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Abstract

Quantifying biochemical reaction rates within complex cellular processes remains a key

challenge of systems biology even as high-throughput single-cell data have become avail-

able to characterize snapshots of population variability. That is because complex systems

with stochastic and non-linear interactions are difficult to analyze when not all components

can be observed simultaneously and systems cannot be followed over time. Instead of

using descriptive statistical models, we show that incompletely specified mechanistic mod-

els can be used to translate qualitative knowledge of interactions into reaction rate functions

from covariability data between pairs of components. This promises to turn a globally intrac-

table problem into a sequence of solvable inference problems to quantify complex interac-

tion networks from incomplete snapshots of their stochastic fluctuations.

Author summary

Statistical models are the dominant tool to interpret co-variability of molecular compo-

nents in cellular processes because they can be formulated for a subset of components

while leaving the full complexity of the processes unspecified. Their drawback lies in the

difficulty of translating statistical associations into causal interactions. In contrast, com-

plete mechanistic models of biochemical reaction networks are a powerful tool to describe

physical interactions, but often necessitate making a large number of assumptions such

that each individual assumption is only marginally tested in global model comparisons

with data. We introduce a novel inference method that combines the power of both

approaches by exploiting testable predictions for only partially specified mechanistic mod-

els. We present numerical proof-of-principle examples in which we reconstruct biochemi-

cal reaction rates from partial observations of variability within simulated biochemical

reaction networks in the absence of cell division. In contrast to existing approaches, our

algorithm does not require perturbations, temporal information, observing all
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components within a complex network, or complete model knowledge. Its key ingredients

are partial knowledge of qualitative network interactions paired with high precision prob-

ability distributions to quantify stochastic fluctuations within biochemical reaction

networks.

Introduction

Quantifying interactions between components within a complex network from snapshots of

their activity is a challenge common to many areas of science. For example, understanding cel-

lular processes requires quantifying biochemical reaction rates between molecules while typi-

cal high-throughput methods such as single-cell sequencing [1, 2], flow cytometry [3–5], or a

combination thereof [6] generate static population snapshots of a subset of cellular

components.

Covariability of components within cellular processes is typically analyzed using statistical

associations [7–13] because accurate mechanistic modelling of biochemical reactions is chal-

lenging for complex systems due to the large number of unknown parameters and interactions

[14]. However, molecular abundances are set by underlying physical interactions that affect

each component’s rate of production and degradation rather than its instantaneous concentra-

tion. How molecular components affect each other is then difficult to infer from statistical

associations [15], especially in the absence of perturbation experiments [16, 17]. For example,

even perfectly linear rate dependencies will lead to non-linear statistical relations between

observed values of cellular components.

Mechanistic models that quantify causal interactions between components would thus be

preferable to describe biochemical reaction networks. However, constructing complete mecha-

nistic models requires describing every interaction in a system. For complex cellular processes,

often only some of the mechanistic details of molecular interactions will be known in detail,

some aspects will have to be estimated from comparable systems reported in the literature, and

some will have to be postulated because of a lack of direct experimental evidence. Here, we

introduce a novel data analysis approach to deduce mechanistic rate dependencies one interac-
tion at a time using incompletely specified mechanistic models, see Fig 1. Its key advantage is

that only the interactions of the local network need to be specified and the mechanistic details

of regulation or degradation of all other components within the network do not need to be

modelled. This approach exploits a local qualitative understanding of network interactions

through probability balance equations [18] that must be satisfied as long as we know how one

component is made and degraded. In contrast to existing work [13, 19, 20], our approach does

not require temporal information, experimental perturbations, or complete observation of all

components within an interaction network.

We present numerical evidence for four distinct network topologies in which we success-

fully infer how one component affects the production rate of another from their observed joint

probability distribution without without making any assumptions about the dynamics of the

non-observed components. This proof-of-principle across four different network dynamics

illustrates how qualitative knowledge of local network interactions can be translated into quan-

titative rate functions using only static snapshots of naturally occurring population variability.

Background theory

Describing the dynamics of some components within a complex interaction network in which

the interactions between many components are unknown may seem impossible. However, we
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can trivially do so as long as we are content with describing one component’s dynamics in

terms of components directly affecting it. The actual dynamics are fundamentally indetermin-

able for incomplete models but if components of interest are experimentally measurable their

empirically observed covariability can be used to close the problem and constrain interaction

rates as described below.

We follow the previously established approach [18] to characterize “local” system dynamics

within a completely general complex reaction network with probabilistic events

x����!
rkðxÞ x þ dk k ¼ 1; 2; 3; . . .

where the state vector x = (x1, x2, x3, . . .) of abundances can be arbitrarily high-dimensional,

the kth reaction changes levels of component Xi by dki, and the reaction rates rk(x) are arbi-

trarily non-linear functions of the state vector. This notation is motivated by biochemical reac-

tion networks but many areas of science encounter stochastic systems whose dynamics are

determined by the corresponding general chemical master equation

dPðx; tÞ
dt

¼
X

k
rkðx � dkÞPðx � dk; tÞ� rkðxÞPðx; tÞ½ � ð1Þ

where P(x, t) denotes the probability of the system to be in state x at some time t. Directly solv-

ing Eq (1) is impractical for many complex cellular processes of interest because, generally, not

all reactions rates are known, and because non-linear rates in complex systems generally ren-

der them analytically intractable due to moment closure problems [21, 22], although excep-

tions exist [23].

