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Traumatic brain injury affects brain connectivity by producing traumatic axonal injury. This disrupts the function of large-scale

networks that support cognition. The best way to describe this relationship is unclear, but one elegant approach is to view

networks as graphs. Brain regions become nodes in the graph, and white matter tracts the connections. The overall effect of an

injury can then be estimated by calculating graph metrics of network structure and function. Here we test which graph metrics

best predict the presence of traumatic axonal injury, as well as which are most highly associated with cognitive impairment. A

comprehensive range of graph metrics was calculated from structural connectivity measures for 52 patients with traumatic brain

injury, 21 of whom had microbleed evidence of traumatic axonal injury, and 25 age-matched controls. White matter connections

between 165 grey matter brain regions were defined using tractography, and structural connectivity matrices calculated from

skeletonized diffusion tensor imaging data. This technique estimates injury at the centre of tract, but is insensitive to damage at

tract edges. Graph metrics were calculated from the resulting connectivity matrices and machine-learning techniques used to select

the metrics that best predicted the presence of traumatic brain injury. In addition, we used regularization and variable selection

via the elastic net to predict patient behaviour on tests of information processing speed, executive function and associative

memory. Support vector machines trained with graph metrics of white matter connectivity matrices from the microbleed group

were able to identify patients with a history of traumatic brain injury with 93.4% accuracy, a result robust to different ways of

sampling the data. Graph metrics were significantly associated with cognitive performance: information processing speed

(R2 = 0.64), executive function (R2 = 0.56) and associative memory (R2 = 0.25). These results were then replicated in a separate

group of patients without microbleeds. The most influential graph metrics were betweenness centrality and eigenvector centrality,

which provide measures of the extent to which a given brain region connects other regions in the network. Reductions in

betweenness centrality and eigenvector centrality were particularly evident within hub regions including the cingulate cortex

and caudate. Our results demonstrate that betweenness centrality and eigenvector centrality are reduced within network hubs,

due to the impact of traumatic axonal injury on network connections. The dominance of betweenness centrality and eigenvector

centrality suggests that cognitive impairment after traumatic brain injury results from the disconnection of network hubs by

traumatic axonal injury.
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Introduction
Traumatic brain injury (TBI) often results in traumatic

axonal injury, which damages long-distance white matter

connections (Johnson et al., 2013). Patterns of white matter

damage following TBI can be measured using diffusion

tensor imaging (DTI) (Basser et al., 1994; Kinnunen

et al., 2011; Bonnelle et al., 2012). Damage to specific

white matter tracts is sometimes associated with specific

cognitive problems following TBI (Kinnunen et al., 2011).

However, patterns of traumatic axonal injury are generally

widespread and highly variable across individuals (Sidaros

et al., 2008; Kinnunen et al., 2011; Hellyer et al., 2013).

This can produce complex effects on brain network func-

tion (Sharp et al., 2014). Therefore, understanding the ef-

fects of traumatic axonal injury on brain function and

behaviour is likely to require a detailed investigation of

the global effects of traumatic axonal injury on brain

connectivity.

One elegant approach to studying the structure and func-

tion of brain networks is to represent connections between

regions in a graphical form. A complex collection of graph

metrics has been developed to describe the connective prop-

erties of ‘nodes’ within such graphs (Rubinov and Sporns,

2010). Recently, these approaches have begun to be applied

to studies of the effects of TBI (Nakamura et al., 2009;

Caeyenberghs et al., 2014; Han et al., 2014). Hubs of in-

formation exchange within the brain are abnormal across a

range of disease states and may be particularly vulnerable

to the effects of traumatic axonal injury, as diffuse damage

to white matter tracts has a differentially large effect on

highly connected regions (Pandit et al., 2013; Crossley

et al., 2014). Betweenness centrality is a measure of the

fraction of shortest paths in a network that pass through

a given node (Fig. 1A–C). Hubs tend to have high values of

betweenness centrality, as they efficiently connect other

brain regions, and the betweenness centrality of hubs is

reduced when they lose connectivity with other parts of

the network. Eigenvector centrality is a self-referential

metric that assigns a high level of importance to nodes if

they are connected to other nodes that are themselves

highly connected. The eigenvector centrality of a node is

decreased if its neighbours lose connectivity with their local

hubs (Fig. 1D).

It is unclear which graph metrics are the most neurologic-

ally informative and how these relate to cognitive impair-

ment after TBI (Rubinov and Sporns, 2010). We have

previously studied the graph theoretical properties of

brain network activity after TBI using functional MRI,

showing reductions in betweenness centrality after TBI

within the posterior cingulate cortex—a major hub region

(Pandit et al., 2013). Here, we extend this work by com-

prehensively examining the graph theoretical properties of

network structure after TBI, with the integrity of network

connections defined using DTI.

We used a method of estimating traumatic axonal injury

after TBI that does not involve tractography in patients,

and so is robust to the artefacts in tracts produced in pa-

tients with low fractional anisotropy (Squarcina et al.,

2012). We tested the hypotheses that changes in graph

metrics following traumatic axonal injury would: (i) accur-

ately differentiate patients with a previous history of TBI

from healthy age-matched controls; and (ii) predict the

extent of clinically significant cognitive impairment com-

monly seen following TBI. We began by mapping the loca-

tion of traumatic axonal injury in a similar way to previous

work (Kinnunen et al., 2011), an important initial step in

interpreting the subsequent graph theoretical results. We

hypothesized that traumatic axonal injury would impact

most severely on the structural connections of hubs, defined

in this study as brain regions showing high betweenness

centrality. Therefore, we also expected to see graph metrics

that describe the degree to which brain regions act as hubs

as being the most discriminatory in patient/control classifi-

cation, and as being the most predictive of neuropsycho-

logical outcome.

