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Abstract

A fundamental assumption in neuroscience is that brain structure determines function. 

Accordingly, functionally distinct regions of cortex should be structurally distinct in their 

connections to other areas. We tested this hypothesis in relation to face selectivity in the fusiform 

gyrus. By using only structural connectivity, as measured through diffusion weighted imaging, we 

are able to predict functional activation to faces in the fusiform gyrus. These predictions 

outperformed two control models and a standard group-average benchmark. The structure-

function relationship discovered from these participants was highly robust in predicting activation 

in a second group of participants, despite differences in acquisition parameters and stimuli. This 

approach can thus reliably estimate activation in participants who cannot perform functional 

imaging tasks, and is an alternative to group-activation maps. Additionally, we identified cortical 

regions whose connectivity is highly influential in predicting face-selectivity within the fusiform, 

suggesting a possible mechanistic architecture underlying face processing in humans.
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A fundamental assumption in neuroscience is that function is deeply-rooted in anatomical 

structure, such as extrinsic connectivity. A region’s connectivity pattern determines both the 

information available as inputs from other regions, and its output and influence on other 

areas. Indeed, changes in connectivity have been shown to occur at the boundaries of 

functionally-defined regions that can be identified through cytoarchitectonics 

(supplementary motor area (SMA) vs. pre-SMA)1. If anatomical connectivity is important 

for functional operations, then variation in connectivity should correspond with and predict 

variation in function, even in regions that are currently not anatomically definable or 

spatially consistent across the population. This intuitive claim has not yet been formally 

explored, though various frameworks for such an analysis have been suggested2.

In the absence of any additional information, can structural connectivity accurately predict 

the location and degree of the functional response in the brain? The extrinsic connectivity 

pattern of a structure may contain sufficient information to predict the extent to which each 

voxel will respond to a given functional contrast. This hypothesis could be tested using a 

functional contrast that consistently elicits robust responses, and constrained to an 

anatomical structure that reliably encapsulates such responses across participants, even if 

they vary spatially within the region.

Regions involved in face-processing may be well-suited for directly testing this conjecture, 

given their posited specificity of function and replicability across brain imaging techniques, 

participants, and species. A dedicated network of brain regions has been consistently 

reported to selectively respond to faces, as revealed by fMRI3, 4, single-unit recordings5, 6, 

and microstimulation7. The most robust and selective component of this network is within 

the fusiform gyrus8, in a functionally defined region that is selectively activated in response 

to faces relative to objects9 or scenes10. This region is typically larger and more reliably 

observed in the right fusiform, and is known as the fusiform face area (FFA). This is 

consistent with a wide range of evidence that most aspects of face perception are right-

hemisphere dominant in the human brain8, 11, 12. Further, damage to the right fusiform 

disproportionately impairs face recognition, sometimes even without disturbing other 

stimulus categories13, 14. Given that it is the right fusiform that best responds to faces across 

participants (e.g.8, 15), we chose this region as a testing ground for modeling brain activity as 

a function of structural connectivity.

A purely structural substrate of face-selective cortices has not yet been established, possibly 

due to complications in relating classic approaches of connectivity (such as histological 

tract-tracing) with functional localization in the same individual. However, diffusion 

weighted imaging (DWI), an MRI technique that measures the propensity of water to travel 

along myelinated axons, can be used to estimate brain connectivity in vivo16, 17, which can 

be analyzed alongside fMRI data in the same individual. Using a probabilistic tractography 

algorithm, we defined the connection probability of each right fusiform voxel (seeds) to all 

other anatomically parcellated regions (targets) (see Supplementary Fig. 1,2 for exemplar 

pathways18–20). For the same participants, the functional activation of faces relative to 

scenes for each voxel in the fusiform was calculated. We then analyzed the relationship 

between functional activation in the fusiform and its connection probabilities with the rest of 

the brain, through a multivariate, voxel-by-voxel approach. This approach allowed us to 
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directly test the conjecture that while the locations of face-selective voxels are variable 

across the population, their extrinsic connections vary systematically with function in each 

individual, such that the connection patterns alone can predict functional activation.