However, even when many details of a system are unknown, any given molecular compo-

nent Xi that reaches a time-independent stationary state with probability distribution Pss(xi)

Fig 1. Our goal: Determining how one component affects the production rate of another from observing their joint probability distribution in a

sea of unobserved components with unknown dynamics. The joint probability distribution between two components P(xi, xj) varies enormously

between systems even for identical regulation of Xi through Xj. However, previous work has shown that all systems with a given interaction between the

two components satisfy invariant probability flux balance relations [18]. Here, we demonstrate that such relations can translate qualitative local network

knowledge into quantitative rate functions using only the observed joint probability distributions between Xi and Xj even when the dynamics within the

rest of the network is unobserved and completely unknown.

https://doi.org/10.1371/journal.pcbi.1010183.g001
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must satisfy

0 ¼
X

k

½hrkðxÞjxi ¼ m � dkiiPssðxi ¼ m � dkiÞ � hrkðxÞjxi ¼ miPssðxi ¼ mÞ�

8m 2 IN0

ð2Þ

which follows from simple summation of Eq (1) over all other variables and has been derived

and discussed previously [18, 24]. Here, and throughout the article, angular brackets denote

averages over the stationary state distribution.

In this paper, we demonstrate that Eq (2) can be exploited to infer rate functions even when

we know nothing about the dynamics of all other components Xj for j 6¼ i such that conditional

rates cannot be predicted from incompletely specified models. Note, Eq (2) is not an approxi-

mate coarse-graining but corresponds to an exact balance relation for any variable in a larger

complex system at stationarity. This stationarity assumption allows for a broad class of biologi-

cal systems to be analyzed: Eq (2) requires that the joint probability distribution of interest

does not change over time, which can be verified experimentally from population snapshots

taken at different time-points. Thus, the only dynamics excluded from our analysis is transient

behaviour such that stationary probability distributions are not accessible from experimental

data. Even explicitly time-varying systems that technically never reach a stationary state, such

as deterministic oscillations, satisfy Eq (2) when considering their time-averaged probability

distributions and rates [18]. Although care has to be taken when comparing such time-aver-

ages with population averages in growing populations [25].

Next, we present results to show that stationary state probability distributions contain

enough information to reconstruct an entirely unknown rate function in an otherwise unknown

network of interactions. This is in contrast to an analysis of deterministic steady-states which

only give one balance equation for each variable of interest and do not contain enough informa-

tion to reconstruct a general rate function that is not parameterized by a single parameter.

Results

When the rates of all reactions directly changing Xi-levels are known, Eq (2) represents a self-

consistency check that must be satisfied by the observed joint probability distribution between

Xi and all variables directly affecting those rates. Next, we show how this relation can be

“inverted” to determine rate functions from observed probability distributions.

While Eq (2) must provably hold for all stationary states, any empirically observed distribu-

tion will exhibit sampling errors which can have significant effects. For example, any real

experiment will have some maximum valuemmax for which Xi is observed and thus Eq (2) will

clearly be violated for unbounded systems because Eq (2) cannot balance whenm =mmax due

to the lack of sampling of the rarest states. Inverting the equation system Eq (2) to identify the

functional dependencies of rk(x) thus requires minimizing deviations from the predicted rela-

tions. In general, minimizing the sum of squared differences remains an underdetermined

problem if we treat each value of the rate function as an independent unknown. However,

under the assumption that biochemical rate functions are sufficiently smooth the problem

can be solved by limiting the variability of the rate functions across neighbouring states (Mate-

rials & methods).

To demonstrate how rate functions can be successfully inferred from partial observations of

some components within a larger network we consider four different example networks that

exhibited oscillations, bistability, fluctuation control, and noise enhancing feedback. Such

markedly different global dynamics was already achievable with non-linear three-component

feedback networks while conserving the reaction rates for one of the components, see Fig 2
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Fig 2. Probability flux balances can determine biochemical rates regardless of global network dynamics. Fixing

how the production rate f(x2) of X3 depends on X2-levels, we considered four different global network topologies

within the class defined by Eq (3), that exhibit diverse system dynamics and variability in X3 (left column). The insets

of the right column depict numerically observed joint distributions P(x2, x3) corresponding to 100,000 independent

snapshots. Although probability distributions differed greatly between the four systems, Eq (4) could identify the

functional dependence of the production rate of X3 based on the numerical convex optimization algorithm detailed in

the Materials & Methods. We find near perfect agreement between the inferred rate (orange crosses) and the true rate

function (dashed blue line) regardless of a system’s global dynamics. This inference of f(x2) does not utilize any

temporal information, its only input is the stationary joint probability distribution between the two components of

interest. It relies on observing fluctuations across a wide range of X2-states as illustrated by the shaded probability

distribution P(x2) with deviations occurring where X2 was rarely or never observed. While the degradation rate of X3

was assumed to be known, no information about how its production rate depends on X2, or the dynamics of X1, X2 was

used.

https://doi.org/10.1371/journal.pcbi.1010183.g002
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(left panels). We thus present the performance of our algorithm when applied to simulation

data from those simple systems. But the algorithm can equally be applied to much larger sys-

tems with hundreds of variables as long as the reactions directly affecting Xi are qualitatively

known.