Materials and methods
A high-level overview of our methods is provided in Fig. 2.
Probabilistic tractography of DTI, performed in an independ-
ent group of five healthy control subjects, was initially used to
define an atlas of masks covering the location of �11 000
tracts between 165 cortical and subcortical grey matter regions
(Fig. 2B). This tract atlas was applied to fractional anisotropy
maps preprocessed with tract-based spatial statistics (TBSS) for
a separate set of 25 healthy controls and 52 patients with TBI,
21 of whom were assessed as having likely traumatic axonal
injury on the basis of the presence of microbleeds on T2*
imaging (Fig. 2A) (Smith et al., 2006). In this way, an individ-
ual 165-region white matter connectivity matrix was produced
for each subject (Fig. 2C). Graph metrics were calculated from
these connectivity matrices using the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010). The metrics were then
used as: (i) training variables in support vector machines
(SVMs) (Fig. 2E) for patient/control differentiation (Fig. 2F);
and (ii) predictor variables for regression analysis of neuropsy-
chological outcome following TBI (Fig. 2G).

Subjects

Fifty-two TBI patients (n = 35 males, mean age � SD
36.90 � 11.75 years) with no present or previous drug or al-
cohol abuse and no neurological or psychiatric disorders prior
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Figure 1 Betweenness centrality and eigenvector centrality. (A) Betweenness centrality is high for highly-connected hubs (red node),

and can increase or decrease depending on the pattern of disconnection in the surrounding network. Configuration 2 in the top centre shows a

fully connected network. The betweenness centrality of the red node decreases if connections to its neighbours are removed (configuration 1).

Conversely, the betweenness centrality of the red node can increase if peripheral connections amongst its neighbours are removed (configuration

3). Connectivity matrices are shown below their respective networks, with the first node being defined as the central red hub, the second node as

the white node ‘northwest’ of the red node, and each of the remaining five nodes being counted clockwise in the network. Note that self-

connections and bi-directional paths are ignored. (B) Calculations of betweenness centrality values for the examples in A. Once again, self-

connections and bi-directional paths are ignored. If two paths tie for the shortest route between two white nodes then both are counted toward

the denominator of the betweenness centrality calculation. (C) Brain regions with the top 10% values of betweenness centrality for control

patients, superimposed onto a standard MNI 152 T1 atlas. (D) Eigenvector centrality is high for nodes that connect to other nodes that are

themselves highly connected (configuration 2). The eigenvector centrality of the red node decreases if its neighbours lose connectivity with their

surrounding nodes (configuration 1). The eigenvector centrality of the red node is not affected if the hubs to which it is connected lose peripheral

connections, as the central nodes in the hubs remain fully connected (configuration 3).
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to injury were included in this study. Structural MRI was
acquired on average 37.56 months after injury. All subjects
were assigned a moderate/severe classification of injury severity
according to the Mayo Classification System (Reitan, 1958).
Microbleeds, which are often considered as a surrogate marker
of traumatic axonal injury in the absence of clear ground
truth, are plainly visible on T2* sensitive gradient echo se-
quences. Twenty-one patients showed microbleeds on T2*
images, as assessed by a senior neuroradiologist. Details of
structural MRI findings and mechanism of injury are shown
in Supplementary Table 1. Initial analyses were run on the
group of microbleed patients, as these provided a group with
high confidence of the presence of traumatic axonal injury. We
then extended the cognitive analyses to the larger group of
non-microbleed patients to test whether the optimal combin-
ation of graph metrics defined on the microbleed group gen-
eralized to predict cognitive function in the new group of
patients. Seven of the 21 microbleed patients showed evidence
of contusions. As the presence of contusions could potentially
act as a confound in the results, all analyses were repeated for
groups of patients with and without contusions. In addition,
25 age-matched control subjects (n = 12 males, mean age � SD

33.40 � 10.20 years) with no history of neurological or psy-
chiatric disorder were recruited. All subjects provided written,
informed consent prior to recruitment. The Hammersmith,
Queen Charlotte’s and Chelsea Research Ethics Committee
gave ethical approval for this study.

Image acquisition protocols

All subjects underwent standard T1, T2* and diffusion
weighted imaging according to the following parameters: T1

images were collected using standard stock Philips sequences
with a matrix of 208 � 208, in-plane resolution:
0.93 mm � 0.93 mm. 150 slices, with thickness 1.2 mm, repe-
tition time = 9.685 ms, echo time = 4.59 ms. T2* imaging was
collected using a T2*-weighted fast gradient echo sequence
with a matrix of 512 � 512 in-plane resolution
0.45 mm � 0.45 mm. Twenty-four slices with thickness 4 mm,
slice gap 1 mm, repetition time = 718 ms, echo time = 16 ms.
Diffusion-weighted imaging was collected using four runs
for diffusion-weighted volumes, with gradients applied in
16 non-collinear directions, for a total of 64 directions for
each subject. Standard scanning protocols were used and the

