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Aims The clinical feasibility of artificial intelligence (AI)-based electrocardiography (ECG) analysis for predicting obstructive cor
onary artery disease (CAD) has not been sufficiently validated in patients with stable angina, especially in large sample sizes.

Methods 
and results

A deep learning framework for the quantitative ECG (QCG) analysis was trained and internally tested to derive the risk 
scores (0–100) for obstructive CAD (QCGObstCAD) and extensive CAD (QCGExtCAD) using 50 756 ECG images from 
21 866 patients who underwent coronary artery evaluation for chest pain (invasive coronary or computed tomography 
angiography). External validation was performed in 4517 patients with stable angina who underwent coronary imaging to 
identify obstructive CAD. The QCGObstCAD and QCGExtCAD scores were significantly increased in the presence of ob
structive and extensive CAD (all P < 0.001) and with increasing degrees of stenosis and disease burden, respectively (all 
Ptrend < 0.001). In the internal and external tests, QCGObstCAD exhibited a good predictive ability for obstructive CAD 
[area under the curve (AUC), 0.781 and 0.731, respectively] and severe obstructive CAD (AUC, 0.780 and 0.786, respect
ively), and QCGExtCAD exhibited a good predictive ability for extensive CAD (AUC, 0.689 and 0.784). In the external test, 
the QCGObstCAD and QCGExtCAD scores demonstrated independent and incremental predictive values for obstructive and 
extensive CAD, respectively, over that with conventional clinical risk factors. The QCG scores demonstrated significant as
sociations with lesion characteristics, such as the fractional flow reserve, coronary calcification score, and total plaque 
volume.

Conclusion The AI-based QCG analysis for predicting obstructive CAD in patients with stable angina, including those with severe sten
osis and multivessel disease, is feasible.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Lay summary •  We developed an artificial intelligence (AI)-based quantitative electrocardiography (ECG) (QCG) analyzer for predicting 
obstructive and extensive coronary artery disease (CAD) in patients with stable angina, including those with severe sten
osis and multivessel disease.
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•  In both internal and external validation data sets, the derived QCG scores demonstrated independent predictive power 
for obstructive and extensive CAD beyond that for clinical variables and provided an incremental diagnostic value.

•  Our QCG analyzer can automatically interpret ECG signals and generate QCG scores, providing quantifiable risk esti
mation for obstructive CAD and high-burden disease.

•  These scores can serve as early indicators to identify high-risk patients who may benefit from further diagnostic and thera
peutic interventions for obstructive CAD.
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Introduction
Despite advancements in various diagnostic techniques, electrocardiog
raphy (ECG) remains as the primary tool for the initial assessment of 
patients presenting with chest pain. Electrocardiography is particularly 
valuable for providing clinical insights into patients with acute chest pain. 
It plays a crucial role in the differential diagnosis of acute myocardial in
farction and aids in determining the need for emergency invasive man
agement of coronary artery disease (CAD).1 However, the use of ECG 
in diagnosing obstructive CAD in patients with stable angina is challen
ging. Electrocardiography findings in such cases are often non-specific 
and may even fall within normal ranges when interpreted using conven
tional rule-based methods.1,2 As a result, when obstructive CAD is clin
ically suspected, additional tests, such as functional stress tests or 
noninvasive coronary imaging, are frequently required. However, these 
methods use additional resources, incur higher costs, and can lead to 
delays in the diagnosis of obstructive CAD.1

Artificial intelligence (AI) has proven utility in the medical field, with 
real-world clinical applications becoming increasingly prevalent. The AI 
technology has been instrumental in interpreting ECG waveforms, par
ticularly in deciphering ambiguous signals and their associations with clin
ical diagnoses and prognostic assessments.3–5 As yet, most AI ECG 
algorithms for CAD have primarily focused on identifying acute coronary 
syndromes, such as myocardial infarction, in patients presenting with 
acute chest pain, often in emergency department settings.6–10

However, our prior study deviated from this common focus by examining 
the potential of AI-based ECG analysis for predicting obstructive CAD in 
patients with stable angina.11 The findings suggested that an AI-based ECG 
analysis can substantially improve the prediction of obstructive CAD, 
achieving superior accuracy over that with conventional clinical risk fac
tors. Nonetheless, this initial algorithm was developed in a relatively small 
patient cohort and was not subjected to externally validation.