Numerical proof-of-principle examples

The conserved part of our test systems that we want to reconstruct from simulation data corre-

sponds to a stereotypical biochemical reaction rate in cells. In particular, we specified that the

production of component X3 is affected by X2 through a Hill-type function f(x2) and X3 mole-

cules are degraded independently leading to the following class of reaction systems

x3 ����!
f x2ð Þ x3 þ 1

x3 ����!
x3=t3 x3 � 1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
conserved part

þ
X1;X2

production& degradation

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
various feedback dynamics

;
ð3Þ

where τ3 denotes the average life-time of component X3 and f ðx2Þ ¼ lxn
2
=ðKn þ xn

2
Þ. For the

test examples presented in Fig 2 (dashed blue lines in right panels) we chose τ3 = 1 and λ = 80,

n = 2, K = 40.

The reaction dynamics of the other variables, i.e., how X1, X2 affect each other and how

they are affected by X3 were chosen to achieve diverse system dynamics and are specified in

the Materials & Methods. Regardless of the X1,X2-dynamics, the probability balance equation

Eq (2) applied to the specified reaction in Eq (3) imply that the above systems must satisfy the

following probability balance relations at stationarity

Pðx3 ¼ mþ 1Þ

Pðx3 ¼ mÞ
¼
hf ðx2Þjx3 ¼ mi
ðmþ 1Þ=t3

8m 2 IN0: ð4Þ

Although Eq (4) is reminiscent of detailed balance, individual backwards and forward reac-

tion fluxes do not need to balance in general for systems that do not operate at thermodynamic

equilibrium such as cellular processes. The condition we exploit here is that the marginal prob-

ability distribution does not change at stationarity, and thus that each state must on average

balance incoming and outgoing probability fluxes. The contrast with detailed balance is

directly apparent in systems with dimeric degradation of X3 as discussed in a later section.

As detailed in the Materials & Methods, we employed a numerical algorithm to approxi-

mately solve Eq (4) for f(x2) and thus infer how the X3 production rate depends on X2 from the

observed P(x2, x3). To do so we generated exact realizations of the above stochastic processes

using the standard Doob-Gillespie algorithm [26, 27]. We then sampled X2, X3 from the

numerically observed stationary distribution to generate an observed joint probability from

N = 100, 000 independent samples. Any information about the dynamics of X1 was discarded

because our method does not utilize any information beyond the pairs of components under

consideration. The numerical algorithm is straightforward and detailed in the in the Materials

& Methods. In short, a convex optimization algorithm can identify the f(x2) that minimizes Eq

(4) for the numerically observed P(x2, x3). Doing so requires finding a large-dimensional but

finite solution vector with elements fn≔ f(x2 = n) over the observed states that solves a regular

least-squares problem as defined in Eq (9). Standard convex optimization allows to find a solu-

tion vector constrained to be non-negative and sufficiently smooth by penalizing large second

derivative terms as detailed in the Materials & Methods. The results were a near perfect infer-

ence for the production rate of X3 in all systems as illustrated by the orange crosses in Fig 2.
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These numerical proof-of-concept examples thus illustrate how the balance equations Eq (4)

can be used to reconstruct the functional form of f(x2) from pairwise observation of X2, X3 in

the absence of any temporal information and independent of any information about the vastly

different global system dynamics.

Note, in these successful proof-of-principle examples we deliberately made no assumption

about f(x2) beyond its smoothness and non-negativity. Alternatively, one could, e.g., assume

that f(x2) is a Hill-function and identify its characterizing parameters K, n, λ through minimiz-

ing violations of Eq (4). However, this necessarily requires performing a non-linear optimiza-

tion with all the drawbacks that entails compared to a linear optimization. If one knows that f
(x2) is a Hill-function, one can always fit a Hill-function through the f(x2) obtained from our

algorithm and identify K, n, λ that way.

To fully specify a rate function rather than a finite table of values, e.g., through fitting a Hill

function or simply continuing f(x2) = const. above and below the largest and smallest state,

requires additional a priori information. Because such information cannot be deduced from

the experimental observations we refrain from doing so throughout the manuscript.

Also note, that when X2 varies very slowly f(x2) can be directly read off from the conditional

averages hf(x2)|x3i as discussed in the next section. The above algorithm solves the problem of

determining f(x2) when the timescales of X2 and X3 are not separable.