Figure 2 Overview of methods. (A) Skeletonized fractional anisotropy maps were estimated for 21 patients with TBI with microbleed

evidence of traumatic axonal injury and 25 healthy controls using TBSS. (B) Probabilistic tractography was used to define the location of tracts

between 165 grey matter (GM) regions of interest (ROIs) in five separate healthy control subjects. These tracts were thresholded and binarized to

form masks of individual white matter tracts, which were used to sample fractional anisotropy within each tract at the intersection between white

matter skeletons and the tract mask. (C) A white matter (WM) adjacency matrix was filled with fractional anisotropy values for the connections

between each of the 165 brain regions for every subject. (D) Graph metrics were calculated from the adjacency matrices. (E and F) Support

vector machines were trained to differentiate between TBI patients and controls. (G) Graph metrics were regressed against neuropsychological

testing data.
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following settings applied for all scans: b-value = 1000, four
images with no diffusion weighting (b = 0 s/mm2) were inter-
leaved between blocks of 16 diffusion directions, 73 contigu-
ous slices, slice thickness = 2 mm, matrix 128 � 128 (voxel
size = 1.75 � 1.75 � 2 mm3) and field view 224 mm. All ima-
ging data were obtained with a Philips Intera 3.0 T MRI scan-
ner with an 8-channel array head coil. Sensitivity encoding
(SENSE) was used with an under-sampling factor of 2.

Neuropsychological assessment

Patients and a subset of healthy controls underwent a detailed
battery of standardized neuropsychological tests either on the
same day or within a few days of their MRI scanning. In this
study we focused our analysis on three measures of cognitive
function: (i) information processing speed using accurate re-
sponse median reaction times in a visual choice reaction
task; (ii) executive function using the Trail Making Test alter-
nating switch-cost index; and (iii) associative memory using
the immediate recall measure of the People Test of the Doors
and People Test (Reitan, 1958; Baddeley et al., 1994; Hellyer
et al., 2013). We selected these particular tests because they are
sensitive to cognitive impairment following TBI and because
we have previously studied them extensively in relation to TBI
(Kinnunen et al., 2011; Hellyer et al., 2013).

Probabilistic tractography

Abnormalities in DTI measures produced by TBI can bias the
estimation of tractography in patient groups (Squarcina et al.,
2012). Therefore, to generate an unbiased atlas of tracts, we
performed probabilistic tractography between 165 cortical and
subcortical grey matter regions in an independent group of five
healthy control subjects (n = 2 males, mean age � SD
31.00 � 12.06 years) (Fig. 2B). The same T1 and DTI se-
quences as reported for the main study were acquired on the
same scanner. All subjects gave informed consent.

Briefly, structural T1 images were segmented into 165 cor-
tical and subcortical grey matter masks according to the
Desikan-Kilaney grey matter atlas, using Freesurfer (Desikan
et al., 2006; Greve and Fischl, 2009). Grey matter masks were
transformed to native diffusion space by application of an
affine registration between T1 and diffusion space, calculated
using boundary-based registration from Freesurfer (Greve and
Fischl, 2009). Each of these masks was used as a seed and
target region for probabilistic tractography performed, using
a two-crossing fibre model in Probtrack (Behrens et al., 2003).
For each mask/target pair, 5000 streamlines were randomly
seeded from each voxel within the seed mask. Only streamlines
that reached any voxel within the target mask were retained.
This process was iterated over each seed/target pair. Where no
seed streamline reached any target voxel, probability distribu-
tions were discarded, resulting in an atlas for each subject
containing a total of 11 604 tracts (5476 interhemispheric,
6128 within hemispheres). For each subject, each of these
tracts was projected into MNI-152 space using FLIRT and
averaged across the group, generating a mean distribution
for the location of each tract across the five control subjects.
To create masks from which fractional anisotropy could be
sampled in the patient/control experimental groups, these
tract distributions were thresholded and binarized such that
the top 5% strongest voxels within the distribution were

retained, providing a conservative estimate of the location of
the tracts within MNI-152 space.

Estimation of individual connectivity
matrices

Diffusion imaging for patients and age-matched controls were
preprocessed according to standard protocols using the FMRIB
Diffusion Toolbox (FDT) (Behrens et al., 2003). As a first step,
a tensor model was fitted to the raw diffusion data (using the
FDT) to create fractional anisotropy images, which were then
brain-extracted using the brain extraction tool (BET) (Smith,
2002). The FMRIB non-linear registration tool was then used
in aligning the fractional anisotropy data from all subjects into
a common space using a b-spline representation of the regis-
tration warp field (Rueckert et al., 1999; Andersson et al.,
2007). Next, the thinned mean fractional anisotropy images
were used to create a mean skeleton, representing the centres
of all tracts common to the group. The tract atlas generated by
probabilistic tractography was then projected through individ-
ual skeletons in MNI-152 standard space and the mean frac-
tional anisotropy at the intersection of the tract and mask
calculated, allowing for the estimation of individual connect-
ivity matrices (Squarcina et al., 2012).

We explored the effects of varying network sparsity by
thresholding the fractional anisotropy matrices generated for
patients and controls at different levels. Matrices were thresh-
olded in terms of standard deviations of fractional anisotropy
values below the mean of the control group. A range of stand-
ard deviation multiples was used, from 0.5 to 5.0 in steps of
0.5 (i.e. decreasing penalization with increasing threshold).
Connections from each individual’s connectivity matrix that
were smaller than the given threshold were set to 0. The in-
clusion of the weakest fractional anisotropy values in connect-
ivity matrices may sometimes result in overfitting due to
increased noise levels (Li et al., 2013). As such, we ran our
analyses for a range of different thresholds, in order to dem-
onstrate that the results remained consistent once the weaker
fractional anisotropy values were eliminated from the data.

