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Summary

� A range of functional trait-based approaches have been developed to investigate commu-

nity assembly processes, but most ignore how traits covary within communities.
� We combined existing approaches – community-weighted means (CWMs) and functional

dispersion (FDis) – with a metric of trait covariance to examine assembly processes in five

angiosperm assemblages along a moisture gradient in Australia’s subtropics. In addition to

testing hypotheses about habitat filtering along the gradient, we hypothesized that trait

covariance would be strongest at both ends of the moisture gradient and weakest in the mid-

dle, reflecting trade-offs associated with light capture in productive sites and moisture stress

in dry sites.
� CWMs revealed evidence of climatic filtering, but FDis patterns were less clear. As hypothe-

sized, trait covariance was weakest in the middle of the gradient but unexpectedly peaked at

the second driest site due to the emergence of a clear drought tolerance–drought avoidance
spectrum. At the driest site, the same spectrum was truncated at the ‘avoider’ end, revealing

important information about habitat filtering in this system.
� Our focus on trait covariance revealed the nature and strength of trade-offs imposed by

light and moisture availability, complementing insights gained about community assembly

from existing trait-based approaches.

Introduction

An important aim of plant ecology is to understand how biotic
and abiotic conditions structure the composition of plant com-
munities (Weiher & Keddy, 1995; McGill et al., 2006). Whereas
processes such as dispersal limitation influence local community
composition (Kraft et al., 2015), habitat filtering is a major driver
of compositional turnover along steep environmental gradients
that span relatively short geographic distances. The importance
of habitat filtering is strongly supported by trait-based studies
showing how the ecological and physiological strategies of suc-
cessful species change systematically along gradients of moisture
availability (e.g. Cornwell & Ackerly, 2009) and temperature
(e.g. Laughlin et al., 2011).

Trait-based studies typically view communities as distributions
of trait values and then assess how moments of these distributions
change along gradients. Univariate trait analyses examine the
abundance-weighted (or ‘community-weighted’) distributions of
one trait at a time, typically focusing on means and variances of
these distributions. For example, declines in the community-
weighted mean (CWM) of leaf area along an aridity gradient
may be interpreted as abiotic filtering (Cornwell & Ackerly,
2009) where having larger leaves is assumed to be a less viable

strategy in drier environments, on average. Whereas CWMs have
revealed important insights about habitat filtering across a range
of systems globally, the approach implicitly assumes an optimum
trait value in each location (Shipley et al., 2006; Laughlin et al.,
2012), even though trait variation within communities is often
larger than between communities (Westoby et al., 2002; Bruel-
heide et al., 2018).

Multivariate trait-based approaches (Villéger et al., 2008; Lalib-
erté & Legendre, 2010; Blonder et al., 2014) focus on how the vol-
ume, spacing, or dispersion of multidimensional trait distributions
change along environmental gradients, with the common expecta-
tion that multi-trait functional diversity is high under favourable cli-
matic conditions and declines as conditions become drier or colder
(Spasojevic et al., 2014). Though many of these multivariate
approaches focus directly on trait variation within communities,
they can be difficult to interpret without also examining the disper-
sion patterns of individual traits, and they may even obscure assem-
bly processes if individual traits have opposing dispersion patterns
along environmental gradients (Spasojevic & Suding, 2012). Both
univariate and multivariate approaches also reveal little information
about trade-offs operating within communities.

Trait variation emerges within communities because trait-
based trade-offs permit multiple viable strategies to coexist in any
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given environment (Marks & Lechowicz, 2006; Falster et al.,
2017; Messier et al., 2017). When species are viewed as coordi-
nated ensembles of trait values, trade-offs are evident as differen-
tial coordination of multiple traits, and at the community scale
this can generate informative trait covariance among species
(Dwyer & Laughlin, 2017). Strong trait covariance is expected to
emerge in productive systems where light-driven trade-offs are
strong (Falster et al., 2017) and in systems limited by other
resources, such as water (Dwyer & Laughlin, 2017; Sanaphre-
Villanueva et al., 2022). For example, in mesic rainforests, trade-
offs associated with fast growth in high light vs survival in low
light allow many tree species to coexist (Sterck et al., 2006,
2011). Furthermore, tall individuals that reach the canopy attain
access to plentiful light but must overcome the challenges of
structural support (Niklas, 1992) and increasing hydraulic resis-
tance associated with long xylem path lengths (Ryan & Yoder,
1997; Koch et al., 2004), resulting in additional trade-offs related
to species’ potential heights in these productive mesic environ-
ments (Hietz et al., 2017).

In drier forests, a spectrum of drought-resistance strategies
emerges from trade-offs between hydraulic efficiency and hydrau-
lic safety (Sterck et al., 2011), though not all species conform
strongly to this trade-off globally (Gleason et al., 2016; Liu et al.,
2021). Hydraulic efficiency permits faster water transport during
favourable periods but increases the risk of embolism during
extended dry periods, whereas hydraulic safety sacrifices water
transport efficiency to reduce embolism risk (Baas et al., 2004).
At the extremes of this trade-off spectrum are species that tolerate
drought with safe strategies (e.g. low maximum heights, small
vessel lumens, high wood density, and small, toughened leaves)
and those with efficient hydraulics that avoid embolism risk in
droughts by shedding leaves and storing water (Eamus, 1999;
Méndez-Alonzo et al., 2013; Pineda-Garcı́a et al., 2013).