Sampling requirements

Information cannot be created from nothing and the above inference cannot determine rates

for states that were never observed. In practice, making additional assumptions to fill in gaps,

such as monotonicity or the functional form of f(x2), could prove useful (and are easily incor-

porated into the algorithm), but here we want to illustrate the core of the inference quality

based solely on the convex optimization of Eq (4). We thus define an error heuristic E to quan-

tify the quality of our inference by weighting errors in the rate function by the probability of

the system to have been observed in that state, relative to the overall average of the rate func-

tion hftruei:

E ¼
X

x2

jfinferredðx2Þ � ftrueðx2Þj

hftruei
Pðx2Þ : ð5Þ

To illustrate how the relative time-scale of X2 and X3 affect this inference error E we con-

sider the above “noise enhancing” system (Materials & methods) for which changing lifetimes

did not introduce different system dynamics. For such systems, inferring f(x2) is straightfor-

ward when the variability of X2 is slow such that X3 has enough time to adjust to X2-levels and

the conditional average hx3|x2i directly identifies the production rate of X3 (SI). For faster

upstream fluctuations the effect of X2-variability on X3 decreases and the inference of the pro-

duction rate becomes more challenging. However, compared to the naive statistical approach

of interpreting conditional averages as rates, our inference algorithm based on Eq (4) reliably

identifies the correct rate function even when the time-scale of X2-fluctuations is fast relative

to X3, see Fig 3B. When the upstream variably becomes more than an order of magnitude

faster than X3 our inferred rate function deviates significantly from the true one when inferred

from a joint probability distribution constructed from N = 100, 000 samples. However, even in

this unfavourable regime with a 40-fold separation of time-scale between the upstream and

downstream variable such that the conditional average hx3|x2i levels-off, N = 5 × 106 were

enough sample observations to correctly infer f(x2), see Fig 3D.
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Note, that the parameter τ3 is structurally unidentifiable by our approach. However, if it is

unknown, our approach will still determine τ3 � f(x2), i.e., we can identify the shape of the rate

function but not its scale.

Upregulated vs. downregulated production rates

While the above examples exhibit vastly different global system dynamics the functional form

of the production rate of X3 was conserved across all systems. Next, we demonstrate that our

inference method works for arbitrary Hill-type functions for the production rate. We simu-

lated the noise enhancing three-component system (Materials & methods) from Fig 3 with

differently shaped Hill-functions f ðx2Þ ¼ lxn
2
=ðxn

2
þ KnÞ by systematically varying the parame-

ters K, n. The tested range of parameters reflects biologically relevant different shapes, includ-

ing negative n corresponding to X2 suppressing X3, small values of n such that X3 is barely

Fig 3. Experimentally achievable sampling leads to accurate inference even when fast upstream variability masks

rate dependencies. A) The number of data points required to successfully infer f(x2) from an empirical P(x2, x3)

depends on the relative time-scales between the two components of interest. Simulations of the noise enhancing three-

component system (Materials & methods) show that several thousand measurement samples can be enough to reliably

infer the rate dependence f(x2) when upstream fluctuations are relatively slow, i.e., τ2 > τ3. B) When upstream

fluctuations are fast, the downstream variable does not have time to adjust and the conditional average hx3|x2i no

longer follows f(x2) as indicated by the grey line. In contrast, our inference method based on Eq (4) accurately

estimates the actual rate function from N = 100, 000 samples. The orange crosses depict an example of one inference

while the shaded area displays the standard deviation of individual inferences from different samples of the same

process. C) As the upstream fluctuations in X2 become faster, the inference gets worse when using the same number of

sampling points. However, even for systems in which X2, and X3 time-scales are separated 40-fold, the production rate

f(x2) can be accurately inferred fromN = 5 × 106 samples (panel D). Such sampling is experimentally achievable using

flow-cytometry approaches to characterize single-cell heterogeneity [28].

https://doi.org/10.1371/journal.pcbi.1010183.g003
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affected by X2, as well as strongly cooperative effects with n! ±4. As illustrated in Fig 4A, the

inference works satisfactorily for N = 100, 000 across a broad range Hill-functions with specific

examples of successful inference depicted in Fig 4C, 4D and 4E. Note, that those rate functions

could not be inferred for states that were never (or extremely rarely) observed.

To determine the cause of unsatisfactory inferences as illustrated by an example in Fig 4F,

we utilize the general noise propagation relation [18] to describe all systems within the class of

Eq (3)

Varðx3Þ

hx3i
2

|fflfflfflffl{zfflfflfflffl}
Zx3 ;x3

¼
1

hx3i
þ
Covðx3; f ðx2ÞÞ

hx3ihf ðx2Þi|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Zx3 ;f

; I≔
jZx3 ;f
j

Zx3 ;x3

:
ð6Þ

Here, I quantifies how much X2-fluctuations affect X3-levels. We find that regions of unsat-

isfactory inference correspond to systems in which the upstream variability has only a small

effect on X3 (compare panels A and B of Fig 4) Inference in the regime where n� 0 can be sig-

nificantly improved through a simple cross-validation step as discussed in a later section.

Alternatively, enforcing additional constrains such as monotonicity can overcome this prob-

lem when applicable (SI).

Non-linear degradation rates

In all of the above systems, X3-molecules were degraded in a first-order reaction as is com-

monly the case for cellular components [29, 30] and would be approximately true for all cellu-

lar components that are not actively degraded but effectively diluted by cellular growth [31].

Next, we demonstrate that our inference method works equally well for systems in which X3

undergoes non-linear degradation reactions.