Furthermore, we tested the robustness of results using differ-
ent initial parcellation schemes. These were created by combin-
ing pairs of adjacent regions to generate a scheme with
approximately half the number of regions. Average fractional
anisotropy values for the tracts from the new combined re-
gions were then re-estimated. As all regions have more than
one neighbour in the original parcellation scheme, the adjacent
regions used to create the new averaged scheme were selected
at random. This process was performed twice with different
randomly selected adjacent regions. This resulted in two new
sets of connectivity matrices (sizes 91 � 91 and 92 � 92) for
all subjects.

Voxelwise diffusion tensor imaging
analysis

Voxelwise analysis of the fractional anisotropy was carried out
using TBSS in the FMRIB Software Library Diffusion Toolkit
(Smith et al., 2004). Briefly, the steps involved in TBSS pre-
processing were as follows: (i) all subjects’ fractional anisot-
ropy data were aligned into a common space using the FMRIB
non-linear registration tool, which uses a b-spline
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representation of the registration warp field; (ii) the group
mean registered fractional anisotropy image was thinned to
create a mean fractional anisotropy skeleton that represents
the centres of all tracts common to the group; and (iii) each
subject’s aligned fractional anisotropy data were then projected
onto this skeleton. Non-parametric permutation-based statis-
tics were used to explore differences in fractional anisotropy
between patients and controls, using FMRIB’s randomize func-
tion with 5000 unique permutations (Smith, 2002). Multiple
comparison correction was performed using threshold-free
cluster enhancement and thresholded at P5 0.05 for presen-
tation. A detailed description of the voxelwise analysis of this
group of patients has previously been presented (Hellyer et al.,
2013).

Graph theoretical analysis

A total of 24 graph metrics (Fig. 2D) were calculated from the
white matter connectivity matrices (Fig. 2C). Only graph met-
rics applicable to undirected connectivity matrices were used,
as fractional anisotropy does not provide information about
the directionality of water diffusion. It is unknown, a priori,
whether binary or weighted metrics are more useful for accur-
ate classification. Weighted connections reflect more informa-
tion about the range of fractional anisotropy values, whereas
binary metrics make fewer assumptions about the relationship
between fractional anisotropy and graph topology. Given this
uncertainty, both binary and weighted versions of applicable
metrics were included in the analyses.

Summaries of all graph metrics used in this study are pro-
vided in Supplementary Table 2 and more in-depth descrip-
tions of the metrics in the Supplementary material. In brief,
the simplest graph metric is ‘degree’, defined as the number of
neighbours connected to a given node (Göttlich et al., 2013;
Jan et al., 2013; Vives-Gilabert et al., 2013). ‘Strength’ is clo-
sely related to degree, but with the weightings (here mean
fractional anisotropy values) of the connections taken into ac-
count (Hwang et al., 2013; Goñi et al., 2014; Xue et al.,
2014). A number of graph metrics build upon the concept of
‘path length’. If nodes A and B are separated by one other
node C, then the path length between A and B is equal to 2
(regardless of physical distance), as a total of two edges must
be traversed. ‘Betweenness centrality’ is a metric that depends
upon the deconstruction of a graph into path lengths and is
defined as the ratio of the number of shortest paths passing
through a given node to the total number of shortest paths
between all other nodes in the network. Another measure of
network hubs that has gained considerable attention in recent
years with the rise of the page-rank algorithms of internet
search engines is ‘eigenvector centrality’. This is a self-referen-
tial metric that assigns a high level of importance to a node if
it is connected to other nodes that are themselves important.

Support vector machine analysis:
identification of TBI

We investigated which graph metrics produced the most ac-
curate classification of patients and controls. This was per-
formed using SVMs implemented in the LIBSVM
classification library (Platt, 1999; Chang and Lin, 2011). We
used a linear kernel, as this allows for interpretation of the

weight vector (i.e. the relative importance of each feature in
the prediction), which was subsequently used to rank the im-
portance of the metrics in identifying TBI. SVMs were initially
trained using all 24 (network average) graph metrics, as
derived from white matter connectivity matrices. To identify
the most informative metrics, after each round of SVM train-
ing, the least important metric (in terms of its weight vector)
was removed and a new SVM trained with the remaining met-
rics. This process was repeated until only a single metric re-
mained. The accuracy of the classifier was recorded at each
stepwise removal. Data from healthy controls and patients
with microbleeds were used to train the SVMs. We used re-
peated random subsampling validation, with a random selec-
tion of n subjects removed from both the patient and control
group for each machine, repeated 1000 times for each n from
1 to 10. We tested a range of training/validation split sizes
because leave-one-out cross-validation methods, although low
in bias, are sometimes associated with high degrees of variance
(Cawley, 2006).

We then investigated which brain regions were the most
important for the identification of TBI. This was achieved by
calculating the vector output (i.e. 165 values per subject) of the
most influential metric in the combination of metrics with the
highest classification accuracy. This resulted in one value of the
graph metric being assigned to each of the 165 brain regions
across all subjects. We then performed a t-test across brain
regions to assess which of the 165 brain regions were signifi-
cantly different (in terms of their graph metric outputs) be-
tween patients and controls. Each t-test was performed at a
significance level of 5%. Multiple comparison correction was
performed via the false discovery rate (FDR) method, at a
significance level of 5%.

