114 0.150 0.116

Network heterogeneity 0.850 0.780 0.869
Network centralization 0.230 0.325 0.309
Connected components 1 1 1
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3. Discussion

Root traits selected during domestication were previously suggested to have a signifi-
cant influence on the composition of the rhizosphere microbiome [13,17]. We found similar
core bacterial microbiome members in tomato landraces and modern commercial cultivars,
but detected small, though significant, differences in bacterial communities associated with
both their rhizospheres and those of wild tomato relatives (Figure 1).

At family level, Gemmatimonadaceae (phylum Actinobacteria), Microbacteriaceae and
Streptomycetaceae (Gemmatimonadetes) were represented less in the rhizosphere of wild
tomato related species. At genera level, domestication gradually reduces the presence of
the ubiquitous soil bacterium Pedobacter, the aromatic substrate metabolizer Rhodococcus
and the alphaproteobacteria Skermanella and Microvirga, the latter considered a symbiotic
nitrogen-fixing bacterium.

Previous studies highlighted the effect of plant species on the microbial composition
and OTU abundance of the rhizosphere microbiome [5,18]. Domesticated crops often
have shallow roots and shifts in traits such as leaf size and root architecture. Changes
in these morphological traits results in increased litter quality, lower C:N ratio and root
exudate composition, which could influence microbial community composition [2,9,19,20].
In this study, bacterial diversity at the OTU level was found to remain virtually unchanged
along the domestication gradient, although evenness levels were significantly lower in the
rhizosphere of tomato wild relatives. Evenness refers to the similarity of OTU frequencies
in bacterial populations. Even though species evenness and richness are complementary,
no differences were observed in the latter; the number of soil bacterial phyla recruited by
wild type crops was similar to other tomatoes. Nevertheless, evenness does not necessarily
translate into optimal diversity; ecosystem functions at the bacterial community level
are more important than the bacterial species. As several species in an ecosystem may
fulfill a similar function (redundancy), their even distribution is not essential as long as
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the function itself remains active. However, a more even species distribution within a
bacterial community is assumed to make the ecosystem more resilient, as the risk of losing
an essential component of the functional network would be much lower.

Using metagenomic analysis, the functional potential of the bacterial community was
predicted and the associated metabolic pathway network explored (Table 2). The levels of
the global metabolic pathway for aromatic degradation were significantly higher in bacteria
associated to accessions of tomato wild relatives. The modules belonging to this pathway
catalyze reactions involving various polyphenols such as catechol. Humification is known
to involve biotic and abiotic transformations of soil litter layer materials into mature humic
substances, where catechol and o-quinones derived from biotic activity in humic substance
synthesis play a fundamental role [21]. In addition, the increase in catechol promotes
the formation of humic substances through abiotic reactions in the catechol–Maillard
system [22]. Thus, the observed decrease in the degradation of aromatic compounds to
catechol indicates a loss of degradation capacity due to cultivation. Organic matter and
humic substances play an important role in improving soil fertility and structure, water
retention capacity and C sequestration in the environment [23], which diminishes along
the domestication gradient. Another possible hypothesis is that plants affect microbial pop-
ulations, and changes in environmental conditions, soils and cultivation techniques—with
the gradual abandonment of organic materials in favor of agrochemicals—could reduce
the degradation capacity of recalcitrant organic compounds associated with domestication
and breeding. On the other hand, with respect to the carbon cycle, organic C taken up by
microorganisms is partitioned into growth, metabolite excretion, and respiration [24]. We
detected an increase in the Krebs cycle of wild tomato related species below-ground. After
incorporation into the bacterial biomass, C is usually converted into stable organic matter
or decomposed and respired as CO2 depending on the chemical recalcitrance and degree
of protection of the organic matter [25].

In this context, it has been suggested that crop wild relatives establish beneficial
interactions with microbes more frequently than domesticated cultivars [26]. Given the
abandonment of some agricultural practices related to exogenous organic matter inputs
and the preservation of endogenous C, a concomitant loss of bacterial functions dealing
with recalcitrant organic matter has been occurring for many years. It has also been
evidenced that agronomic practices, such as tillage, irrigation and the use of other inputs
such as pesticides and fertilizers influence the below-ground diversity and functions of
soil microbes [27]. We therefore postulate that a loss in bacterial functions related to soil
organic matter preservation occurs during tomato domestication.