Analogous to Fig 4, we varied the shape of the production rate f(x2) in a class of noise

enhancing (Materials & methods) systems with the following conserved part

x3 ����!
f x2ð Þ x3 þ 1

x3 ����!
gx3 x3� 1ð Þ

x3 � 2

þ

X1;X2

production& degradation

2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
noise enhancing feedback

ð7Þ

where a non-linear degradation rate corresponding to a dimerization event was added. We

again find that our inference method works reliable for most parameters, see Fig 5A, with

unsatisfactory results corresponding again to parameter regimes in which the upstream vari-

able has only a marginal effect on the downstream fluctuations.

Additionally, we analyzed how the inference quality of f(x2) behaves for individual states.

As intuitively expected, we find that the inference error initially decreases/ 1=
ffiffiffiffi
N
p

as the

number of samples N increases. However, for large N a plateau becomes apparent that is most

severe for the most rarely observed states, Fig 5B. This behaviour was generally observed across

different classes of systems (SI). Explicitly accounting for the effects of sampling error may

lead to lower plateaus for the estimation errors with more advanced statistical methods to

invert Eq (4) but are beyond the scope of the current work.

Note, in these systems the component of interest X3 degrades as a dimer, such that its speci-

fied degradation rate in Eq (7) is non-linear, and the reaction eliminates two molecules at a

time. The probability balancing Eq (2) therefore no longer involves just neighbouring states

and detailed balance is broken. Instead, the above systems must satisfy the following balance
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Fig 4. Different shapes of rate functions can be inferred. A) Changing the shape of the production rate f ðx2Þ ¼ lxn
2
=ðxn

2
þ KnÞ by varying K and n

while keeping time-scales fixed and equal, we find that the inferred reaction rates using Eq (4) and P(x2, x3) agree well with the true rate for N = 100, 000

samples across a broad range of the parameter regime. Data shown are for the same noise enhancing three-component system (Materials & methods) as

in Fig 3. B) Unsatisfactory inference of f(x2) corresponds to regimes in which the upstream variable has only little influence on the downstream

fluctuations as quantified by the relative importance term I defined in Eq (6). C,D,E) Successful inference examples for different Hill-functions

including repressing effects of X2 on X3. Any deviations from the true rate function are in the region in which the system is rarely or never observed. F)

Example of unsatisfactory inference when the reaction rate varies only little over the majority of observed states resulting in a small effect of X2-

fluctuations on X3-levels. The poor inference is also highlighted by the extremely broad shaded region indicating the standard deviation of inferred f(x2)

for identical systems subject to different random sampling.

https://doi.org/10.1371/journal.pcbi.1010183.g004
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equations 8m 2 IN0

gðmþ 1ÞmPðx3 ¼ mþ 1Þ þ gðmþ 2Þðmþ 1ÞPðx3 ¼ mþ 2Þ ¼ Pðx3 ¼ mÞhf ðx2Þjx3 ¼ mi: ð8Þ

Experimental measurement noise

Due to finite sampling and unavoidable measurement noise, empirically observed probability

distributions will not perfectly reproduce the stationary distributions of the underlying chemi-

cal reaction network. Next, we analyze how measurement noise affects our inference method

by explicitly accounting for small absolute and relative error terms as well as systemic under-

counting of molecules.

To simulate “empirically observed” probability distributions of the above noise enhancing

system (Materials & methods) we resampled from the exact stationary distribution P(x2, x3)

while adding a two-dimensional normally distributed error with zero mean and a standard

deviation of σabs = 1, 3, 8 molecules respectively (SI). For small absolute errors, we find that the

inference method still succeeds to satisfactorily determine the original rate function, see Fig

6B. Note, adding Gaussian noise can lead to negative numbers of molecules. In our analysis of

additive noise we discarded those negative “measurements” and re-normalized the resulting

distribution.

Furthermore, we analyzed the effect of relative measurement noise by multiplying each

sampled data point with a two-dimensional normally distributed error term to simulate a rela-

tive error of 1%, 5%, 20% in the observed variables respectively (SI). In its current form, our

inference is significantly affected by large multiplicative noise because it causes the “measured”

probability distribution to differ significantly from the underlying stationary distribution of

Fig 5. Non-linear degradation does not affect the inference. A) For simulated systems with non-linear degradation of X3-molecules as defined in Eq

(7), the inference quality is satisfactory when using empirically determined joint probability distributions P(x2, x3) from N = 100, 000 samples. Plotted

are the inference error E for different production rates f ðx2Þ ¼ lxn
2
=ðxn

2
þ KnÞ. Poor inference corresponds to parameter regimes in which the upstream

variable X2 has only a negligible effect on the downstream variable X3, i.e., when K or n are small. Data are for the same noise enhancing three-

component system as in Fig 3 with the only difference that the degradation of X3 is now non-linear. B) For a given state, the relative error of the inferred

reaction rate f(x2) initially decreases/ 1=
ffiffiffiffi
N
p

(dashed lines) as the number of sampling pointsN increases. However, for largeN, the relative error

levels off, with higher probability states reaching a lower plateau than those only visited rarely. The inset depicts the true function and the specific states

considered here, as well as the resulting probability distribution of x2.

https://doi.org/10.1371/journal.pcbi.1010183.g005
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the stochastic process, see Fig 6C. Future variants of our inference algorithm may potentially

improve on this by performing explicit de-convolution steps [32] to estimate stationary state

distributions from experimentally recorded ones before exploiting Eq (2). In fact, measuring

error due to probabilistic undercounting can be exactly accounted for by determining the

probability p to detect a specific molecule, and applying our inference method to the re-scaled

probability distribution, see Fig 6A.