Specifically, a least-squares linear regression was used to model the relationship between 

each fusiform voxel’s connection probabilities and its functional activation by using a leave-

one-subject-out cross-validation approach, or LOOCV (Fig. 1a). The resulting model was 

then applied to the remaining participants’ connectivity data, and prediction accuracies were 

tested against two control models and a benchmark model built from a functional group-

average. The group-average is commonly used as a way to build face-selective ROIs in 

fMRI studies21, and thus provides a standard that a connectivity-based method should meet. 

The control models, designed from random permutations and Euclidian distance (see 

Methods), were implemented to evaluate against potential confounds.

In order to assure that the model is not overly fit to the population it was built from, it is 

good practice to design a model built from all the participants in the LOOCV, and apply it to 

a separate pool of observations naïve to the model-building procedure22. We applied such a 

model to an independent group of participants from a separate study. This second group 

provided further examination of the generalizability of the models, since their data were 

acquired with different DWI scan parameters and a different functional task from the first 

group of participants.

Results

Comparisons between connectivity and control models

After an initial analysis determined that the data possessed sufficient structure for its use in 

prediction (Supplementary Table 1), we proceeded to build the connectivity models and 

their controls. A linear regression was trained on the connectivity and fMRI data 

(faces>scenes) for all participants but one, and the model was applied to the remaining 

participant’s connectivity data to make predictions of this participant’s fMRI data in the 

right fusiform gyrus; this was done iteratively across all participants. We calculated the 

absolute error (AE) per voxel as the difference between the predicted and actual fMRI 

images, and mean absolute error (MAE) as a measure of accuracy. Table 1 summarizes the 

MAE’s for each model.

Next, we performed random permutation tests23 to statistically assess the performance of the 

connectivity model. We built models designed from the same data but with shuffled pairings 

between connectivity and functional responses, and by repeating this process 5000 times, we 

generated a distribution of accuracies from random models for each individual. Relative to 

this distribution, the connectivity models successfully predicted functional selectivity across 

voxels in 22 out of 23 participants’ fusiform gyri at a threshold of P < 0.001.

The distance from a seed voxel to a target region may potentially bias the connection 

estimates, since local connections are believed to be more probable than distant ones24, 25. In 

addition, the lateral wall of the fusiform gyrus tends to be face-selective while the medial 

wall more scene-selective. The connectivity model could therefore rely on the relative 
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distance of each voxel to each target, which is basically a high-dimensional spatial 

coordinate frame. To ensure that the results of the connectivity model were not driven by 

such unintended relationships, we generated distance control models using the same 

LOOCV method. These models were designed identically to the connectivity model, with 

the exception that they used Euclidian distance of the fusiform voxels to other brain regions’ 

center-of-mass, rather than their connectivity. The distance models thus use the same 

number of predictors as the connectivity models and serve as controls for possible 

overfitting.

We directly compared the performance of the connectivity and distance models, both across 

participants (based on MAE) and within participants (based on AE). Across participants, the 

connectivity model was significantly more accurate than the distance model (two-tailed t-

test of connectivity MAE vs. distance MAE, T(22) = −6.44, P = 1.75×10−6). A direct 

comparison of the error per voxel at the individual-subject level revealed that the 

connectivity-based predictions were significantly different from distance in 21/23 

participants at a threshold of P < 0.001, all of which were better predicted by connectivity 

(Fig. 2a).

Comparisons to group-average models

A group analysis was also performed on the whole-brain fMRI data in an iterative LOOCV 

fashion: a random effects test was performed on the contrast images for Faces>Scenes for all 

but one participant (Fig. 1b). We registered the resulting group-average to the native 

anatomical coordinates of the participant left out of the group analysis, and calculated 

prediction errors for the right fusiform. Since group-analyses are standard in neuroimaging, 

they were chosen as benchmark models that connectivity-based predictions should meet or 

exceed in order to be considered useful.