These light‑ and moisture-driven trade-offs are not mutually
exclusive (Sterck et al., 2006; Markesteijn et al., 2011; Liu et al.,
2019), but trait-based evidence of their relative importance can
likely be interpreted within the resource context of each commu-
nity (Funk & Cornwell, 2013). To this end, this study focuses on
five communities of rainforest angiosperms distributed along a
steep orographic moisture gradient in Australia’s subtropics. We
combine detailed floristic surveys with seven functional traits that
describe species’ light-acquisition and hydraulic strategies. We
start by using existing trait-based approaches to infer community
assembly processes. We then examine what additional informa-
tion can be obtained from a focus on within-community trait
covariance, including a simple and unbiased metric of trait
covariance borrowed from evolutionary biology. Specifically, we
assess support for the following hypotheses:
(1) CWMs of certain traits vary systematically along the mois-
ture gradient consistent with habitat filtering.
(2) Multivariate functional diversity (functional dispersion (FDis))
increases with mean annual precipitation consistent with habitat fil-
tering. As a result, it is lower than expected under random assembly
in the driest site and higher than expected at the wettest site.
(3) Trait covariance peaks at the dry and wet ends of the mois-
ture gradient, reflecting strong trait-based trade-offs associated

with moisture stress in dry sites and light capture in productive
sites. As a result, trait covariance is higher than expected under
random assembly at either end of the gradient and lower than
expected in the middle of the gradient.

Materials and Methods

Study site

The study was conducted in the Bunya Mountains National Park
(Supporting Information Fig. S1), 160 km west northwest of
Brisbane, the capital city of Queensland. The national park varies
in elevation from 550 m to 1100 m above sea level. Orographic
rainfall and fog result in a gradient of declining precipitation
from highest elevation to lowest (Butler, 2004), with the steepest
declines on the western side of the range. Rainfall is summer
dominant, and the driest month is August (late winter) on aver-
age (BOM, 2021a).

Surveying communities

Five rainforest communities (Table 1) were surveyed, spanning a
gradient of mean annual precipitation of 255 mm yr−1. From
wettest (965 mm yr−1) to driest (710 mm yr−1), the vegetation
types can be classified as complex notophyll vine forest (CNVF)
with Araucaria species, Araucarian notophyll vine forests, micro-
phyll vine forests, semi-evergreen vine thicket (SEVT), and
SEVT with Brachychiton rupestris (Queensland Herbarium,
2015). All communities were located on fertile loam soils derived
from Cainozoic basalt (Main Range Volcanics; 28.1–15.97 mil-
lion years ago; Raymond et al., 2012). Though selective logging
occurred on the mountain top and eastern slopes up until 60 yr
ago, our plots comprised primary canopy species and there were
no signs of selective logging.

Survey data consisted of three previously surveyed plots and
two newly surveyed plots. The existing data included three 1 ha
plots established by Butler (2004) at different elevations and
aspects (high, mid east, and mid west). In Butler’s (2004) survey,
the location and size of all woody, self-supporting individuals
> 2 m tall were recorded. All stems were mapped, identified to
species level, and their girth measured at breast height (1.3 m
above ground). We subsampled four 25 m × 25 m subplots
from the corners of these existing plots to match the sampling
design to our new plots. Only individuals ≥ 3 cm stem diameter
were included to capture individuals that had transitioned past
the sapling stage. This subsampling approach captured 87.5% of
species recorded across all three 1 ha plots surveyed by But-
ler (2004) and returned very similar abundance rankings of spe-
cies in each plot. Two additional communities were surveyed on
the lower eastern and western slopes to extend the coverage of the
orographic moisture gradient into the driest parts of the national
park (low east and low west). In these two additional communi-
ties, four 25 m × 25 m subplots were sampled in the same
arrangement as those subsampled from Butler’s (2004) data. In
each subplot, the stem diameter and identity of all self-
supporting woody individuals ≥ 3 cm was recorded.
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Climate data

The moisture gradient was quantified using topographically
adjusted climate data (100 m grid cells) developed by Harwood
et al. (2016). Values of mean annual precipitation (MAP) were
extracted for each of the plot locations using the extract() func-
tion from the RASTER package (Hijmans, 2021). All climate vari-
ables were highly correlated, and we selected mean annual rainfall
(millimetres) to represent the moisture gradient. We also
extracted the mean annual number of frost days for each site from
ANUCLIMATE 2.0 (Hutchinson et al., 2022).

Trait sample collection and measurement

Traits were chosen to capture expected light‑ and moisture-
driven trade-offs, while being feasible to measure on many spe-
cies across multiple sites (Table 2). Leaf, branch, and wood
samples were collected from the Bunya Mountains where possi-
ble. Additional branch samples were collected from the nearby
Yarraman State Forest. Branch samples were taken from mature
specimens located along sun-exposed forest edges (e.g. where
roads had been cut through primary forest) using telescopic pole
pruners.