Weakly connected components

Our presented method relies on knowing that one component directly affects the production

rate of another. We thus obtained unsatisfactory inferences when the upstream variable barely

affects the downstream variable, as illustrated in the regime when n! 0 or K� hx2i, see

Fig 4A.

Breakdown of satisfactory inference in that regime can be prevented by explicitly consider-

ing the possibility that f(x2) is approximately constant across the observed stochastic fluctua-

tions of X2. Following a standard cross-validation approach, we can use one half of the

observed data as a “training set” [33]. Using this subset of data we infer f(x2) using our usual

unconstrained method but additionally perform a constrained optimization for constant pro-

duction rates, i.e., we find the best f(x2) = λ for some λ> 0. This by itself will not pick a con-

stant production rate over the freely optimized f(x2) because the latter has many more degrees

of freedom. However, because the free optimization overfits sampling errors when minimizing

deviations of Eq (4) in the regime in which f(x2) is approximately constant, it will do relatively

worse than a constant production rate when applied to the “validation set” of the data. Incor-

porating this cross-validation approach into our inference methods as detailed in the Materials

& Methods, removes the most unsatisfactory regime while leaving the successful inferences

unaffected as illustrated in Fig 7A (compare to Fig 4A) with an example detection of constant

f(x2) illustrated in Fig 7B.

Identifying constant production rates is a special case of the general problem of identifying

which component affects which in complex biochemical reaction networks [34]. Future

Fig 6. Small measurement noise does not prohibit accurate inference. A) Simulated “empirical” data (histogram) with binomial undercounting in

which each molecule is detected with a fixed probability p. Our inference algorithm identifies the correct reaction rate if we simply multiply the

measured molecule numbers by 1/p again to obtain the input function (dashed blue line). If we do not know p then the algorithm identifies the correct

shape f(x2) but cannot identify the correct scale of X2 over which it varies. B) Simulated “empirical” data (grey histogram) with added absolute

measurement errors modelled as a two-dimensional Gaussian with zero mean and standard deviation of σabs = 8. This distribution is not identical to the

theoretical one (dashed black line) and leads to significant deviations in the inference (brown crosses). For smaller absolute errors we observe

satisfactory inference, as illustrated by the data for σabs = 1, 3. C) Simulating relative measurement errors by multiplying “observed” samples from the

exact stationary distribution with a random number from a two-dimensional Gaussian with mean one and standard deviation of σrel = 0.01, 0.1, 0.2. For

relative errors less than 10% we found satisfactory inference but larger errors led to unacceptable estimates for the production rate f(x2) because of the

significant deviation of the “empirical” distribution (grey histogram) from the exact stationary distribution (dashed black line) illustrated for σrel = 0.2.

Explicit de-convolution steps for known types of measurement noise may significantly improve the inference performance of future algorithms based

on Eq (2). D) Quantifying the inference error for absolute and relative measurement errors. Relative measurement errors larger than 10% led to

unsatisfactory inference.

https://doi.org/10.1371/journal.pcbi.1010183.g006
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variants of such a cross-validation approach might thus prove useful in identifying the topol-

ogy of network interactions based on Eq (4).

Limitations of the presented evidence

Multi-variable dependent rate function. In principle, the basic idea of matching proba-

bility fluxes can be applied to components with more than one birth and death reaction as

illustrated by the complete generality of Eq (2) which makes no assumption about the number

of production and degradation reactions for the species of interest. However, in our proof-of-

principle examples we successfully specifically inferred univariable rate functions f = f(x2).

Whether our algorithm can also successfully identify more complex rate functions such as

f = f(x2, x1) will require future work.

Importantly, the value of our approach lies not necessarily in identifying arbitrarily com-

plex rate functions but in identifying simple rate functions in arbitrarily complex systems. The

benefit of our approach lies in the fact that it effectively “eliminates” network complexity when

reconstructing simple rate laws for local interactions between variables. Note, many complex

biological control systems indeed involve many simple interactions which in turn lead to com-

plex systems through feedback loops and an overall large number of interacting components

[35].

Experimental accuracy. As presented, our method requires highly accurate and discrete

probability distributions which is motivated by measuring small numbers of molecules in cells

where such discreteness is fundamentally built into the problem and single-molecule accuracy

is possible [36–40].