A similar trend was detected in metabolic pathways related to biochemical cycles,
such as the reduction in nitrates and sulphates and the formation of urea from purine
metabolism. The decrease in these pathways that play a key role in plant growth could
be attributed to the domestication process, or more precisely, to the emergence of modern
commercial cultivars. Similar to the observations in the C-cycle, the increasing use of
agrochemicals in modern agriculture may, in some way, be connected to the reduction on
metabolic pathway levels caused by certain biochemical cycles.

Carbon fixation was more common in bacteria associated with modern commercial
cultivars. This important process in soil carbon cycling is carried out by CO2-fixing and
CO-oxidizing bacteria and can reduce atmospheric CO2 concentrations, thus indirectly
mitigating global warming [24,28,29]. However, as no differences in the synthesis of
ribulose 5 phosphate, an intermediary in the carbon fixation Calvin cycle, can be attributed
to domestication, it is not possible to draw a clear picture of the effects of domestication on
this ecosystem service.

On the other hand, pathways such as fatty acid and jasmonic acid biosynthesis were
more commonly found in the rhizosphere of modern and landrace varieties. Fatty acids are
involved in multiple functions, ranging from cell membrane constituents to cell signaling.
Fatty acids have been used as indices of soil quality and even to describe food web
connections [30], thus, positive feedback compared with their wild ancestors could be
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attributed to tomato crops. Jasmonic acid (JA) and its derivatives (collectively known as
jasmonates) play an important role in regulating plant defenses against biotic stresses, and
facilitating beneficial interactions between plants and microbes in the root zone [31,32].
JA signaling has been suggested to have evolved during land colonization by plants
exposed to new biotic and abiotic stresses [33], and symbiotic relationships with microbes,
including plant growth promoting bacteria and mycorrhizal fungi. Moreover, microbe
induced systemic resistance to pathogens and pests involve JA signaling [34,35]. However,
although JA production by bacteria and fungi in soil has been reported [36], its impact on
plant–microbiome interactions remains unclear. Finally, regarding signalling, we detected a
significant increase in the biosynthesis of gamma-aminobutyric acid (GABA) in wild tomato
species compared to the groups that included cultivars. GABA is involved in inter-bacterial
communication and interactions between bacteria and their host [37]. Furthermore, GABA
production has been associated with bacterial overcoming of environmental stress [38].

Overall, these findings highlight the influence of tomato domestication on some
molecular pathways of the associated soil bacteria, although all ancestral functional char-
acteristics of bacteria have been conserved across time. However, we wonder whether
there is a pattern of bacterial functional abundance associated with the tomato soil related
to the domestication degree. To shed some light on this point, we calculated interactions
between functional units of gene sets in metabolic pathways, which may help to address
the question of how microbial genes work together to support specific microbiome func-
tions [39]. In this study, we assessed pairwise relationships between bacterial functional
units based on metagenomic sequencing of bacteria growing on tomato plants along a do-
mestication gradient The highest connectance levels in bacterial communities were found
in landraces:wild pairs due to an increase in network density as measured by the higher
average number of connections established expressed by the average number of neighbors
(Table 3). In addition, the increased connectance in the landraces:wild pairing with respect
to the other two pairs was related to the decrease in the characteristic path length, defined
as the average number of steps along the shortest paths for all possible pairs of network
nodes. These changes suggest an intensification of microbial connectance relative to the
pairs modern:landraces and modern:wild. Finally, an increase in the pair modern:landraces
regarding the network radius and diameter measuring the longest of all the shortest
calculated paths in the network, suggests a decrease in module-pathway connectance.

Highly connected clusters, or sets of nodes most of which are connected with one
another, were then explored (Figures 4–6). Again, the highest connectance was detected
for the pair landraces:wild varieties and nodes representing the same module in the two
different types of tomato were recovered in a single cluster. For the rest of the pairs,
even if they shared the same number of common modules, they were recovered in two or
three different clusters. Overall, the above results suggest that certain functional groups
such as the synthesis of certain amino acids or carbohydrate metabolism tend to be more
evolutionarily conserved in bacterial communities associated with tomato landraces than
those of modern varieties. However, we also found that most of the metabolic routes of
bacteria associated to either landraces or modern cultivars with those associated to their
ancestors were different. In this scenario, a possible process of divergent evolution in
tomato lines, that is, the process by which groups of the same common ancestor evolve
and accumulate differences in response to changes in both environmental conditions and
biotic factors, could be debated. Nevertheless, further investigation is needed to clarify
how tomato domestication has driven specific bacterial functions in root-associated soil.