Lamina area, specific leaf area, and leaf dry matter con-
tent Four sun-exposed branches per species were collected from
different individuals and stored in wetted plastic garbage bags
during transport. In the laboratory, branches were recut under
deionized water and left overnight to rehydrate in the dark. Fol-
lowing rehydration, four leaves from each individual were
selected to measure lamina area and fresh mass. In the case of
compound leaves, measurements were taken on leaflets. Leaves
(or leaflets) were scanned on a flatbed scanner (CanoScan LiDE
700F; Canon, Tokyo, Japan) and their area calculated using IMA-

GEJ (Schneider et al., 2012). Fresh mass was recorded with an
analytical balance (GR-200; A&D Co. Ltd, Tokyo, Japan).
Leaves (or leaflets) were dried to constant mass at 70°C for 3 d,
and their dry mass recorded. Specific leaf area (SLA; lamina area/
dry mass) and leaf dry matter content (LDMC; dry mass/fresh
mass) were then calculated for each individual leaf or leaflet.

Petiole vessel traits Petioles from three individuals of each spe-
cies were collected in the field and stored in the fixative
formaldehyde acetic acid. In the laboratory, the samples were
rinsed twice with distilled water and once with phosphate buf-
fered saline (PBS) before being stored in PBS. Samples were cry-
oprotected in 15% buffered sucrose, followed by 30% buffered
sucrose, before being mounted in optimal cutting temperature
compound and frozen on dry ice. Petiole samples were sectioned
using a cryostat (CryoStar NX70; Thermo Fisher Scientific,
Waltham, MA, USA) at 10 μm section thickness. Sectioned
samples were stained with 0.1% toluidine blue in 1% sodium
acetate buffer solution and mounted with coverslips using
DePeX. Vessels were imaged with a light microscope at ×40
magnification. For each sample, three distinct bundles of xylem
vessels were imaged. Xylem vessel wall thickness and lumen
diameter were measured using IMAGEJ (Schneider et al., 2012).
Within each bundle, five adjacent vessels were measured to
capture within-individual variation. For each vessel, the lumen
breadth b was calculated as the average of the widest and
narrowest lumen measurements, and vessel wall thickness t was
calculated as the average of three measurements per vessel (Fig.
S2). From these measurements we calculated species-level aver-
ages for lumen breadth (as an indicator of hydraulic efficiency)
and wall thickness/lumen breadth t/b (as an indicator of vessel
reinforcement; Blackman et al., 2018).

Wood density Wood density was measured on branch samples
(5–7 cm long, avoiding bifurcating tissue), from three individu-
als of each species. Bark was removed and the water displace-
ment method was used to estimate fresh volume. Samples were
dried for 3 d and weighed to determine dry mass. Owing to
limitations of the drying oven at the time of measurement, these
samples were dried at 80°C, which may not be hot enough to
dry wood to constant mass (Williamson & Wiemann, 2010).
We therefore redried 52 samples from a range of different plant
families at 105°C in a different oven, recalculated wood density,
and fitted a linear regression between the values obtained from
80°C (x) and 105°C (y) (R2 = 0.9992; Fig. S3). We then used
this regression to adjust all wood density values originally
obtained using 80°C.

Table 1 Elevation, coordinates and climate variables for each of the five sites extracted from topographically adjusted climate layers (Harwood
et al., 2016) and ANUCLIMATE 2.0 (frost days; Hutchinson et al., 2022).

Site
Elevation
(m) Latitude Longitude

Mean
Tmin (°C)

Mean
Tmax (°C)

Mean annual
frost daysa

Mean annual
precip. (mm)

Annual total water
deficit (mm)b

Precip.
seasonality
(ratio)c

High 1050 −26.8702 151.584 10.109 21.336 58.5 965.45 −243.40 −0.063
Mid east 950 −26.8662 151.5926 10.340 21.976 49.3 912.21 −312.84 −0.031
Mid west 950 −26.8309 151.5405 10.629 22.301 43.0 829.62 −334.47 0.034
Low east 625 −26.8582 151.6479 11.110 24.162 34.1 759.65 −539.90 0.043
Low west 595 −26.8358 151.4994 11.198 24.445 36 709.60 −606.36 0.137

Newly surveyed sites are shown in bold.
aMean number of days per year with minimum temperatures ≤ 2°C.
bDifference between mean annual precipitation and mean annual potential evaporation.
cSpring vs Autumn.
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Maximum heights Maximum heights Hmax for each species
were obtained from Harden et al. (2006), the most authoritative
reference for Australian subtropical rainforest species.

Calculating species means and gap filling from existing data
sources Individual trait values were averaged by species, and the
average was applied to each occurrence of each species (e.g. all
occurrences of Acalypha capillipes were given a lamina area of
80.3 mm2). We recognize that intraspecific trait variation likely
contributes to trait dispersion and covariance, but it was not pos-
sible to collect sun-exposed branches from mature individuals of
each species in each site. Using mean trait values for species was
supported by exploratory variance components analyses indicat-
ing that > 70% of variation in each trait was among species
(rather than within species), except for t/b in which 55% of varia-
tion was between species (Fig. S4). Lamina area, SLA, and t/b
were log-transformed, and maximum height and lumen breadth
were square-root-transformed to approximate normal distribu-
tions. Gymnosperms were excluded from analyses because they
lack xylem vessel elements.