This type of data is at the forefront of what is technologically possible [41, 42] and many

current real-life experimental methods will be much less accurate than our simulated input

distributions. We have partially addressed this issue by analyzing the effect of experimental

errors in the form of Gaussian noise and probabilistic undercounting, see Fig 6. However in

Fig 7. Cross-validation improves inference in regions with constant to near constant rates. A) Analogous to Fig 4 we change the shape of the

production rate f ðx2Þ ¼ lxn2=ðxn2 þ KnÞ by varying K and n. Shown here is the error of the inferred f(x2) when applying our method with an additional

cross-validation step as detailed in the Materials & Methods. The quality of the inference is significantly improved in the regime in which the

production rate is essentially independent of the upstream variable around n� 0. B) Directly comparing the cross-validated and freely inferred f(x2)

when applied to a system in which the true production rate was constant. The cross-validated answer picks out the constant production rate, whereas

the naive approach gives a varying estimate due to overfitting of Eq (4).

https://doi.org/10.1371/journal.pcbi.1010183.g007

PLOS COMPUTATIONAL BIOLOGY Quantifying biochemical reaction rates from static population variability

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010183 June 22, 2022 13 / 21

https://doi.org/10.1371/journal.pcbi.1010183.g007
https://doi.org/10.1371/journal.pcbi.1010183


real-world experiments, the discreteness of measurements may become completely washed

out and sampling might not be as high as in our input distributions obtained from 100,000

data points over around 100 discrete states. Generalizing our approach to continuous distribu-

tions and more sparsely sampled distributions with significant sampling error is left for future

work.

Growing and dividing cells. As is, our method cannot be directly applied to experimental

data from growing and dividing cells. Future work is required to demonstrate that our

approach could potentially be exploited to infer production rates of components from single-

cell data.

In the simplest case, biochemical reactions in growing and dividing cells can be modelled as

cyclo-stationary processes of periodically changing probability distributions [43]. In principle,

Eq (2) can be generalized to time-averages of time-dependent distributions (see supplement of

[18]) but all our proof-of-principle examples considered a stationary component of interest

undergoing first or second order degradation in the absence of cell divison. In contrast, much

recent progress has been made to analyze stochastic biochemical kinetics in cellular models

that include cell-division, gene replication, growth dependent effects, and variability in cell-

division times [44–49]. Future work should bring together the approach developed in this

manuscript with the existing work on modelling cell-cycle effects.

Additionally, in growing populations time-averaged ensemble averages do not agree with

population averages because the former corresponds to a uniform cell-age distribution

whereas in a growing population we must have twice as many newborn cells as dividing cells

which leads to a non-uniform age-structure [50]. As presented, our evidence corresponds to

cellular populations of constant size. Future work is required to show the same approach

works in populations with growing number of cells, which in principle can be related to the

time-averages in the cyclo-stationary version of Eq (2) as long as the age-structure of cells in

the population is known [25].

Formulating stochastic models in terms of concentrations rather than abundances might

partially resolve these issues because on average concentrations are the same at the beginning

and the end of the cell-cycle unlike abundances which must double on average.

Discussion

Early aeronautical engineering faced a challenge analogous to that of current synthetic biology.

While the qualitative requirements for motored flight were well known, designing a reliable

flyer required a breakthrough in quantitatively understanding each subproblem through

painstaking experimental measurements [51].

Similarly, designing reliable synthetic circuits in biology requires a quantitative description

of biochemical reaction dynamics rather than qualitative network interaction models. Here,

we present a method that promises to iteratively turn a qualitative model of biochemical inter-

actions into a network of quantitative reaction rates. Given one arrow within a network of

interacting components, our method can identify the functional dependence of the actual reac-

tion rate, one interaction at a time, from fluctuations of a subset of components without having

to perturb the system.

Existing mechanistic modelling approaches often rely on temporal data [52–59] and gener-

ally have to be identified from data in one fell swoop [60–65] with all the reliability issues that

come with optimizing over many degrees of freedom at once. Prior work has established

approaches that can infer a small number of parameters from perturbation observations of a

subset of components in otherwise completely specified multivariable models that were

assumed to be a complete and correct representation of the process of interest [19, 66–68].
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Some work specifically determines instantaneous production rates from static snapshots of

partially observed networks [69], but these previous mechanistic approaches estimate rates

and parameters by assuming (near) complete knowledge of the entire network dynamics

whereas our approach does not rely on such information. Instead we leave all dynamics

unspecified that do not directly affect the component of interest.

While approaches that combine mechanistic models with Bayesian inference [70–73] have

been used to account for significant noise in experimental data, they too rely on inferring

parameters for fully defined mechanistic models all at once. Statistical approaches that rely on

perturbations [7–11] can be straightforwardly applied to static snapshots of incompletely

observed complex systems but fail to account for the dynamic ways in which one component

affects another, and thus do generally not quantitatively describe physical interactions between

components.

Our results show that we can reliably identify reaction rates independent of the larger net-

work structures, in contrast to previous approaches in which small models of gene expression

were inverted under the assumption they were correct as a whole and only a handful of param-

eter values needed to be determined [36, 74, 75].

The presented numerical proof-of-principle results establish that our presented algorithm

works across a broad range of tested systems and that the number of required observations for

algorithmic success is comparable to those accessible by modern experimental single-cell tech-

niques in biology such as flow-cytometry that routinely measure millions of isogenic cells at a

time.