Prediction of cognitive outcome

Next, we explored whether graph metrics could be used to
predict cognitive outcome following TBI. We used variable
selection via the elastic net at various degrees of regularization
to associate linearly independent graph metrics with each of
the three behavioural measures considered, using the
MATLAB Statistics Toolbox (MathWorks; Zou and Hastie,
2005). Model accuracy was assessed by the explained variance
and statistical significance of the model with the minimum
mean squared error. We then investigated the influence of in-
dividual brain regions in predicting clinical outcome. This was
achieved by using variable selection and regularization via the
elastic net for the vector output of the most influential metric
(i.e. with the highest regression coefficient) against neuropsy-
chological testing data. We used an elastic net fit with � = 0.5
and 10-fold cross-validation and display results for a range of
the Lambda shrinkage parameter. Further details on the elastic
net are provided in the Supplementary material. This allowed
us to track the effect that increasing penalization has on the
relative importance of graph metrics in predicting cognitive
outcome. The exclusion of a certain graph metric at one
value of Lambda does not necessarily mean that it is redun-
dant across all models, as a change in the shrinkage parameter
Lambda may result in it reappearing in a different combin-
ation of metrics. This is advantageous, as the exclusion of a
graph metric at one value of Lambda does not mean it is ‘lost’
going forward, as would be the case with stepwise regression
techniques. Rather, we were able to treat each new level of
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shrinkage in a ‘blind’ manner and assess the relative import-
ance of the non-redundant metrics within each new model.
The cross-validation technique allows us to track the mean
squared error of the elastic net fitting across the explored
range of Lambda. We can thereby arrive at an optimal value
of Lambda, for which the associated combination of graph
metrics achieves minimum mean squared error. Regression
was performed first for the subset of healthy controls and pa-
tients with microbleeds for which neuropsychological testing
data were available (choice reaction task: n = 28, executive
function: n = 29, associative memory: n = 29), and then separ-
ately for the subset of controls and the larger group of patients
without microbleeds for which neuropsychological testing data
were available (choice reaction task: n = 40, executive function:
n = 50, associative memory: n = 52).

Definition of network hubs

Next we wished to explicitly test the hypothesis that the brain
regions identified in the analyses function as network hubs. As
such, we identified the regions with the highest values of
betweenness centrality in the healthy control group. Network
hubs were defined as being in the top 10% of betweenness
centrality values for all of the regions investigated.

Results

Evidence of traumatic axonal injury in
the patient group

Microbleeds are a marker of underlying traumatic

axonal injury. Therefore, we expected the voxelwise ana-

lysis of fractional anisotropy in patients with TBI to show

evidence of abnormal DTI. We have previously shown that

fractional anisotropy is reduced in groups of patients with

microbleeds (Kinnunen et al., 2011) and, as expected, our

TBI group showed widespread significant reductions in

fractional anisotropy across most of the white matter

(Fig. 3). In keeping with previous work, peaks of statis-

tical difference between the groups were seen in the

corticospinal tracts, forceps major, left inferior fronto-

occipital fasciculus, uncinate fasciculus, anterior thal-

amic radiation, and cingulum bundle (Supplementary

Table 3). These results suggest that structural damage to

white matter connections partially disconnects brain net-

works, in particular affecting long-range connections,

which would be expected to impact significantly on graph

metrics.

Identification of traumatic axonal
injury from graph metrics

We next assessed whether graph metrics could be used to

differentiate patients and controls. Through stepwise re-

moval of graph metrics we were able to arrive at an opti-

mal combination that identified patients in 93.4% of cases

(Fig. 4). This is comparable to the sensitivity that can be

achieved (94%) using raw voxelwise fractional anisotropy

measures in a similar SVM framework (Hellyer et al.,

2013). The top performing SVM achieved high accuracy

for different training/validation split sizes of repeated

random subsampling validation (Supplementary Table 4).

Progressive removal of the first 16 graph metrics (in

order of increasing feature importance) increased classifica-

tion accuracy, as a result of reduced overfitting in the

SVMs. Betweenness centrality had the highest feature im-

portance within the most accurate combination of graph

metrics, with the value of its weight vector lying 41 SD

above that of the next highest metric. SVM accuracy

decreased when additional metrics were either added or

subtracted from the optimal combination. Using random

permutation testing, the most accurate SVM was significant

(P5 0.001) with high accuracy for all white matter con-

nectivity matrix thresholds considered (Supplementary

Table 5). In almost all combinations of metrics, either

binary or weighted betweenness centrality had the highest

feature importance. For the best performing SVM in the

microbleed group, the peri-callosal part of the cingulate

gyrus (encompassing both anterior and posterior regions

adjacent to the corpus callosum), the right inferior and

middle frontal regions and the left caudate region showed

significantly decreased betweenness centrality for patients

versus healthy controls (Fig. 4B) (FDR P = 0.05). In con-

trast, the brainstem showed a significant increase in

betweenness centrality (FDR P = 0.05) for patients versus

healthy controls. Qualitatively similar results were observed

for the subgroup of patients without contusions, with the

most accurate machine being significant (P5 0.001) across

the same range of fractional anisotropy thresholds

(Supplementary Table 5). The bilateral caudate and peri-

callosal cingulate gyrus were in the top 10% of between-

ness centrality values (Fig. 1C), suggesting that the effects

of traumatic axonal injury affects network hub regions

with respect to patient/control classification.

5

0

z = 41z = 35 x = -10

t

R

Figure 3 Evidence of traumatic axonal injury in patients.