In response to these limitations, our study aimed to develop a more 
comprehensive AI-based ECG analyzer, capable of predicting both the 
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presence and severity of obstructive CAD, as well as the extent of 
CAD. To achieve this, we utilized a large cohort to develop an 
AI-based ECG analyzer and rigorously evaluated its performance. To 
specifically assess its performance in outpatients with stable angina, 
we performed external validation using an independent data set of 
lower-risk patients in addition to the developmental data set.

Methods
Data availability
The data used in the present study cannot be made publicly available due to 
the ethical restrictions set by the Institutional Review Board of Seoul National 
University Bundang Hospital (https://bri.snubh.org/irb/), as patient and partici
pant privacy would be compromised. A minimally anonymized data set can be 
requested by contacting the corresponding authors (yeonyeeyoon@snubh. 
org or cho_y@snubh.org). The AI-based algorithms described in this paper 
are intended for inclusion in an upcoming version of the ECG Buddy applica
tion (ARPI Inc.), which restricts their public release. However, the algorithms 
are available for research purposes. Interested researchers should contact J.K. 
(joonghee79@gmail.com) to request for access.

Study population
For development and internal validation of our algorithm, we screened pa
tients aged 18 years and over who underwent invasive coronary angiog
raphy (CAG) or coronary computed tomography angiography (CCTA) 
to evaluate chest pain from 2011 to 2019 at Seoul National University 
Bundang Hospital (Seongnam, Gyeonggi-do, South Korea). The ECG data 
were retrospectively collected from records obtained within 6 months 
prior to CAG and CCTA. In instances of multiple ECG records per patient, 
all available data were included for model development. The ECGs were re
corded at rest in the supine position using conventional ECG machines 
(PageWriter TC 30, and TC 70; Philips) with a 500 Hz sampling frequency. 
Consequently, 21 866 patients with a total of 50 756 ECG records were in
cluded. For model development, a random selection of 90% of the patients 
was allocated for training, with the remaining 10% designated for internal 
testing. Further, we allocated 25% of the training data specifically for hyper
parameter optimization. The data split was conducted on a per-patient ba
sis, ensuring no patient’s ECG records were divided across different sets.

For an external validation data set, we compiled data from five separate 
retrospective and prospective cohorts of outpatients undergoing CCTA or 
CAG due to suspected angina.12–16 Detailed information on the inclusion 
criteria for each study data set is provided in the Supplementary Methods 
S1. Within this pool, we assessed the availability of ECG records for patients 
from Severance Hospital (Seoul, South Korea) that were taken within 6 
months prior to their procedures. To ensure the analysis focused on pa
tients with stable angina, we excluded patients who were admitted to the 
emergency department with acute chest pain. These records were obtained 
at rest using conventional ECG machines (MAC 5500, MAC VU360; GE 
Healthcare) at a 500 Hz sampling frequency. When multiple ECGs were 
available, only the record closest to the CCTA or CAG date was selected. 
This process resulted in an external validation set of 4517 patients, each 
with a corresponding ECG record.

The study protocol was approved by the Institutional Review Board of 
Seoul National University Bundang Hospital (No. B-2304-823-002) and 
Severance Hospital (No. 4-202-1314) and conducted in accordance with 
the principles of the Declaration of Helsinki. The requirement for informed 
consent was waived because of the retrospective study design.