We compared model performance and found that the connectivity-based predictions were 

statistically better than the group-average, across participants (two-tailed t-test of 

connectivity MAE vs. group-average MAE, T(22) = −4.01, P = 5.94×10−4). The 

connectivity model was significantly more accurate than the group-average for 17/23 

participants at P < 0.001, whereas the converse was true for only 2 participants (Fig. 2b and 

Fig. 3). For the remaining 4 participants, the models were not significantly different.

Final connectivity models

The connectivity and distance models generated by Group 1 were then applied to a separate 

group of twenty-one participants, whose connectivity and functional data were naïve to the 

models. These analyses were performed in a similar manner, except that the regressions 

were trained on all the participants in Group 1 (23/23), and applied to each participant in 

Group 2’s connectivity data to produce images of predicted activation. We compared these 

predictions to each participant’s observed fMRI image (Table 1; Fig. 3). The connectivity 

model was significantly more accurate across participants than the distance model (T(20) = 

−6.72, two-tailed t-test, P = 1.53×10−6). The connectivity-based predictions were 

significantly better than distance-based predictions in 18/21 participants at P < 0.001 (Fig. 

2c). The models were not significantly different for the remaining 3 participants.
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A group-average was generated from all participants’ contrast images to Faces>Scenes in 

Group 1 and registered to each participant’s own anatomy in Group 2. Across participants, 

the group-average predictions were significantly less accurate than the connectivity-based 

predictions (T(20) = −4.80, two-tailed t-test, P = 1.08×10−4). Comparing the AE within each 

participant, we found that functional activation was better predicted by connectivity than by 

the group-average-based model in 16/21 participants at P < 0.001. Only one participant’s 

fusiform profile was more accurately predicted by the group-average than by the 

connectivity model, and the models were not significantly different for the remaining 4 

participants (Fig. 2d). The analyses above were repeated for face and scene selectivity in the 

left fusiform with the same results (Supplementary Materials).

In order to investigate which targets made a significant contribution to the final model 

(Table 2), a model built from only those significant predictors (with all other targets’ beta 

weights set to 0) was applied to the structural connectivity data of Group 2. The MAE across 

participants was significantly better than the original connectivity model’s MAE (new 

model’s MAE = 0.683 ± 0.02; P = 0.038), demonstrating the predictive impact of these 

regions. Some of the highest positive-predicting regions were right inferotemporal, lateral 

occipital, and superior temporal, while right lingual and parahippocampal cortices were 

among the highest negative-predicting regions (Fig. 4).

Spatial relationship of function and connectivity

We calculated the center-of-mass to the best face (inferotemporal) and scene (lingual) 

predictors in each participant to visualize the spatial relationship between connectivity and 

function (Fig. 5a). More subject variability was observed in the medial-lateral dimension for 

the positive, and in the anterior-posterior dimension for the negative functional activation; 

we therefore calculated correlations between functional values and connectivity strengths 

along those dimensions respectively. Across participants, centroid locations for face-

responses significantly correlated with the centroid locations of connectivity to 

inferotemporal cortex along the medial-lateral dimension (Fig. 5b, r = 0.46, P = 0.002). That 

is, individual participants who had a more medial center of functional activation to faces 

relative to other individuals, also had a more medial center of connectivity to the 

inferotemporal target region. Similarly, lingual centroids significantly correlated with scene-

centroids along the anterior-posterior dimension (Fig. 5c, r = 0.41, P = 0.005).

To better establish how individual subject variability in connectivity profiles can be 

sensitive to individual subject variability in functional responses, we tested whether 

connectivity patterns of one participant can do better at predicting that participant’s 

functional activation than another participant’s connectivity patterns. Unlike any of the 

analyses above, this relied on identifying the same voxel spatially across participants, so 

each participant in Group 2 was registered to MNI space, and subsequently onto each other 

participant’s native anatomical space. Functional predictions for each participant were then 

made based on each other participant’s connectivity pattern. A participant’s own 

connectivity values were better at predicting their own functional activation than other 

participants’ connectivity values (T(419) = 11.67, paired t-test, P = 0). Thus, the 
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connectivity model is picking up on relationships between functional responses and 

connectivity patterns that capture individual variation.