4. Materials and Methods
4.1. Field Experiment

Seeds of 27 Solanum lycopersicum Mill., S. habrochaites and S. pimpinellifolium accessions
were selected from La Mayora Institute of Subtropical and Mediterranean Horticulture
(IHSM-UMA-CSIC) germplasm bank. Seeds were germinated and ten one-month-old
seedlings per variety (n = 270) were randomly sown in an experimental field of La Mayora
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IHSM (Málaga, Spain; 36.77◦ N, 4.04◦ W),) on 19th April 2018 in a Eutric Regosol soil [40].
They were grown until 16th July 2018. Just after transplanting, plants were watered with
15:15:15 solution (15% nitrogen, 15% phosphorus and 15% potassium) during 30 min
adding-up a volume of 4 l per plant. During the course of the experiment, watering
consisted of 30 min of water twice in a week (Mondays and Fridays) [41]. At harvest, the
soil attached to the main and secondary roots was taken by shaking, placed in separate
plastic bags, and kept at 4 ◦C. Then, samples from each variety were pooled, ground
together using a mortar and pestle, sieved twice (2-mm mesh) and immediately stored at
−20 ◦C until molecular analyses were performed.

In this study, cluster assays of the 27 tomato accessions, based on their degree of
domestication, were carried out: (1) wild tomato species (accessions NR0407, NR1021,
NR0136, NR0699, NR0937), (2) tomato landraces (accessions NR0025, NR0006, NR0044,
NR0213, NR0275, NR0237, NR0469, NR0166, NR0063, NR0705, NR0612), and (3) modern
commercial cultivars (accessions ABL104, ANL101, NR0071, NR0816, NR0080, NR1080,
NR0504. COM1, COM2, COM3 and COM4 cultivars, which are protected under plant
variety rights, have no accession number).

4.2. Chemical Characteristics of the Soil

Air-dried rhizosphere soil samples were used to determinate chemical properties.
Total N and SOC were determined with the aid of the Leco-TruSpec CN elemental ana-
lyzer (LECO Corp., St Joseph, MI, USA). Total mineral content was determined by the
digestion method with HNO3 65%:HCl 35% (1:3; v:v) followed by analysis using in-
ductively coupled plasma optical emission spectrometry (ICP-OES) (ICP 720-ES, Ag-
ilent, Santa Clara, CA, USA). Detailed information on soil characteristics is given in
Supplementary Material Table S2.

4.3. Molecular Analyses of Soil Bacteria

DNA was extracted from eight 1 g aliquots for each root-associated soil sample using
the bead-beating method with the aid of a PowerSoil® DNA Isolation Kit (MoBio Labo-
ratories, Solana Beach, CA, USA) according to the manufacturer’s instructions. For each
variety, two replicates were prepared by pooling four extractions and concentrating them
at 35 ◦C to a final volume of 20 µL using a Savant Speedvac® concentrator (Fisher Scientific,
Madrid, Spain). The V3-V4 hypervariable regions (ProV3V4 primers 5′ CCTACGGGNBG-
CASCAG 3′ and 5′ GACTACNVGGGTATCTAATCC 3′ [42,43]) of the 16S rRNA gene were
used to characterize the bacterial communities of the two replicates per sample using the
Illumina MiSeq platform (2 × 250 nucleotide paired-end protocol) at the genomic facilities
of the López-Neyra Institute of Parasitology and Biomedicine (IPBLN-CSIC). Blockers
were used to minimize amplification of mitochondria and chloroplasts. Raw sequences
were preprocessed using the SEED2 platform [44] by first merging forward and reverse
sequences. Quality filtering excluded sequences containing ambiguous bases (N) and those
with a quality score of less than 30. Primers were removed and sequences trimmed to
400 bp length. The sequences were then clustered using the UPARSE method [45]: Opera-
tional Taxonomic Unit (OTU) radius set to 3% and sequence similarity to 97%. Singletons
and chimeric sequences were removed. Taxonomic assignment of OTUs was performed
using the classify.seqs algorithm in Mothur software (University of Michigan, Detroit,
MI, USA) against the SILVA v132 database, after which no archaea were detected in the
samples [46,47]. An abundance sample x OTU matrix was generated using OTU reads as a
proxy of abundance using the Marker Data Profiling module in the MicrobiomeAnalyst
tool (https://www.microbiomeanalyst.ca/ accessed on 2 August 2021). The most abundant
sequence per OTU was selected as representative. Rarefaction curves were visualized using
MicrobiomeAnalyst to confirm that all samples reached a plateau [48,49].