As presented, our algorithm requires highly accurate input distributions, and we cannot

exclude the possibility that our method works only in theory but not in practice. However,

here we presented only the most basic inference algorithm to extract information from the

probability flux balance relations. We thereby established that the information contained in Eq

(2) is enough to reconstruct the shape of biochemical rate functions in principle. Hybrid

approaches that, e.g., combine statistical tools and neural networks with first-principle mathe-

matical modelling have been successfully used to identify parameters in biochemical reaction

network [19, 76]. We thus expect future work that combines advanced statistical methods with

our first-principle approach of extracting information from Eq (2) to outperform our naive

algorithm in the face of significant sampling or measurement error. Additionally, more general

approaches of utilizing Eq (2) may in the future be able to identify the network topology within

interaction networks from static snapshots of joint probability distributions. This is a problem

of immense current interest in systems biology, e.g., for detecting causal interactions from

static snapshots of single-cell RNA-seq data.

Materials & methods

Basic algorithm

To utilize probability distributions that contain sampling errors we write the balance

Eq (4) for our example systems as Gf = h, where Gij = P(x2 = j, x3 = i), fi = f(x2 = i) and

hi = (i + 1)P(x3 = i + 1)/τ3. To avoid overfitting the solution f to sampling noise we add a regu-

larization term that effectively penalizes the discrete “second derivatives” fi+2 − 2fi+1 + fi. The

effect of this regularization is to smoothen the resulting reaction rate function. Motivated by

complex cellular processes where f(x2) represent biochemical reaction rates, we furthermore

constrain the solution vector f to be non-negative. We thus solve the following optimization

problem

min
f
fjjGf � hjj2 þ �jjGfjj2g s:t: f � 0 ð9Þ
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where Γij = δi,j − 2δi,j+1 + δi,j+2 is the regularization matrix and � corresponds to the strength of

the smoothening. The strength of this regularization parameter affects the quality of the infer-

ence. We found � ¼ 1=
ffiffiffiffi
N
p

to lead to satisfactory results because it appropriately decreases in

strength as the number of sampling pointsN increases. This regularization was used throughout

the paper. In other applications, alternative heuristics to choose � may prove useful to achieve

satisfactory results (SI). Note, that if the lifetime τ3 is unknown, the inference method will still

correctly identify τ3 � f(x2) meaning that we get the correct shape of the reaction rate function

up to an unknown scale-factor.

We solved Eq (9) using a standard convex optimization approach which is guaranteed to

converge to the optimal solution as a linear program [77]. The code is provided at https://

github.com/t-wittenstein/quantify-biochemical-rates. While it is straightforward to add fur-

ther constraints, such as monotonicity, about the solution function f(x2) we here deliberately

only present results without making any additional assumptions beyond Eq (9). Alternatively

one could utilize additional information about f(x2) and, say, fit a Hill-function directly by

minimizing Eq (9). However, this necessarily involves a non-linear optimization routine to

find the best-fit parameters K, n, λ which is in general less robust than the linear optimization

problem we solve above.

Cross-validation algorithm

In order to avoid overfitting systems when production rates are approximately constant we

compared our inferred production rate against a constant one as follows: We divided the sam-

pling data into two equally sized sets, and applied our inference method first to the “training”

set and then checked against a constant production rate using the second “validation” set [33].

To compare the two rates we calculated the violation of Eq (4) as the sum of all squared errors.

If the constant production rate’s error was smaller or within a 5% margin of the freely fitted

production rate from the training set, we determined a constant production rate to be the best

inference and optimized it over the whole data. Otherwise we applied our regular inference

method to the full data set instead.

Definition of example systems

We considered simple three-component systems in which the production and degradation

rates of X1,X2,X2 took the following form

xi � !
fiðxÞ xi þ 1

xi � !
xi=ti xi � 1

: ð10Þ

In particular, we simulated the following example systems depicted in Fig 2 where the pro-

duction and degradation rate for X3 was kept the same as specified in the main text while the

other components were subject to the following dynamics.

• Bistable system: f1ðx2Þ ¼ lxn
2
=ðKn þ xn

2
Þ þ c; f2ðx1Þ ¼ x1 with λ = 50, n = 6, K = 37, c = 15

and life-times τ1 = τ2 = 1.

• Oscillating system: f1ðx3Þ ¼ l1K
n1
1 =ðK

n1
1 þ x

n1
3 Þ, f2ðx1Þ ¼ l2x

n2
1 =ðK

n2
2 þ x

n2
1 Þ with λ1 = 50000,

n1 = 10, K1 = 0.1, λ2 = 80, n2 = 1, K2 = 100 and life-times τ1 = τ2 = 1.

• Noise controlling system: f1(x3) = λ1 x3, f2ðx1Þ ¼ l2K
n2
2 =ðK

n2
2 þ x

n2
1 Þ with λ1 = 50, λ2 = 3000,

n2 = 10, K2 = 10 and life-times τ1 = 50, τ2 = 1.
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• Noise enhancing system: f1 = 5, f2ðx1; x3Þ ¼ lxn
3
=ðKn þ xn

3
Þ þ cx1 with λ = 25, n = 4, K = 50,

c = 8 and life-times τ1 = τ2 = 1.

Data in Figs 3–7 correspond to the above noise enhancing system with modifications as

specified in the main text. The systems with non-linear degradation rate γx3(x3 − 1) were simu-

lated with γ = 2.

Supporting information

S1 Text. Supplementary Information of the paper: “Quantifying biochemical reaction

rates from static population variability within incompletely observed complex networks”.
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