Discussion

The present study provides evidence of a direct relationship between structural connectivity 

and function in the human brain. Specifically, we demonstrate that the responses to faces 

within an individual’s right fusiform gyrus can be predicted from that individual’s patterns 

of structural connectivity alone. This approach further reveals which targets are most 

influential in predicting function. Voxels with higher responses to faces had characteristic 

patterns of connectivity to other brain regions that distinguished them from neighboring 

voxels with lower responses to faces, or higher responses to scenes.

The connectivity model outperformed the random permutation control, indicating that there 

exists a strong relationship between connectivity and function. Moreover, it outperformed 

the distance control, suggesting that spatial information alone is insufficient for predicting 

functional activity and that connectivity offers information above and beyond the 

topographic information inherently embedded within it (due to the posited small-world 

organization of cortical connectivity24,25). The relationship between function and spatial 

information was highly variable across participants, while the connectivity data was 

consistent across participants in its relationship with the functional responses. When 

compared to the group-average benchmark, a standard method of defining face-selective 

ROIs in fMRI studies, connectivity was a significantly better predictor of the individual’s 

actual activation pattern in over seventy-percent of the participants. One reason that the 

group-average did not successfully predict the activation pattern could be due to the high 

variability of activation loci, relative to the standard template (e.g.26).

While we have treated spatial metrics as potential confounds and controlled for them by 

using distance and group activation models as controls, future studies may build other 

geometric models which do predict inter-subject variability in functional activation. For 

example, detailed models of cortical folding patterns27, myelination28, and/or cortical 

thickness29 may be detectable with MRI and predictive of functional regions. Connectivity 

can provide a complementary source of evidence in some cases, whereas in others it may be 

the only gross morphological marker available.

Despite spatial variability in functional responses, the connectivity model was highly 

accurate across participants. We found that the spatial distribution of face- and scene-

selectivity varies in tandem with connection strength to their most predictive targets. A 

direct analysis of subject-to-subject variability revealed that while each participant’s 

connectivity profile does well at predicting their own functional response, it predicts another 

participant’s functional responses relatively poorly. Overall, the connectivity patterns 

appeared highly sensitive to individual variation in function.

While the results from Group 1 are noteworthy, they could be specific to one dataset22. The 

findings from Group 2 demonstrate that this is not the case: the connectivity model’s 

predictions from Group 1 were much more accurate than both the distance and group-
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average models in over seventy percent of the new group of participants. This result was 

especially remarkable, because the participants in Group 2 had been scanned while 

performing a different functional task. The two tasks differed in the type of stimuli presented 

(1s static images versus 3s movie-clips), type of design (event-related versus block), number 

of runs (1 versus 3), and scan parameters (also see Methods for other differences). Further, 

the structural connectivity measures in this second group were acquired using a DWI 

sequence with half as many gradient directions (30 versus 60), indicating the generalizability 

of the connectivity model across functional tasks and diffusion sequences.

This analysis also reveals the target brain regions for which connectivity with the fusiform is 

most predictive of face- or scene-selective activity in the fusiform. Face-selective fusiform 

voxels were predicted by connectivity with regions that have been previously reported to 

have a role in face processing, such as the inferior and superior temporal cortices (e.g.30, 31). 

Scene-selective voxels, on the other hand, were best predicted by their connectivity to key 

brain areas involved with scene recognition, such as the isthmuscingulate (containing the 

retrosplenial cortex) and the parahippocampal cortex10, 32, 33. Unlike functional 

connectivity, structural connectivity models are naïve to the functional responses of the 

target regions. Therefore, a region need not be category selective to be connected (and 

predictive of) selective voxels in the fusiform. For example, unexpected predictors of face 

selectivity were also discovered, such as the cerebellar cortices. Even though the cerebellum 

is not commonly considered as part of the “core” or “extended” face processing 

network3, 30, 34, tracer35–37 studies have revealed disynaptic connections with extrastriate 

visual cortices via pons, which tractography is able to reconstruct (see Supplementary Fig. 