In total, we collected samples and measured all seven traits for
58 species across the five sites. Traits could not be safely collected
from the giant stinging tree, Dendrocnide excelsa. For this species,
SLA was obtained from McCarthy et al. (2019), lamina area
from Lowman & Box (1983), and wood density from Ilic et
al. (2000). For the remaining traits, values of its close relative,
Dendrocnide photinophylla (which could be measured safely in
this study), were used. For all traits, we achieved at least 93%
coverage of individuals and at least 73% coverage of species in
each site (Table S1).

Statistical analyses

All statistical analyses were conducted in R v.4.1.1 (R Develop-
ment Core Team, 2021). Data from the four subplots in each
community were pooled prior to statistical analyses. For all analy-
ses, we weighted species by their pooled abundance in each site
instead of weighting by basal area, which biases towards species
that can attain larger sizes over smaller-statured strategies that are
equally viable in a given environment. Furthermore, we log-
transformed abundances to reduce the influence of hyperabun-
dant species that were especially evident in drier communities
(e.g. Backhousia angustifolia and A. capillipes).

To address the first hypothesis, we examined how mean trait
values per site varied along the moisture gradient. Rather than
precalculating CWMs for each trait, species’ trait values in each
site were treated as separate observations and were weighted by
their relative log(abundance + 1) in each site. These weighted
trait values were then modelled as a function of mean annual
rainfall using linear mixed effects models (lmer() function from
the LME4 package; Bates et al., 2015) with site included as a ran-
dom effect to reflect the nesting of trait values within each site.
This parameterization effectively modelled the abundance-
weighted trait mean of each site, while accounting for trait varia-
tion within sites. We fitted separate lmer() models to calculate
the average percentage of trait variance occurring within sites
(compared with between sites). These variance components were
necessarily calculated using unweighted trait values because
weighting of observations scales the estimate of residual (within-
site) variance during model fitting (Bates et al., 2015).

To address the second hypothesis, we calculated the multivari-
ate FDis (Laliberté & Legendre, 2010) weighted by each species’

Table 2 The seven functional traits measured in this study and their relevance to light-driven and moisture-driven trade-offs in rainforests generally (includ-
ing seasonally dry forests).

Functional trait Relevance to light-driven trade-offs Relevance to moisture-driven trade-offs

Specific leaf area (SLA;
mm2 mg−1)

Positively related to growth rate under high light and
negatively related to survival under low light (Sterck
et al., 2006); negatively associated with closed-canopy
situations in mesic forests (Poorter, 2009)

In dry forests, evergreen species tend to have long-lived, low-
SLA leaves, and drought-deciduous species tend to have
high-SLA leaves to facilitate rapid re-leafing and to recoup
foregone growth opportunities (Markesteijn et al., 2011)

Leaf dry matter content
(LDMC; mg mg−1)

Positively associated with closed-canopy situations in mesic
forests (Poorter, 2009) suggesting a role in shade tolerance

Negatively related to leaf turgor loss point (Bartlett
et al., 2012), i.e. positively related to the maintenance of
leaf turgor

Lamina area (mm2) Light interception in mesic forests (Wright et al., 2017) Large leaves are difficult to cool under warm, dry conditions
(Leigh et al., 2017; Wright et al., 2017); Small leaves have
higher major vein densities and thus lower hydraulic
vulnerability (Scoffoni et al., 2011) but see (Blackman
et al., 2018)

Wood density (g cm3) High wood density is associated with high survival in low-light
environments but slow growth in high-light environments
(Wright et al., 2010)

Negatively related to sapwood water storage and capacitance
(De Guzman et al., 2020) and positively related to hydraulic
safety (Liang et al., 2021)

Maximum height
(Hmax; m)

Taller species intercept more light than co-occurring shorter
species (King, 1990; Westoby et al., 2002)

Long path lengths increase hydraulic resistance due to gravity
and friction (Ryan & Yoder, 1997)

Vessel lumen breadth
(μm; measured in
petioles)

Taller-growing species have larger vessels to overcome
resistance from longer path lengths (Zach et al., 2010; Liu
et al., 2019)

Positively related to hydraulic efficiency (Tyree &
Zimmerman, 2002)

Vessel wall thickness/
lumen breadth (t/b;
measured in petioles)

High values may mitigate hydraulic vulnerabilities associated
with long path lengths (Blackman et al., 2010, 2018)

Negatively related to leaf hydraulic vulnerability to drought
(Blackman et al., 2010, 2018)
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log(abundance + 1) in each site using the FDindexes() wrapper
function from the FUNDIV package (Bartomeus, 2019). We chose
FDis over other indices of functional diversity because it is a
direct measure of multivariate trait variation, rather than a mea-
sure of trait spacing or trait space volume.