Network architecture
In previous reports, we presented a deep learning-based AI system, known as 
quantitative ECG (QCG™), which has shown effectiveness in diagnosing a 
spectrum of cardiac conditions, including acute coronary syndrome, 
ST-elevation myocardial infarction (STEMI), non-specific myocardial injury, 
and left ventricular dysfunction, etc.6,7 Building on this foundation, the current 
study extends the utility of QCG by incorporating features that enable the 
prediction of obstructive and extensive CAD. The network architecture of 
the QCG analyzer model consisted of (i) a common encoder for encoding 
input ECG image data and (ii) fully connected layers for predicting both 

obstructive CAD (QCGObstCAD) and extensive CAD (QCGExtCAD) (see 
Supplementary material online, Figure S1). For the purposes of training and 
validation in the present study, the ECG data were converted into portable 
network graphics image files. The encoder is a modified ResNet that integrates 
squeeze–excitation blocks into each residual block to enhance feature recali
bration and incorporates a non-local network before the final residual block to 
capture long-range dependencies. The encoder was first pre-trained using 
various self-supervised tasks and then attached to the fully connected layers 
for fine-tuning. The Adam-W optimizer was used for model training, and 
Bayesian optimization was employed for hyperparameter search, aiming to 
enhance the predictive accuracy and efficiency of the model. The sigmoid out
puts of the analyzer, namely, the QCG scores, were scaled between 0 and 100 
for the presence of obstructive CAD (QCGObstCAD) and extensive CAD 
(QCGExtCAD).6,7,11 Hyperparameter optimization was further introduced 
for the final model, including batch size and learning rate, using the data splitting 
technique within the training data set.

Evaluation of quantitative 
electrocardiography scores for predicting 
obstructive and extensive coronary artery 
disease
The model’s efficacy in predicting obstructive and extensive CAD was as
sessed using an independent holdout internal test set and an external data 
set. In line with standard medical practice, when a patient underwent both 
CCTA and CAG, the CAG results were prioritized. Different criteria were 
applied in diagnosing obstructive CAD with CAG and CCTA due to 
CCTA’s tendency to overestimate the severity of stenosis.17,18 This approach 
is based on prior studies indicating that CCTA generally shows a higher sen
sitivity, but a lower specificity for the diagnosis of obstructive CAD compared 
with CAG.19 Obstructive CAD was identified based on CAG and CCTA re
ports and defined as coronary lesions with diameter stenosis ≥50% on CAG 
or ≥70% on CCTA in major epicardial coronary arteries or their major 
branches. Severe obstructive CAD was defined as coronary lesions with 
diameter stenosis ≥70% on CAG or ≥90% on CCTA. Lesions with diameter 
stenosis of 50–69% on CAG and 70–89% on CCTA were classified as having 
intermediate stenosis, delineating them from severe obstructive CAD.

While the same criteria were used for defining obstructive CAD across 
both internal and external test sets, the definition of extensive CAD dif
fered among data sets. In the internal test data set, as in the training data 
set, we calculated the sum of the degree of significant stenosis in all major 
epicardial arteries and their major branches. If there were lesions with se
vere obstructive stenosis in the proximal location of the left anterior des
cending or left main coronary arteries, a weighting factor of 1.2 was 
applied. Subsequently, this metric was normalized, with the value ≥ 0.8 de
fined as extensive CAD, indicating a high atherosclerotic burden. For fur
ther stratification, we defined intermediate burden as a normalized sum 
of the maximum diameter stenosis >0.2, but <0.8, and low burden as 
≤0.2. In the external data set, which lacked detailed segmental stenosis in
formation, we focused on the number of coronary arteries exhibiting ob
structive CAD (one-vessel, two-vessel, or three-vessel disease). In the 
external data set, extensive CAD was defined as a multivessel disease, 
with the involvement of ≥2 vessels, and compared against cases with a one- 
vessel disease and no obstructive CAD.

The external data set contained additional data elements that varied ac
cording to the objectives of the original studies. These included the coron
ary artery calcification score (CACS)13 and total plaque volume on 
CCTA12,14,15 and the fractional flow reserve (FFR) on invasive CAG.15

Consequently, in the external validation process, we also evaluated associa
tions between QCG scores and these additional parameters in subsets with 
available data. This additional analysis aimed to further elucidate the broader 
applicability and relevance of QCG scores in diverse clinical contexts and 
various cardiac health indicators.