The contrast of patients against controls shows white matter where

fractional anisotropy is significantly lower (red/yellow), providing

evidence for the presence of traumatic axonal injury. T-scores show

where P5 0.05 (corrected for multiple comparisons using thresh-

old-free cluster enhancement). Significant differences are shown

superimposed on a green white matter skeleton and the standard

MNI 152 T1 atlas.
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Prediction of behaviour

Information processing speed: choice reaction task

Eigenvector centrality (binary) was found to be the most

influential metric in the model with the lowest mean

squared error in predicting information processing speed

(P = 0.01, R2 = 0.64), with its regression coefficient lying

42 SD above that of the next highest metric in the opti-

mized selection (Fig. 5). The results remained significant

when one potential outlier with information processing

speed4 3 SD above the group mean was excluded

(P = 0.02, R2 = 0.61). Results were qualitatively similar

for the subgroup of patients without contusions, in which

eigenvector centrality (binary) was the most influential

metric (regression coefficient lying4 2 SD above that of

the next highest metric) in the combination with the

lowest mean squared error (P5 0.01, R2 = 0.83).

Eigenvector centrality (binary) fell with slowing informa-

tion processing speed in the left peri-callosal region, right

cingulate cortex (anterior and posterior) and right superior

frontal gyrus. Scatter plots showing the relationship be-

tween eigenvector centrality (binary) and information pro-

cessing speed in these regions are shown in Supplementary

Fig. 1.

Executive function

As with information processing speed, eigenvector central-

ity (binary) was the most influential measure (2 SD above

that of the next highest metric) in explaining executive

function in the combination of metrics with the lowest

mean squared error (P = 0.03, R2 = 0.56) (Fig. 6). Results

were qualitatively similar for the subgroup of patients with-

out contusions, in which eigenvector centrality (binary) was

the most influential metric (regression coefficient lying 2 SD

above that of the next highest metric) out of the combin-

ation with the lowest mean squared error (P = 0.02,

R2 = 0.73). Eigenvector centrality (binary) fell with dete-

riorating executive function in the left peri-callosal region,

right superior frontal gyrus, left thalamus, left caudate, left

insula and right cingulate cortex. Scatter plots showing the

relationship between eigenvector centrality (binary) and ex-

ecutive function in these regions are shown in

Supplementary Fig. 2.

Associative memory

Betweenness centrality (binary) in isolation had the lowest

mean squared error in predicting associative memory

(P5 0.01, R2 = 0.25) (Fig. 7). Similar results were observed

for the subgroup of patients without contusions, in which

betweenness centrality (binary) in isolation had the lowest

mean squared error in predicting associative memory

(P5 0.01, R2 = 0.54). Betweenness centrality (binary) fell

with deteriorating associative memory in the left superior

frontal gyrus, left orbitofrontal cortex and left caudate.

Scatter plots showing the relationship between betweenness

centrality (binary) and associative memory in these regions

are shown in Supplementary Fig. 3.

Replication cohort and alternative
parcellation schemes

The best predictive models for the cognitive analyses from

the microbleed positive group of patients were ‘locked’ and

applied to a completely separate group of moderate/severe

TBI patients without microbleeds. The same entry variables

(i.e. graph metrics) were used but the coefficients in the

multiple linear regression models were allowed to vary.
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Figure 4 Prediction of traumatic axonal injury using graph

metrics. (A) The vertical colour bar (top left) represents the

relative feature importance of all graph metrics when used together

in training a SVM to differentiate between patients and healthy

controls. Eigenvector centrality was found to be the least important

feature and was removed from the training data. The vertical colour

bars (A, bottom) represents the relative (renormalized) feature im-

portance of each of the remaining 23 metrics for a retrained SVM.

This stepwise removal of least influential metrics was repeated until

a single metric (binary betweenness centrality) remained. At each

stage of metric removal, the accuracy of the retrained SVMs was

recorded above the colour bars. The most influential metric

(betweenness centrality) is outlined in red and white, within the

combination of metrics that yielded the highest achievable SVM

accuracy. (B) Sagittal, coronal and axial brain slices with brain re-

gions overlaid in red where betweenness centrality was significantly

lower in patients with microbleed evidence of TBI, for the optimal

combination of graph metrics in A. (C) Additional axial brain slices

as in B.
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The application of these models to the new data showed a

significant association between graph metrics and informa-

tion processing speed (P = 0.02, R2 = 0.44), executive func-

tion (P5 0.01, R2 = 0.47) as well as associative memory

(P50.01, R2 = 0.18). For information processing speed

and executive function there were significant associations

between cognitive performance and eigenvector centrality

(binary) in similar regions for both the microbleed and

non-microbleed cohorts. For information processing speed

all regions showing a significant association in the micro-

bleed group also showed a significant association in the

non-microbleed group (Supplementary Fig. 4). In addition,

the left frontal pole also showed a significant association.

For executive function there were significant associations in

all regions except for the left insula (Supplementary Fig. 5).

In addition, there was a significant association for the

region around the left anterior collateral sulcus. The re-

gions in which betweenness centrality (binary) showed

significant associations with memory in the microbleed

group failed to show significant associations in the non-

microbleed group. However, the right precuneus showed

a significant association (Supplementary Fig. 6). The results
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Figure 5 Prediction of reaction time on the choice reaction task. (A, bottom) The relative importance of graph metrics in the regression

against reaction time via elastic net. The regularization is performed at 100 different levels of penalization (Lambda)—with increasing penalization
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coefficients. Top: the mean squared error is plotted for every value of Lambda. (B) Axial brain slices with brain regions overlaid in red where
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were also robust to both alternative parcellation schemes

used, with the optimal combination of metrics being signifi-

cant for patient classification (P5 0.001) and neuropsycho-

logical assessment, with choice reaction task (P5 0.02,

R24 0.48), executive function (P5 0.03, R24 0.22) and

associative memory (P5 0.03, R24 0.36) across the two

alternative parcellation schemes.