To address the third hypothesis, a measure of overall trait
covariance was first calculated using eigenanalysis on each site’s
abundance-weighted trait correlation matrix. Specifically, the
PCA() function from the FACTOMINER package (Lê et al., 2008)
was applied to standardized trait values (mean of 0, SD = 1),
with the rows (species) weighted by their log(abundance + 1) in
each site. From each principal component analysis (PCA) we
extracted the seven eigenvalues and calculated an unbiased esti-
mate of eigenvalue variance (Cheverud et al., 1989), as follows:

Var λð Þ ¼ Var λrawð Þ� M�1

N

where λraw are the eigenvalues, M is the number of traits, and N is
the number of species included in each PCA. Subtraction of
(M − 1)/N is required to remove sampling error because even ran-
dom draws of species are expected to have nonzero trait correlation
when comparing assemblages with differing numbers of species
(Cheverud et al., 1989). High Var(λ) indicates that the first eigen-
value is dominant (strong covariance among many traits) and low
Var(λ) indicates the opposite (Boucher et al., 2013). We also fitted
an unweighted ‘global’ PCA to all species recorded across all five
sites. PCA biplots were generated to visually compare vector load-
ings (and hence trade-offs) across sites (Lohbeck et al., 2015), and
between the global PCA and each site.

To compare the observed values of FDis and Var(λ) with those
expected under random community assembly, we generated ‘ex-
pected’ FDis and Var(λ) distributions under two randomization
procedures. The first simply shuffled all recorded individuals
among sites. Specifically, we generated 999 randomizations using
the permatfull() function from the VEGAN package (Oksanen et
al., 2021) by shuffling individuals (not individuals AND inci-
dences) with fixed column sums (species total abundances). The
second procedure was more constrained, and hence realistic. It
maintained the observed number of individuals per species,
observed site richness, and observed matrix fill (i.e. the observed
number of zeros in the matrix). For this procedure we generated
999 randomizations using the permatswap() function from the
VEGAN package (Oksanen et al., 2021) with the ‘swsh’ algorithm
and fixed column sums (species total abundances).

We plotted the observed values of FDis and Var(λ) over the
distributions of the random expectations and calculated the per-
centiles where observed values sit on these distributions. Though
we did not assume normal distributions and calculate P-values,
percentiles < 0.025 and > 0.975 can be interpreted as significant
(α = 0.05).

Results

Consistent with the first hypothesis, the CWMs for five of the
seven traits were significantly related to MAP. Leaf area, lumen

breadth, and maximum height were positively related (Fig. 1a,d,
g), whereas wood density and t/b were negatively related to MAP
(Fig. 1e,f). Regardless of the strength of CWM ~ MAP relation-
ships, at least 79% of trait variance remained unexplained within
sites (Fig. 1).

Though FDis was lowest in the driest site, it did not increase
consistently with MAP as hypothesized (Fig. 2a). Compared with
unconstrained shuffling of individuals, all but the middle site had
significantly lower FDis than expected. Compared with the more
constrained randomization procedure, only FDis at driest site
was significantly different (percentile = 0.02; Fig. 2a).

There was mixed support for the third hypothesis. As expected,
Var(λ) was lowest in the middle of the gradient but did not peak
at the driest and wettest ends of the gradient. Instead, Var(λ)
peaked in the second driest site (Fig. 2b). Compared with uncon-
strained shuffling of individuals, only Var(λ) values for the mid-
dle three sites (low east, mid west, and mid east) differed
significantly. Respectively, these were higher, lower, and lower
than expected. Compared with the more constrained procedure,
only Var(λ) for the middle site differed significantly (per-
centile = 0.02). Var(λ) for the second driest site was close to
being significantly higher than expected under the constrained
procedure (percentile = 0.91; Fig. 2b).

The PCA including all species (Fig. 3a) had a Var(λ) of 1.769,
suggesting strong trait coordination across the species pool. On
the first principal component (PC1; 55.9%), all traits except SLA
had loadings > |0.35| with signs consistent with PC1 being a
spectrum from safe hydraulic strategies (shorter growing, dense
wood, small leaves, reinforced leaf vessels, and small lumen
breadths) to taller-growing strategies with efficient hydraulics.
PC2 (17%) was most strongly loaded by SLA (+) and LDMC
(−), reflecting the leaf economics spectrum.

At the driest site (710 mm yr−1), PC1 (51.5%) was strongly
loaded by maximum height (+), lamina area (+), lumen breadth
(+), t/b (−), and wood density (−) (Fig. 3b; Table S2) reflecting
a hydraulic safety–efficiency spectrum. Like in the global PCA,
PC2 (22.1%) was most strongly loaded by SLA (+) and LDMC
(−), reflecting the leaf economics spectrum. At this site more
than any other, the safety–efficiency spectrum (PC1) was almost
completely orthogonal to the leaf economics spectrum (PC2)
(Fig. 3b).

At the second driest site (760 mm yr−1), which had the high-
est Var(λ) of 1.712, the loadings of all seven traits on PC1
(56.5%) were > |0.3| (Table S2). The strongest-loading traits
were wood density (−), t/b (−), lumen breadth (+), and lamina
area (+), similar to PC1 in the global PCA (compare Fig. 3a,c).
PC2 (22.9%) was strongly loaded by SLA (+), LDMC (−), Hmax

(+), and lamina area (+) and captured remaining variation in the
leaf economics spectrum not explained by PC1.

At mid west (830 mm yr−1), which had the lowest Var(λ) of
0.716, PC1 (40.2%) again captured a safety–efficiency spectrum,
but at this site LDMC contributed more equally to PC1 and PC2,
showing stronger coordination with wood density than at other sites
(Fig. 3d; Table S2). Hmax and lamina area also loaded relatively
strongly with SLA and LDMC on PC2 (23.5%). At the moderately
mesic mid east site (912 mm yr−1), PC1 (43.8%) again captured a
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safety–efficiency spectrum and PC2 captured the leaf economics
spectrum (21.9%) (Fig. 3e; Table S2). Hmax and lamina area also
loaded relatively strongly with SLA and LDMC on PC2.