1,2), and is corroborated by functional connectivity38. Future studies may explore these 

relationships to further expand on the role of functional responses in components of a 

structural network. Novel structure-function relationships could be investigated in macaques 

with functional and connectivity data, and subsequently validated more directly through 

more invasive techniques involving tracer injections (e.g.39 ,40).

The final connectivity model also provides a framework with which to evaluate the impact 

of the most predictive targets and their spatial distribution. The model built from only the 

significantly predictive targets resulted in more accurate predictions than the predictions 

based on all of the target regions. While some of the best predictors from this model were 

nearby regions, most of them were distant to the fusiform; additional analyses excluding the 

fusiform’s neighbors (Supplementary Materials) revealed that while proximal targets are 

part of the fusiform’s network, they do not fully account for the connectivity model’s 

performance. Altogether, a distributed network of brain regions characterizes category-

specific visual processing in the fusiform gyrus.

The connectivity fingerprint has practical applications, both for defining ROIs independently 

of a task, and also for exploring group differences in structural connectivity signatures. 

Researchers or clinicians can apply the relationships discovered here to predict functional 

activation at the single-subject level in populations who do not or cannot have a functional 

localizer, and should expect that this will be a more accurate prediction than group-based 

methods. The connectivity model provided here can also be directly compared to a 

connectivity model built from participants with specific lesions or conditions. For instance, 
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compromised structural connectivity in congenital prosopagnosics has previously been 

suggested to play a role in their deficits of face-recognition, in light of their surprisingly 

normal functional activation in the fusiform41. This type of analysis can shed light on which 

components (if any) of the fusiform connectional fingerprint are altered or compromised in 

individuals with congenital prosopagnosia. A similar analysis can be used to explore 

possible substrates of face-processing differences in autism, normal development, and aging.

Future studies can also extend the present methods to other brain regions and contrasts that 

are commonly used as functional localizers, such as retinotopy in visual cortices, scene-

selectivity in the parahippocampal place area10, or expression-specificity in the superior 

temporal sulcus. In some cases, more complex or nonlinear approaches might better capture 

the relationship of connectivity and function. We implemented a linear fit in order to provide 

more parsimonious interpretations and to establish the feasibility of modeling structure-

function relationships. Since these relationships are probably not strictly linear in a complex 

system such as the brain (Supplementary Fig. 3), future work can expand these findings, 

creating better models, and elucidating a more detailed relationship between connectivity 

and function. Additionally, voxel-to-voxel tractography may help to more finely 

characterize the structure-function relationships identified here.

These findings open a window into the coupling between structural and functional 

organization in the brain. The operations of a brain region are determined by both its 

intrinsic properties (i.e., cytoarchitecture) that likely determine the operations that it can 

perform, and the extrinsic connectivity that defines the input/output relations of that brain 

region. Neuroimaging can relate localized functions (via fMRI) to input/output patterns of 

cortical connectivity (via probabilistic tractography) in an individual. The present findings 

demonstrate that brain structure/function relations can be defined for category-selective 

functional activation.

Methods

Participants

For Group 1, twenty-three participants were recruited from the greater Boston area between 

the ages of 19 and 42 (mean age = 27.9 ± 1.06, 12 female). Group 2 included twenty-one 

participants between the ages of 19 and 44 (mean age = 26.9 ± 1.45, 13 female) and were 

similarly recruited. Both groups of participants were screened for history of mental illness 

and were compensated at $30/hr. The studies were approved by the Massachusetts Institute 

of Technology and Massachusetts General Hospital ethics committees.