Discussion
The brain can be described as a complex network with

white matter tracts connecting brain regions. TBI often

damages white matter tracts, as a result of traumatic

axonal injury (Kinnunen et al., 2011; Bonnelle et al.,

2012; Squarcina et al., 2012). This type of damage affects

the function of brain networks and is often associated with

poor clinical outcome (Sharp et al., 2014). An important

goal is to identify the relationship between complex varying

patterns of axonal injury and abnormal behaviour.

Widespread white matter damage is often present after

TBI (Kinnunen et al., 2011), as we have again demon-

strated here. However, the cognitive effects of this

damage to brain network connections are unclear. Graph

theory provides an elegant way of describing complex net-

works and so is potentially an informative way of investi-

gating the effects of traumatic axonal injury on network

structure and function (Caeyenberghs et al., 2012; Pandit

et al., 2013). A wide range of graph metrics have been

developed for the analysis of brain networks, but it is un-

certain which are the most biologically informative

(Rubinov and Sporns, 2010). In this study, we performed

a comprehensive analysis of changes in graph metrics fol-

lowing TBI, demonstrating that graph metrics can be used

to predict the presence of TBI and explain significant

amounts of individual variability in cognitive impairment

following TBI. Hub regions within the brain are high cost

and high value, and are particularly vulnerable to abnor-

mality across a range of disorders (Crossley et al., 2014).

Our findings converge with our previous study of brain

function after TBI, and suggest that cognitive impairment

is particularly produced after TBI when highly connected

hub regions such as the cingulate cortex and caudate nuclei

are disconnected as a result of axonal injury (Pandit et al.,

2013).

Betweenness centrality and eigenvector centrality were

prominently affected by TBI. The relationship between

white matter disruption and betweenness centrality is po-

tentially complex, but can be better understood by con-

sidering a simplified example of a brain network (Fig. 1).

In the fully connected version of this toy network (Fig. 1A),

the central hub node is connected to all other nodes. White

matter injury has the effect of removing or damaging con-

nections in the network, which is illustrated by the removal

of edges. The effect of this disconnection depends on the

type of connections removed. If connections to the central

node are affected (hub disconnections), then the between-

ness centrality of the central node decreases, as fewer short-

est paths now pass through that region. In contrast, if

connections at the edge of the network (peripheral discon-

nections) are removed, then this has the effect of increasing

the central node’s betweenness centrality, due to a larger

number of shortest paths passing through the region.

Similar increases or decreases in betweenness centrality

could theoretically be produced by the addition of new

connections. However, this is unlikely to be relevant to

the interpretation of network changes following TBI, as

although brain plasticity can produce new synaptic connec-

tions after TBI at the microscopic level, new large-scale

white matter tracts do not tend to form (Wieloch and

Nikolich, 2006; Kinnunen et al., 2011). Eigenvector cen-

trality is also affected by disconnections within the simpli-

fied network shown in Fig. 1D. Eigenvector centrality

measures a form of ‘nested’ connectivity, whereby a

node’s eigenvector centrality is dependent on the number

of connections made by its neighbours. As such, the eigen-

vector centrality of the central node in the toy network

decreases if its neighbours suffer hub disconnections, but

remains unaffected if they suffer peripheral disconnections.

In other contexts this definition of centrality has proved
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Figure 6 Prediction of executive function. (A) Regression of

graph metrics against executive function via elastic net as described

in Fig. 5. (B) Axial brain slices with brain regions overlaid in red

where reduction in eigenvector centrality (binary) significantly pre-

dicted executive function.
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valuable in analysing the importance of individuals within

social networks by measuring the importance of their ac-

quaintances, as well as in determining the importance of

websites in page rank algorithms i.e. by calculating how

many high profile websites link back to a given site.

Across our analyses we found that reductions in the

betweenness centrality and eigenvector centrality of highly

connected hub regions were prominently associated with

the presence of TBI and/or greater cognitive impairment

across TBI patients. As predicted, reductions in between-

ness centrality and eigenvector centrality were particularly

observed in parts of the cingulate cortex. Other brain hubs

were also related to cognitive function, the caudate (asso-

ciative memory) and the thalamus (processing speed). These

hubs have high metabolic rates and are thought to be im-

portant for the integration of information processing by

connecting neural processing in functionally distinct intrin-

sic connectivity networks (Raichle and Snyder, 2007; van

den Heuvel and Sporns, 2013; Leech and Sharp, 2014). As

shown by our simplified example, reductions in the

betweenness centrality of hub regions signify disconnections

of hubs from the rest of the network, in keeping with the

voxelwise TBSS analysis that provides evidence of wide-

spread white matter damage. Similarly, generalized
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1706 | BRAIN 2015: 138; 1696–1709 E. D. Fagerholm et al.



disconnection of hubs would reduce eigenvector centrality.

As network hubs are a central part of a high-capacity back-

bone for global brain communication, damage to their con-

nections would have the effect of reducing the ability of the

brain to efficiently transmit information, by increasing the

number of connections it takes for one region to commu-

nicate with another (van den Heuvel et al., 2012).

Therefore, our results suggest that the relative disconnec-

tion of network hubs by traumatic axonal injury is an im-

portant mechanism by which long-term cognitive

impairment in the domains of information processing,

memory and information processing speed are produced.