At the wettest site (965 mm yr−1), PC1 (49.2%) was strongly
loaded by maximum height (+), lamina area (+), lumen breadth

(+), t/b (−), and wood density (−) (Fig. 3f; Table S2) reflecting
a hydraulic safety–efficiency spectrum. Like in the global PCA,
PC2 (21.4%) was most strongly loaded by SLA (+) and LDMC
(−), reflecting the leaf economics spectrum. Lumen breadth also
loaded strongly and positively on PC2.
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(c) LDMC: 94.4% of variance within sites
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(e) Wood Desnity: 88% of variance within sites
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(f) t/b: 92.9% of variance within sites
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(g) Lumen breadth: 97.2% of variance within sites

Fig. 1 Plots of each of the seven functional traits versus mean annual precipitation. Point sizes are proportional to the relative log(abundance + 1) of
species in each site, and points have been jittered slightly for clarity. Asterisks are community-weighted means. Fitted lines are estimates of fixed-effects
from linear mixed-effects models, and envelopes are associated 95% confidence intervals. Solid lines indicate significant (α = 0.05) slopes, and dashed lines
indicate nonsignificant slopes. Within-site variance components are also included for each trait. These were calculated using unweighted trait values in each
site. LDMC, leaf dry matter content; SLA, specific leaf area.
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To further investigate the very high trait covariance at low east,
and the unexpectedly lower trait covariance at the wettest and dri-
est sites, we projected PC1 from low east through the assemblages
of all other sites and visually compared communities along this
axis (Fig. 4a). We also located each species on the global PC1
and visualized each assemblage along this global axis (Fig. 4b).
The resulting plots were almost identical, indicating that both
PCAs captured the same trait spectrum with their major axes.
They revealed a predictable shift in strategies from the wettest to
driest sites and confirmed a wide spread of trait combinations at

low east. These plots also revealed the presence of ‘extreme’
drought tolerators (e.g. Alectryon diversifolius) at the driest site,
and the concomitant loss of drought avoiders (e.g. Brachychiton
discolor and D. photinophylla) from this site (Fig. 4a). Other spe-
cies of note included the generalist shrub Alyxia ruscifolia, which
exhibited an extreme tolerator strategy despite being recorded in
the understories of wetter sites, and B. rupestris, which exhibited
an intermediate strategy along the tolerator–avoider spectrum at
the driest site (Fig. 4a).

Discussion

Comprehensive assemblage and trait data from angiosperm com-
munities across the Bunya Mountains revealed mixed support for
our hypotheses. As hypothesized, CWMs for all traits but SLA
and LDMC exhibited significant relationships with MAP. For
the second hypothesis, FDis was lower than expected under ran-
dom assembly at the driest site, but it did not increase consis-
tently with MAP as hypothesized. Consistent with the third
hypothesis, Var(λ) was lower than expected under random assem-
bly in the middle site, but it did not peak at the wet and dry ends
of the gradient. Instead, it peaked at the second driest site, where
a wide spectrum of drought-resistance strategies was apparent,
from shorter drought-tolerating species with safe hydraulics and
small, robust leaves to taller species with efficient hydraulics and
large leaves combined with drought-avoiding characteristics.

CWMs revealed trade-offs in average trait values along the gra-
dient. As Hmax increased so did average lamina area and lumen
breadth, but these increases were associated with declines in aver-
age wood density and t/b. These results are largely consistent with
studies of CWMs along precipitation gradients in rainforests else-
where (Muscarella & Uriarte, 2016); but as Fig. 1 shows, the
approach ignores a substantial amount of within-site variation
and reveals little about the trade-offs operating within communi-
ties. Admittedly, the among-community trade-offs detected by
CWMs were largely consistent with the within-community
hydraulic trade-offs revealed by the major principal components
at most sites.

Shifting hydraulic trade-offs along the moisture gradient

At the top of the range, adequate rainfall, cloud stripping, and
cooler temperatures permit the development of taller forests dri-
ven by strong competition for light (King, 1990). To achieve the
hydraulic efficiency required to overcome long path lengths,
canopy species at this site had large vessel lumens and low–mod-
erate wood density, which is consistent with coordination
between height and hydraulics found globally (Liu et al., 2019).
Tall species also tended to have large leaves, though this trend
was driven in part by a few large-leaved canopy species (e.g.
D. excelsa, B. discolor, and Diploglottis australis), with most
canopy species having near average-sized leaves. Taller species at
this site also had low t/b values, indicating that even in the face of
long path lengths they do not require well-reinforced petiole ves-
sels to prevent loss of leaf hydraulic function via embolism
(Blackman et al., 2010). Though this site was the wettest on the
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Bunya Mountains, it is dry compared with rainforests globally
(Malhi et al., 2004) and the Australian subtropics specifically
(Harwood et al., 2016; BOM, 2021b). The Bunya Mountains