Acquisition parameters for Group 1

DWI data were acquired using echo planar imaging (64 slices, voxel size 2×2×2mm, 

128×128 base resolution, diffusion weighting isotropically distributed along 60 directions, 

b-value 700s/mm2) on a 3T Siemens scanner with a 32 channel head-coil42. A high 

resolution (1mm3) 3D magnetization-prepared rapid acquisition with gradient echo 

(MPRAGE) scan was acquired on these participants.
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We acquired event-related fMRI data (gradient echo sequence TR/TE/flip/volumes/voxel 

size = 2000ms/30ms/90°/324/3.1×3.1×4mm) while the same participants viewed color 

images of faces or scenes while performing a 1-back task by responding each time a 

stimulus repeated. Face stimuli43 consisted of neutral and emotional faces (angry, disgusted, 

and happy). Scene stimuli were all neutral outdoor and indoor scenes44 (http://cvcl.mit.edu/

database.htm). Face and scene stimuli were ordered using optseq245 (http://

surfer.nmr.mgh.harvard.edu/optseq), an optimization program for jittering trials in event-

related experiments.

Acquisition parameters for Group 2

DWI acquisition parameters for Group 2 were different, with 30 directions of diffusion, 64 

slices, voxel size 2×2×2mm, 128×128 base resolution, b-value 700s/mm2, but were acquired 

on the same scanner with the same 32 channel head-coil as Group 1. A high-resolution 

(1mm3) 3D magnetization-prepared rapid acquisition with gradient echo (MPRAGE) scan 

was also acquired on these participants.

Stimuli for the functional MRI consisted of 3-second movie clips of faces, bodies, scenes, 

objects, and scrambled objects. Movies of faces and bodies were filmed against a black 

background, and framed to reveal just the faces or bodies of seven children, shown one at a 

time. Scenes consisted primarily of pastoral scenes filmed through a car window while 

driving slowly through the countryside or suburb. Objects were selected specifically to 

minimize any suggestion of animacy of the object itself or of an invisible actor pushing the 

object. Scrambled object clips were constructed by dividing each object movie clip into a 

15×15 box grid and spatially rearranging the location of each of the resulting boxes. Pilot 

testing indicated that a contrast of the response for moving faces versus moving objects 

identified the same FFA as that identified in a standard static localizer. Further studies in 

adults show that the FFA responds similarly to movies of faces as to static snapshots of 

faces46.

Functional data were acquired over four block-design functional runs (gradient echo 

sequence TR/TE/flip/volumes/voxel size = 2000ms/30ms/90°/234/3×3×3mm). Each 

functional run contained three 18-second fixation blocks at the beginning, middle, and end 

of the run. During these blocks, a series of six uniform color fields were presented for three 

seconds each. Each run additionally contained two sets of five consecutive stimulus blocks 

(faces, bodies, scenes, objects, or scrambled objects) sandwiched between these rest blocks, 

resulting in two blocks per stimulus category per run. Each block lasted 18 seconds and 

contained six 3-second movies clips from each of the five stimulus categories. The order of 

stimulus category blocks in each run was palindromic and specific movie clips were chosen 

randomly to be presented during the block. Participants were asked to passively view the 

stimuli.

fMRI analysis

For Group 1, functional neuroimaging data were analyzed using Statistical Parametric 

Mapping software (SPM8, Wellcome Department of Cognitive Neurology, London, UK). 

Preprocessing included slice timing correction, motion correction and linear trend, and 
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temporal filtering with a 128s cutoff. The images were not spatially normalized. Statistical 

parametric maps (SPMs) of BOLD activation were created using a multiple regression 

analysis, with regressors defined for the five stimulus categories (neutral, angry, disgusted, 

happy faces, and scenes). Boxcar functions for each trial type were convolved with a 

canonical double-γ hemodynamic function (SPM8, www.fil.ion.ucl.ac.uk/spm) to generate 

each regressor. The resulting maps were spatially smoothed with a 6-mm Gaussian kernel 

(FWHM), and the t-statistic image was generated per participant for the contrast of 

Faces>Scenes.

Group 2‘s data were analyzed with FSL software (www.fmrib.ox.ac.uk/fsl/). Image 

preprocessing was similar to Group 1: images were motion corrected, smoothed (5mm 

FWHM Gaussian kernel), detrended, and were fit using a γ function (δ = 2.25 and τ = 1.25). 