https://www.microbiomeanalyst.ca/
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4.4. Predictive Metagenomics Profiling

To determine the potential functional metabolic capabilities of soil bacterial communi-
ties, we used Tax4fun, an open-source R package, which predicts the functional capabilities
of these communities based on 16S datasets. Tax4Fun is applicable to output obtained from
the SILVAngs web server [50]. Tax4fun was implemented in Shotgun Data Profiling (SDP)
module of MicrobiomeAnalyst to predict functional pathways based on Kyoto Encyclo-
pedia of Gene and Genome (KEGG, https://www.kegg.jp/ accessed on 2 August 2021)
annotations [51,52]. KEGG functional annotations were based on modules, i.e., functional
units of gene sets in the KEGG metabolic pathways database that can be linked to specific
metabolic capacities and other phenotypic features [48].

4.5. Functional Networks

Similarities on functional profiles across tomato types were studied by looking for
correlations in the abundance of modules. CoNet plug-in method [53] in Cytoscape
software v.3.8.2 [54] was used to visualize these relationships by building co-occurrence
networks. Thus, two nodes representing the same module in different tomato types
should be connected in the case that both tomatoes have a similar pattern of abundance
for that module. Thus, building networks by tomato type pairs gives an idea of the
conservation of modules across domestication (i.e., the number of links between the same
module in different tomato types). Co-occurrence networks were constructed based on the
identification of significant positive associations, that is, co-presences of functional units in
the tomato root-associated microbiome. Due to the different number of samples/tomato
varieties in each domestication type, for arranging the construction of network, the number
of samples in each domestication type was adjusted to the tomato type with the least
number. The selection and order of samples was arranged randomly. This analysis was
repeated 5 times by shuffling the input sample order to avoid spurious results. To run
the analysis, KEGG modules having less than 20 reads were discarded from the analyses.
KEGG module abundance was normalized by sample. A total of 2000 permutations were
set up by keeping edge number constant. The significance of co-presences were evaluated
by a combination of Spearman and Pearson correlations and Bray–Curtis dissimilarity
(see e.g., [52,55], corrected for multiple testing using Bonferroni). Finally, the MCODE
Cytoscape plugin [56] with default settings was then used to detect highly connected
network modules. Only modules with an MCODE score greater than 2.0 were retained for
analysis [39].

4.6. Statistical Analyses

OTU abundance information was normalized to the abundance value of the sample
with the least number of sequences. Alpha diversity indices generated by SEED2 were used
to compare bacterial richness and diversity in tomato accessions. Statistically significant
differences in alpha diversity, the bacterial composition of the group of tomato varieties
and predictive metagenomics profiling data were evaluated using generalized lineal model
(GLM) with degree of domestication as fixed factor. We checked fixed factors for signifi-
cance with Wald test from car package [57] and multiple comparisons between levels of
the fixed factor were tested using Tukey’s test with the package lsmeans and emmeans [58].
For each model, residuals were examined for model validation. Beta diversity, or species
complexity differences between groups of tomato varieties, was determined by linear
discriminant analysis (LDA) effect size (LEfSe) using the MicrobiomeAnalyst web server.
Taxa with an LDA score > 4 were considered important biomarkers of each group given
that a p value < 0.05 indicates significant differences between groups. Data were analyzed
using R version 3.6.3 [59] and R Studio version 1.1.456 [60].

5. Conclusions

In our study we found that core bacterial microbiome is similar between tomato lan-
draces and modern commercial cultivars with small differences with wild tomato. These

https://www.kegg.jp/
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findings highlight the influence of the host genotype on the potential functions of soil
bacterial communities. Furthermore, we found that differences in eight biological metabolic
pathways between wild tomatoes compared with tomato landraces and modern commer-
cial. Thus, we conclude that all ancestral functional characteristics of bacteria have been
conserved across time. In the light of these results, it becomes apparent that the capacity of
soil bacteria to provide ecosystem services is affected by agronomic practices linked to the
domestication process, particularly those related to the preservation of soil organic matter.
We also assayed the relationships between functional units of bacteria growing on tomato
plants along a domestication gradient, finding the highest levels of connection between
bacterial communities driven by tomato landraces and their wild ancestors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10091942/s1, Table S1: Abundance of predicted functions related to root-associated
soil bacteria in the 27 tomato accessions. Table S2: Chemical characteristics of the soil. Table S3:
Tab-delimited taxonomy tables.
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