experience seasonal droughts during the region’s drier spring
months (BOM, 2021a) and are on the dry edge of the region’s
rainforest distribution. The same features that enable canopy
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Fig. 3 Biplots from principal components analyses of the seven functional traits for (a) all species recorded across all sites (unweighted) and (b–f) species
recorded in each site weighted by log(abundance + 1), with larger and lighter coloured points indicating more-abundant species. LDMC, leaf dry matter
content; MH, maximum height; SLA, specific leaf area; t/b, vessel wall thickness/vessel lumen breadth.
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species to overcome long path lengths (moderate–low wood den-
sity and large vessel lumens) are probably also associated with
high sapwood water content and capacitance (De Guzman et al.,
2020), which may allow these species to delay hydraulic stress by
drawing on stored water reserves during seasonal droughts (Bar-
tlett et al., 2019). Comparisons with wetter rainforests in the
region may reveal more variable strategies among canopy trees.

Compared with the wettest site, coordination between Hmax

and wood density weakened at the moderately mesic mid sites
(second‑ and third-wettest sites) despite these sites sharing some
canopy and understory species with the high site. At mid east,
Hmax loaded on both PC1 and PC2 and was somewhat decou-
pled from lumen breadth and wood density. This suggests that
taller-growing species at this site invested more into hydraulic
safety than at the most productive site. Hmax was also positively
correlated with LDMC on PC2, indicating that some tall species
opted for robust leaves, likely in response to lower moisture avail-
ability (Scoffoni et al., 2011). At mid west, coordination weak-
ened among the measured traits, as indicated by the lowest Var
(λ) value and significant departure from expected values under
both randomization procedures. Interestingly, FDis was highest
for this site, likely because weaker covariance among traits
increases multivariate dispersion. Like at mid east, Hmax was
somewhat decoupled from lumen breadth and wood density, but
LDMC was more strongly and positively related to wood density.
This variable trait coordination was partly driven by the replace-
ment of some tall, mesic canopy species (e.g. Anthocarapa niti-
dula and Argyrodendron trofoliolatum) with safer tree strategies
(e.g. Diospyros australis and Strychnos psilosperma) and the co-
occurrence of understory species with contrasting trait profiles

(e.g. the relatively efficient Claoxylon australe occurring with the
safer Croton insularis and Planchonella cotinifolia). Accordingly,
this site appears to represent a fulcrum along the moisture gradi-
ent where light and moisture limitation contribute somewhat
equally to height-based trade-offs. Such shifts in the relative
importance of light and water availability have been detected pre-
viously in the growth patterns of a generalist rainforest tree spe-
cies distributed along moisture gradients in the tropics (Brienen
et al., 2010).

In the two driest sites we expected moisture limitation to dom-
inate trait-based trade-offs, and this is indeed what we found.
The very dominant PC1 at low east captured a strongly coordi-
nated drought-tolerator–drought-avoider spectrum. Drought-
tolerating species are evergreen and persist under low moisture
conditions by reducing hydraulic conductance as water potentials
decline, allowing them to maintain gas exchange (Bartlett et al.,
2019). An important leaf trait associated with drought tolerance
in evergreen species is leaf turgor loss point πtlp (Bartlett et al.,
2012; Kunert et al., 2021). Though we did not include πtlp in
the analyses reported earlier herein, measurements were taken on
a subset of species that revealed a strong negative correlation with
LDMC (Fig. S5), as has been reported previously in angiosperms
(Bartlett et al., 2012; Laughlin et al., 2020). We are therefore
confident that our measured traits captured drought-tolerating
strategies at the leaf level, albeit indirectly. Exemplary drought-
tolerating species at low east included P. cotinifolia, B. angustifo-
lia, and Notelaea microcarpa. At the other end of the spectrum,
drought-avoiding species persist under low moisture conditions
by maintaining high water content to allow hydraulic conduc-
tance to decline more slowly with increasingly negative water
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potentials (Choat et al., 2005; Bartlett et al., 2019). Traits associ-
ated with drought avoidance include leaf shedding, high sapwood
water content, and connected and conductive xylem to facilitate
capacitance (Meinzer et al., 2009). Again, these traits were not
measured directly in this study but were captured by measuring
wood density (related to sapwood water storage and capacitance;
Meinzer et al., 2003; De Guzman et al., 2020), vessel lumen
breadths (Choat et al., 2005), and leaf traits related to leaf lifes-
pan and construction costs (Markesteijn et al., 2011). The most
extreme expressions of this strategy at low east included B. dis-
color and D. photinophylla. We note that B. discolor was present
at wetter sites also, indicating that its strategy is viable for dealing
with both light competition in taller productive sites and water
limitation in drier sites.

At the driest site, Var(λ) was lower than at low east due to the
truncation of the tolerator–avoider spectrum. This was also
reflected in the very low FDis, which is consistent with a strong
contraction of trait space at the driest site. Of note was the appar-
ent replacement of B. discolor with its congener B. rupestris.
Brachychiton rupestris is a semiarid-adapted pachycaul that com-
bines its impressive water storage capacity (an avoiding strategy)
with drought-tolerating leaf traits, including small lamina area
(an order of magnitude smaller than B. discolor), low SLA (2.6
times lower than B. discolor), and intermediate petiole lumen
breadths (3.5 times smaller than B. discolor). The combination of
traits related to drought avoidance and tolerance found in this
study is consistent with a comparative study of Brachychiton spe-
cies that identified a combination of avoiding and tolerating
strategies in other traits for B. rupestris seedlings, including the
ability to increase water use efficiency under experimental
drought (Reynolds et al., 2017).