The brainstem showed an increase in betweenness cen-

trality in following TBI. This is a highly connected region

that participates in a large number of shortest paths be-

tween other brain regions, and therefore should be

viewed as a network hub (Fig. 1C). The brainstem’s

betweenness centrality may increase as a result of traumatic

axonal injury on other nodes which are situated more cen-

trally in the graph. If more of the shortest paths between

other regions are damaged as a result of traumatic axonal

injury, it is possible that a larger number of shortest paths

may pass through the brainstem post injury. This effect

might be accentuated by the eccentric position of the brain-

stem in the graph, as illustrated by the effect of peripheral

disconnection in our simplified model (Fig. 1A and B).

We have previously shown, in an overlapping group of

subjects, that the betweenness centrality of the posterior

cingulate cortex is reduced following TBI in graphs gener-

ated from functional MRI data (Pandit et al., 2013). In this

study, connectivity was assessed between regions involved

in cognitive control, rather than across the whole brain. A

similar graph theoretical analysis to the current study

showed evidence for a shift away from a small-world archi-

tecture, with reduced network efficiency and increased path

lengths, associated with a marked reduction in betweenness

centrality within the posterior cingulate cortex. In the cur-

rent work, our results provide convergent evidence from

measures of structural connectivity for the importance of

betweenness centrality as a measure of network dysfunction

after TBI, and also highlight the importance of disruption

to the cingulate cortex region in the long-term effects of

TBI. Structural and functional connectivity are highly

related, with regions showing dense white matter connec-

tions being likely to exhibit highly synchronized brain ac-

tivity (high functional connectivity) (van den Heuvel et al.,

2009). Therefore, changes in betweenness centrality seen in

functional brain networks are likely to reflect the under-

lying structural disconnection of the same regions produced

by traumatic axonal injury.

Our results are broadly in keeping with another recent

study that used graph theoretical analysis of DTI data to

demonstrate cognitively important network abnormalities

after TBI (Caeyenberghs et al., 2014). Their results also

suggested that TBI showed network features in keeping

with a less efficient capacity to integrate information

across the brain. We extend this work by using machine

learning techniques to identify the most biologically import-

ant graph metrics in a data-driven way. We also explicitly

explore the relationship between changes in graph metrics,

and the extent to which affected regions are indeed func-

tioning as network hubs. Finally, we use a distinct way of

assessing underlying fractional anisotropy, which is less

prone to artefacts than other existing methods.

The graph theoretical results we explored are dependent

on the accuracy of the underlying DTI analyses. A particu-

larly important factor is how accurately the amount of

damage in each white matter tract can be estimated in

the TBI patients. Graph analysis can be calculated from

connectivity matrices derived from tractography performed

in individual patients. This approach has the potential limi-

tation that tractography may fail or produce spurious re-

sults when tracts are damaged, as low fractional anisotropy

values generate significantly increased uncertainty for the

tractography algorithms (Hua et al., 2008; Squarcina

et al., 2012). To avoid this confound, we used a method

for estimating tract structure that does not involve tracto-

graphy performed in the patient group, but instead involves

the generation of tract templates in an independent group

of healthy controls, which may then be used as a mask to

sample fractional anisotropy in the patient population

(Squarcina et al., 2012). This approach depends on accur-

ate registration between standard and patient space, which

we achieve using non-linear registration algorithms that we

have previously found to be highly accurate when applied

to DTI data (Bonnelle et al., 2012).

A potential limitation in our study is the presence of partial

volume effects, which are present if the registration of indi-

vidual images into standard space is not sufficiently accurate.

We deal with this issue by using TBSS to skeletonize the

white matter tracts, thereby minimizing the chance of partial

volume effects, due to the fact that only the centres of the

tracts are being included in the analysis. However, by deal-

ing with one potential limitation in this way, we produce a

second. Axonal injury can occur at the boundaries between

grey and white matter, and this will not be identified by our

TBSS analysis. This could lead to an overestimation of tract

integrity, as areas of damage are not identified. It will be

important for further work to investigate this possibility

using alternative methods. A further issue is the presence

of cortical contusions in some of the patients. To rule out

any related confound, we conducted our main analyses both

with and without contusion patients, resulting in qualita-

tively similar results, showing the consistent importance of

both betweenness centrality and eigenvector centrality in the

context of this work. It is also possible that the machine

learning techniques produce a solution that is only relevant

to the group of subjects used in the training phase. However,

the results were robust to varying the number of subjects left

out in the cross-validation, making this less likely to be a

major issue. We also locked the best performing combin-

ation of graph metrics in the cognitive analyses and applied

them to a completely new set of patients. A significant rela-

tionship remained for all neuropsychological testing data,
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suggesting that the findings were generalizable. The weighted

and binary forms of betweenness centrality and eigenvector

centrality are distinct measures and were important in the

prediction of TBI and the association with neuropsycho-

logical variables, respectively. However, the distinction be-

tween the binary and weighted versions of these metrics

cannot be easily interpreted in terms of any biological sig-

nificance in this study, due to the high degree of correlation

between the two metrics (P5 0.001).

In conclusion, our study demonstrates the importance of

hub-based metrics such as betweenness centrality and eigen-

vector centrality as measure of network disconnection after

TBI. Hub regions within the brain, which are important for

integrating information processing, show reduced between-

ness centrality, which in turn is related to the degree of dis-

connection of the hubs from the rest of the brain as a result

of traumatic axonal injury. Combinations of graph metrics

were able to explain large amounts of individual variability

in all three cognitive domains studied, suggesting that graph

metrics describing structural brain connectivity could prove

to be a useful description of the underlying cause for cogni-

tive impairments produced by TBI.
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