Statistical analyses
All statistical analyses were conducted using R software (version 4.2.1; R 
Core Team). Continuous variables are summarized as the median (inter
quartile range) and categorical variables as numbers (percentages). 
Two-sided P-values < 0.05 were considered as statistically significant. 
Given the presence of multiple ECG images per patient in the internal 
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data set, the analyses were conducted at the ECG image level for the internal 
validation test. Conversely, the external data set, with one ECG per patient, 
necessitated a patient-level analysis. We assessed the distribution of QCG 
scores in relation to the presence or absence of obstructive and extensive 
CAD, including stenosis severity and CAD burden. The diagnostic perform
ance of the QCG score was evaluated by calculating the sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value (NPV) for every 
10 units of increase in the QCG score. Additionally, the discriminatory cap
ability of the QCG scores for predicting obstructive and extensive CAD was 
assessed by calculating the area under the receiver operating characteristic 
curve (AUC). We employed a bootstrapping method with 2000 iterations 
for estimating confidence intervals. Multivariate logistic regression analysis, 
adjusted for clinical variables such as age, sex, body mass index (BMI), 
hypertension, diabetes mellitus, dyslipidemia, and smoking status, was used 
to ascertain the independent predictive value of QCG scores for each out
come. The incremental predictive value of the QCG scores was determined 
by the improvement in the model performance relative to a clinical model, 
which included the same variables as those used for multivariate adjustment. 
A significant improvement was determined using DeLong test for AUC dif
ferences and the likelihood ratio test. We also plotted the distribution of 
the lesion characteristics (CACS, total plaque volume, and FFR) across 
QCG score tertiles (<20, ≤20 to <40, and ≥40) and assessed significant dif
ferences using the analysis of variance test.

Results
Baseline characteristics
Table 1 details the baseline characteristics of the internal and external 
data sets. The internal data set showed uniform demographics across 
the training and test groups, with a median age of 63 and about 60% 
male patients. Invasive CAG was the main method for CAD evaluation 
(77.1% in training, 77.2% in testing). The prevalence of obstructive 
CAD and severe obstructive CAD was nearly identical in the training 
(52.1% and 46.7%, respectively) and test (51.7% and 45.9%, respectively) 
subsets, with extensive CAD observed in 12.7% and 12.3%, respectively. 
The external data set, while clinically similar to the internal, mainly used 
CCTA (93.8%) and had a lower CAD prevalence (obstructive CAD at 
6.6%, severe obstructive CAD at 3.5%, and extensive disease at 2.2%).

Distribution of quantitative 
electrocardiography scores
In the internal test data set, the distribution of QCG scores according 
to the presence and severity of obstructive and extensive CAD showed 
trends similar to those observed in the training data set (Figure 1). The 
QCGObstCAD scores were significantly higher in patients with obstruct
ive CAD than in those without obstructive CAD [40 (21–65) vs. 12 
(4–28), respectively; P < 0.001]. When further stratified according to 
stenosis severity, the QCGObstCAD scores gradually increased with 
the increasing stenosis severity [no stenosis, 12 (4–28); intermediate 
stenosis, 27 (14–44); severe stenosis, 43 (22–68); Ptrend < 0.001]. 
Similarly, the QCGExtCAD scores were significantly higher in patients 
with extensive CAD than in those without extensive CAD [19 (9–35) 
vs. 34 (21–54), respectively; P < 0.001]. The QCGExtCAD scores also 
demonstrated an incremental trend with the increasing CAD burden 
[low burden, 16 (8–30); intermediate burden, 27 (13–43); high burden, 
34 (21–54); Ptrend < 0.001]. In the external data set, this trend was not 
diminished and was similarly observed, demonstrating that the 
QCGObstCAD score distinctly varied in accordance with the presence 
of obstructive CAD [43 (30–55) vs. 28 (17–38) for obstructive CAD 
vs. no obstructive CAD, respectively; P < 0.001], as well as with the se
verity of stenosis [no stenosis: 28 (17–38); intermediate stenosis, 38 
(25–49); severe stenosis: 47 (36–61); Ptrend < 0.001]. Likewise, the 
QCGExtCAD scores significantly increased with the presence [38 
(26–50) vs. 21 (12–30) for extensive CAD vs. no extensive CAD, re
spectively; P < 0.001] and extent of extensive CAD [no obstructive 
CAD, 21 (12–29); one-vessel disease, 31 (21–39); ≥2-vessel disease, 
38 (26–50); Ptrend < 0.001] (Figure 1).