The absence of archetypal drought avoiders at the driest site,
without the co-occurring drought-tolerating traits seen in B. ru-
pestris, indicates that a classic drought-avoidance strategy is only
viable up to a limit of drought severity and duration, beyond
which the strategy cannot avoid excessive cellular damage (Claeys
& Inzé, 2013). Unlike safe hydraulic strategies that resist embo-
lism through the structural features of xylem, avoiders employ
leaf shedding combined with water storage and capacitance to
minimize water loss and limit fluctuations in xylem tension
(Meinzer et al., 2009) and therefore operate with smaller hydrau-
lic safety margins than drought tolerators (Choat et al., 2012).
This strategy is likely to perform poorly under prolonged drought
if stored water sources are depleted and there is insufficient
annual precipitation to replenish stored water. Across a range of
deciduous and evergreen species from the Sonoran Desert, Pock-
man & Sperry (2000) found that hydraulic safety margins were
correlated with the variability of water availability, where smaller
safety margins were associated with riparian habitats with more
consistent water supply. Low predictability of precipitation could
also contribute to their absence at the driest site, especially
drought-deciduous species that attempt to anticipate rainfall by
flushing (initiating re-leafing) before the onset of seasonal rainfall
(Eamus, 1999; Méndez-Alonzo et al., 2013). Frost incidence is
also known to apply a strong habitat filter on leaf size (Wright et
al., 2017), but frost days are more common at the higher, wetter

sites (Table 1), making it unlikely that frosts contribute to the fil-
tering of large-leaved avoiders from the driest site in this system.

Trait covariance Var(λ) and species richness

Dwyer & Laughlin (2017) hypothesized that within-community
trait covariance strengthens with environmental stress; in turn,
species richness declines as trait covariance increases due to
increasing constraints on viable trait combinations. Though sup-
port for all or part of this hypothesis has since been reported in a
range of systems (Dwyer & Laughlin, 2017; Delhaye et al.,
2020; Silva et al., 2021; Xing et al., 2021; Sanaphre-Villanueva
et al., 2022), we did not expect support for this hypothesis at the
Bunya Mountains for several reasons. First, we expected Hmax to
be coordinated with hydraulic traits in a similar manner at both
the wettest and driest ends of our gradient, because light‑ and
moisture-driven trade-offs involving Hmax are not mutually
exclusive (Sterck et al., 2006; Markesteijn et al., 2011; Liu et al.,
2019). Second, we did not necessarily expect species richness to
increase with MAP along the gradient because diversity patterns
at the Bunya Mountains are thought to be strongly influenced by
biogeographic processes (Butler, 2004). In particular, the CNVFs
in which our wettest site was located are spatially isolated from
other areas with similar climatic and edaphic niches. The closest
similar niches occur c. 130 km to the southeast of the Bunya
Mountains at Main Range. By contrast, the notophyll vine forests
in which we sampled our ‘mid’ sites are well represented just
20 km away in the formerly extensive forests around Yarraman.
Thus, high-altitude forests may be considered a regional sink
where dispersal is low and extinction is high, leading to relatively
low species richness, whereas much higher regional connectivity
appears to prevent local extinctions in the mid-altitude forests
leading to similar rarefied richness at both ‘high’ and ‘mid’ sites
(Fig. S6).

Conclusion

This study revealed trade-offs related to hydraulic strategies at
both the wettest and driest ends of a steep orographic moisture
gradient at the Bunya Mountains. Traits coordinated most
strongly along an axis of drought tolerance to drought avoidance
in moderately dry locations, but less so in the driest location
where drought-avoiding strategies become less viable due to
insufficient or unpredictable rainfall. This study also highlights
how analyses of trait covariance, combined with traditional uni-
variate and multivariate trait-based approaches, can reveal com-
plementary information about processes structuring plant
communities. Future research should focus on coordination of
hydraulic traits from the subtropics to the tropics in eastern Aus-
tralia to examine how rainfall amount and seasonality influences
coordination of species along the drought tolerance–avoidance
spectrum (Choat et al., 2005). A greater understanding of these
abiotic constraints will improve predictions of species vulnerable
to ongoing climate change and inform the selection of species
assemblages for restoration projects that are ready to meet the
challenges of future climates.
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Rocha A, Paz H. 2022. Above- and below-ground trait coordination in tree

seedlings depend on the most limiting resource: a test comparing a wet and a

dry tropical forest in Mexico. PeerJ 10: e13458.
Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH IMAGE to IMAGEJ: 25 years

of image analysis. Nature Methods 9: 671–675.
Scoffoni C, Rawls M, McKown A, Cochard H, Sack L. 2011. Decline of leaf

hydraulic conductance with dehydration: relationship to leaf size and venation

architecture. Plant Physiology 156: 832–843.
Shipley B, Vile D, Garnier E. 2006. From plant traits to plant communities: a

statistical mechanistic approach to biodiversity. Science 314: 812–814.
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