Predictive value of quantitative 
electrocardiography scores
We evaluated how the diagnostic performance of both QCG scores 
changes with every 10-unit increment and have presented these find
ings in Table 2. As expected, for both QCG scores, lower cut-off values 
corresponded with increased sensitivity and decreased specificity. In 
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Table 1 Baseline characteristics

Internal data set External data set

Training set Test set
(n = 19 680) (n = 2186) (n = 4517)

Clinical features
Age, years 63 (53–73) 63 (53–73) 59 (52–66)

Male sex 12 451 (63.3) 1345 (61.5) 2359 (52.2)

BMI, kg/m2 24 (22–27) 25 (22–27) 24 (23–26)
Hypertension 9122 (46.4) 1069 (48.9) 2332 (51.6)

Diabetes mellitus 4959 (25.2) 560 (25.6) 862 (19.1)

Dyslipidaemia 6562 (33.3) 712 (32.6) 1912 (42.3)
Smoking status 2901 (14.7) 337 (15.4) 636 (14.1)

Coronary artery disease

Invasive CAG 15 178 (77.1) 1688 (77.2) 282 (6.2)
CCTA 4502 (22.9) 498 (22.8) 4235 (93.8)

Obstructive CAD 10 254 (52.1) 1133 (51.8) 296 (6.6)

Severe obstructive CAD 9191 (46.7) 1004 (45.9) 159 (3.5)
Extensive CAD 2491 (12.7) 268 (12.3) 99 (2.2)

Values are presented as the median (interquartile range) or number (percentage), unless otherwise indicated. BMI, body mass index; CAD, coronary artery disease; CAG, coronary 
angiography; CCTA, coronary computed tomography angiography.
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the external test set, which had a relatively lower prevalence of ob
structive and extensive CAD, the PPV was notably low, while the 
NPV was significantly high.

In our analysis, QCGObstCAD exhibited excellent predictive ability for 
obstructive CAD in the internal training set [AUC 0.830; 95% confidence 
interval (CI), 0.826–0.834; P < 0.001] and acceptable in the test set (AUC 
0.781; 95% CI, 0.769–0.794; P < 0.001), as illustrated in Figure 2. A similar 
pattern was observed for severe obstructive CAD, with the training set 
performance showing an AUC of 0.822 (95% CI 0.818–0.826; P < 0.001) 
and the test set an AUC of 0.780 (95% CI 0.768–0.793; P < 0.001). The 
QCGExtCAD’s predictive capability for extensive CAD was deemed ac
ceptable, with AUC values of 0.707 (95% CI, 0.699–0.716; P < 0.001) 
in the internal training data set and 0.689 (95% CI, 0.664–0.714; P <  
0.001) in the test data set. In the external data set, the predictive per
formance of QCGObstCAD for obstructive CAD (AUC, 0.731; 95% CI, 
0.699–0.763; P < 0.001) and severe obstructive CAD (AUC, 0.786; 
95% CI, 0.747–0.826; P < 0.001), as well as the performance of 
QCGExtCAD for extensive CAD (AUC 0.784, 95% CI 0.733–0.835; 
P < 0.001), all remained at an acceptable level.

In the external data set, we evaluated the independent and incremen
tal predictive values for both obstructive and extensive CAD. With the 
adjustment for conventional clinical risk factors (age, sex, BMI, hyper
tension, diabetes mellitus, dyslipidemia, and smoking), QCGObstCAD 

was an independent predictor for obstructive CAD (adjusted odds ra
tio per 10-point increase, 1.60; 95% CI, 1.47–1.74; P < 0.001) and se
vere obstructive CAD (adjusted odds ratio per 10-point increase, 
1.87; 95% CI, 1.67–2.08; P < 0.001) (Figure 3). QCGExtCAD also demon
strated independent associations with extensive CAD (adjusted odds 

ratio per 10-point increase, 2.06; 95% CI, 1.76–2.42; P < 0.001). 
QCGObstCAD demonstrated an incremental predictive value over the clin
ical model for obstructive CAD (AUC, 0.716 vs. 0.763, P < 0.001; χ2 175.4 
vs. 300.3, P < 0.001) and severe obstructive CAD (AUC, 0.751 vs. 0.816, P  
< 0.001; χ2 136.8 vs. 264.5, P < 0.001) (Table 3). Conversely, the integra
tion of the clinical model over QCGObstCAD exhibited an incremental pre
dictive value for obstructive CAD (AUC, 0.736 vs. 0.763, P < 0.001; χ2 

241.0 vs. 300.3, P < 0.001) and severe obstructive CAD (AUC, 0.786 vs. 
0.816, P = 0.001; χ2 219.0 vs. 264.5, P < 0.001). QCGExtCAD also exhibited 
an incremental predictive value over the clinical model in predicting exten
sive CAD (AUC, 0.794 vs. 0.840, P < 0.001; χ2 123.8 vs. 201.6, P < 0.001). 
Likewise, integrating clinical information over QCGExtCAD also increased 
the predictive value for extensive CAD (AUC, 0.784 vs. 0.840, P <  
0.001; χ2 147.0 vs. 201.6, P < 0.001).

Associations between quantitative 
electrocardiography scores and other 
coronary artery disease characteristics
In the external data set, we examined subgroups with additional CAD 
characteristics: CACS (n = 3500) and total plaque volume (n = 782) as
sessed by CCTA and FFR (n = 59) measured through invasive CAG. 
We observed a significant decrease in FFR indicative of haemodynam
ically significant obstructive CAD with higher QCGObstCAD tertiles 
(P < 0.001) (Figure 4). CACS and the total plaque volume reflecting 
the CAD burden showed a gradual increase alongside higher 
QCGExtCAD tertiles (all P < 0.001).

Figure 1 Distribution of the QCG scores. The distribution of the QCG scores is plotted according to the presence of obstructive CAD and the 
severity and extent of the disease. In both the internal and external data sets, the QCG scores are significantly increased with the presence of obstruct
ive CAD and higher degrees of stenosis and disease extent. CAD, coronary artery calcification; QCG, quantitative electrocardiography.
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Discussion
In the present study, we developed and validated novel ECG-based pre
dictive indicators, QCGObstCAD and QCGExtCAD, for predicting ob
structive and extensive CAD within a large cohort. Shifting from the 
typical focus on acute coronary syndrome, our work targets the detec
tion of obstructive CAD and the assessment of extensive CAD risk in 
stable angina patients, broadening the utility of ECG diagnostics. 
Despite the lower prevalence and severity of CAD in an external 
data set, the QCG scores maintained an acceptable performance. 
Moreover, the QCG scores provided independent and incremental 
predictive values alongside traditional clinical variables for both ob
structive and extensive CAD, enhancing the diagnostic utility of these 
clinical assessments.

In patients with stable angina, the diagnostic value of ECG is consid
erably limited owing to non-specific or normal ECG findings during 
rest.2,20,21 This limitation is primarily due to the conventional rule-based 

ECG interpretation’s difficulty in detecting subtle changes indicative of 
obstructive CAD in stable angina. However, recent advancements in AI 
technologies, particularly deep learning-based ECG interpretation, have 
shown promise in overcoming these limitations. Unlike traditional 
computer-aided models that rely on predefined rules, AI-based ap
proaches are capable of identifying nuanced patterns and comprehen
sive information within ECG features that may elude both human 
experts and conventional systems.4,5 Moreover, AI-based approaches 
extend beyond traditional diagnostic uses, detecting conditions like 
left ventricular dysfunction and predicting future cardiovascular events, 
such as atrial fibrillation.22 Given these advancements, we hypothesized 
that the AI-based ECG analysis could uncover the subtle or non-specific 
changes in stable angina, thereby improving obstructive CAD predic
tion. Our initial study on 723 stable angina patients introduced an AI 
model that utilizes deep learning-derived quantitative ECG features 
for obstructive CAD prediction,11 showing superior performance to 
clinical risk factors. However, this initial study, similar to others,23,24

Figure 2 Predictive value of the QCG scores. QCGObstCAD shows a good predictive ability for obstructive CAD and severe stenosis in the internal 
data set. Similarly, QCGExtCAD shows a good predictive ability for high-burden CAD. The QCG scores also show a good predictive ability in the external 
data set. CAD, coronary artery calcification; QCG, quantitative electrocardiography; QCGObstCAD, QCG score for obstructive CAD; QCGExtCAD, 
QCG score for extensive CAD.
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was constrained by its small sample size and lack of external validation. 
Building on these promising results, the current study aimed to develop 
a more refined QCG analyzer with a larger cohort. We formulated the 
QCG scores to predict the presence and extent of obstructive CAD 
and validated their performance in both internal and external test 
data sets.

Tang et al.25 recently presented an AI ECG model focused on detect
ing obstructive CAD (diameter stenosis ≥ 50% on CCTA) in a sizable 
cohort of 10 538 patients with suspected CAD. This model showed 
a moderate efficacy (AUC 0.75), akin to our findings, yet its scope 
was restricted to diagnosing mild stenosis. Our study, however, ex
tends the scope of QCG scores to various severities of CAD, including 
severe and extensive CAD, thereby enhancing the clinical utility of 

ECG-based predictive indicators. Furthermore, validating an AI ECG 
model in an independent study population is crucial for clinical applica
tion, as patient characteristics can influence model performance.4

Notably, the external test data set comprised patients with stable 
angina, deliberately excluding those admitted to the emergency room. 
This selection criterion resulted in a significantly lower prevalence of ob
structive CAD in the external data set. Nevertheless, QCGObstCAD con
sistently demonstrated a strong predictive ability for obstructive CAD 
and maintained their discriminative power, providing an incremental pre
dictive value beyond that for clinical risk factors.

Another key aspect of our study was its ambition to not only predict 
obstructive CAD, but to also evaluate its extent. QCGObstCAD showed 
a gradual increase with the increasing stenosis severity, and QCGExtCAD 

similarly increased in relation to the CAD extent. These results under
score the capacity of the QCG analyzer to automatically interpret ECG 
signals and generate QCG scores, providing quantifiable risk estimation 
for obstructive and extensive CAD. In subsets with additional 
CAD characteristics, we further observed an inverse correlation be
tween QCGObstCAD and FFR and a positive correlation between 
QCGExtCAD and total plaque volume and CACS, although the QCG 
analyzer was not explicitly trained for these aspects. These findings sup
port the QCG analyzer’s potential as an early indicator for identifying 
high-risk patients, directing subsequent diagnostic and therapeutic in
terventions. In addition, the flexibility of the QCG analyzer in process
ing image-based ECG data enhances its usability. Electrocardiographies 
can be interpreted in various formats, ranging from photographs or 
printed outputs from conventional ECG recorders to digital ECG sys
tems.6,7,11 Its adaptability ensures that the QCG analyzer is suitable for 
a wide range of clinical environments, from advanced medical centers 
equipped with digital ECG systems to resource-limited settings that 
rely on paper-based ECGs.

Limitations
The present study has some limitations. Rather than providing an opti
mal cut-off for predicting obstructive and extensive CAD, we detailed 
how the diagnostic performance varies with different scores, consider
ing the potential impact of the pre-test probability of the study popu
lation on performance. However, it is important to note that all 

Figure 3 Independent predictive value of the QCG scores. In the 
external data set, QCGObstCAD is an independent predictor of 
obstructive CAD and severe stenosis. Similarly, QCGExtCAD has an in
dependent association with the multivessel disease. CAD, coronary 
artery calcification; QCG, quantitative electrocardiography; 
QCGObstCAD, QCG score for obstructive CAD; QCGExtCAD, QCG 
score for extensive CAD.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Incremental predictive value of the quantitative electrocardiography scores (external data set)

AUC (95% CI) Pdifference χ2 Pdifference

Obstructive CAD
Clinical modela 0.716 (0.685–0.745) Reference — 175.4 Reference —

QCGObstCAD
b 0.736 (0.699–0.763) 0.428 Reference 241.0 <0.001 Reference

Clinical + QCGObstCAD 0.763 (0.733–0.792) <0.001 <0.001 300.3 <0.001 <0.001
Severe obstructive CAD

Clinical modela 0.751 (0.712–0.789) Reference — 136.8 Reference —

QCGObstCAD
b 0.786 (0.747–0.826) 0.128 Reference 219.0 <0.001 Reference

Clinical + QCGObstCAD 0.816 (0.780–0.853) <0.001 0.001 264.5 <0.001 <0.001

Extensive CAD

Clinical modela 0.794 (0.749–0.839) Reference — 123.8 Reference —
QCGExtCAD

b 0.784 (0.733–0.835) 0.725 Reference 147.0 0.001 Reference

Clinical + QCGExtCAD 0.840 (0.797–0.882) <0.001 <0.001 201.6 <0.001 <0.001

aInclusion of age, sex, body mass index, hypertension, diabetes mellitus, dyslipidaemia, and smoking status. 
bPer 10-score increase. 
AUC, area under the curve; CAD, coronary artery disease; CI, confidence interval; QCGExtCAD, QCG score for extensive CAD; QCGObstCAD, QCG score for obstructive CAD.
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assessments were conducted in symptomatic patients. Consequently, 
this score should not be used for screening purposes in asymptomatic 
patients. Additionally, data were exclusively obtained from South 
Korea; accordingly, a multinational study is warranted to ascertain 
the performance of the QCG scores across diverse ethnicities and clin
ical settings. Another limitation of this study is the absence of an in- 
depth explainability analysis to elucidate the specific ECG features 
that influenced the AI model’s predictions. While our focus was on 
the predictive performance, future work could benefit from incorpor
ating model explainability to enhance the interpretability and clinical 
relevance of the findings. Although the generalizability of our QCG ana
lyzer was supported by the independent external data set, this valid
ation approach was retrospective. The clinical applicability of the 
QCG analyzer is expected to be enhanced with prospective studies as
sessing its influence on clinical decisions in angina patients. A study cur
rently underway aims to evaluate the impact on decision-making for 
invasive angiography, with results that can be anticipated soon. Lastly, 
the exploration of the QCG scores’ predictive value for clinical out
comes remains beyond this study’s scope, inviting further research.

Conclusions
The present study demonstrated the feasibility of using a quantitative 
AI-based ECG analyzer, called the QCG analyzer, for predicting both 
the presence and extent of obstructive CAD in stable angina patients. 
The QCG analyzer was shown to provide an independent and incremen
tal predictive value for obstructive CAD, encompassing severe and ex
tensive CAD. Further prospective study is expected to state the 
potential of the newly proposed QCG scores serving as early indicators 
for the identification of high-risk patients who may benefit from subse
quent diagnostic and therapeutic interventions for obstructive CAD.
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