Data were not spatially normalized. Statistical modeling was then performed using a GLM 

on the preprocessed functional images. Next, t-maps corresponding to the contrast of interest 

for Faces>Scenes was overlaid on each participant’s high-resolution anatomical image.

For both groups, each participant’s functional image for the Faces>Scenes contrast was 

registered to his/her diffusion-weighted image. Because we were interested in predicting 

relative activation values which were independent of task-specific parameters such as the 

degrees of freedom, we standardized the T-statistic values (x) across the fusiform gyrus per 

participant. This detrending was performed for each participant j, such that the mean value 

in the fusiform was subtracted from each voxel’s fMRI value (xij) and divided by the 

standard deviation. The standardized value per fusiform voxel (xzij) of participant j was then 

used for the subsequent regression models.

Tractography

Automated cortical and subcortical parcellation was performed with FreeSurfer47, 48 to 

define specific cortical and subcortical regions in each individual’s T1 scan, based on the 

Desikan-Killiany atlas49. Automated segmentation results were reviewed for quality control, 

and were then registered to each individual’s diffusion images, and used as the seed and 

target regions for fiber tracking. The resulting cortical and subcortical targets were then 

checked, and corrected for automatic parcellation/segmentation errors if necessary. There 

was one seed region per participant, and the 85 target regions were defined as all other 

automatic parcels, not including the seed. The principal diffusion directions were calculated 

per voxel, and probabilistic diffusion tractography was carried out using FSL-FDT17, 50 with 

25,000 streamline samples in each seed voxel to create a connectivity distribution to each of 

the target regions, while avoiding a mask consisting of the ventricles.

Regressions

All analyses were performed on subject-specific anatomy, rather than extrapolation from a 

template brain, except for the group-average models. It is important to note that for the 

regression models, each observation was an individual voxel in native-space and there was 

no identifying or matching of spatial location of voxels across participants. Further, the 

model was blind to the participant each voxel belonged to.
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On Group 1, we built a regression model using a leave-one-subject-out cross-validation 

(LOOCV): the model was trained to predict the standardized fMRI value for each native-

space fusiform voxel based on connectivity data concatenated across 22/23 participants, and 

tested using the remaining participant’s data (Fig. 1a). This was performed iteratively for all 

participants. For Group 2, the analyses were performed in a similar manner, except that the 

regressions were performed on all the participants in Group 1 (23/23), and simply applied to 

each participant in Group 2’s connectivity data to produce an fMRI image of predicted 

activation. This was then compared to the participants’ own observed fMRI images, and 

MAE’s were calculated.

Using the same LOOCV method, we trained a regression model to predict T-values of 

fusiform voxels based on each voxels’ physical Euclidian distance to each other target 

region’s center-of-mass, rather than each voxel’s connection probability to each target 

region. In this way, both the connectivity and distance models had the same number of 

dimensions, and were generated identically except for the information present in each 

model. We also considered other 85-dimensional spatial metrics, such as distance to the 

nearest voxel of each target, and found that these measures were highly similar to the 

present one. We applied the regression coefficients from the distance model generated from 

all Group 1 participants to each participant in Group 2, as described for the connectivity 

model.

We created random distributions by training models using the observed fMRI images and 

connection probabilities, but by randomizing the voxel data. We permuted across 5000 

random combinations of connection probability to fMRI activation values per participant, 

and thus obtained a distribution of random MAE per participant. We then performed a one-

tailed t-test to determine if the mean of the participant’s random distribution was 

significantly greater than the same participant’s MAE for connectivity-based predictions.

Each participant’s functional data were spatially normalized into MNI space with FSL and 

FreeSurfer, checked and corrected for registration errors, and superimposed to create 

composite maps. For Group 1 cross-validation, we performed LOOCV: a random effects test 

on whole-brain fMRI data was performed with SPM8 on the contrast images for 

Faces>Scenes from all but one participant. The resulting t-statistic image, which was based 

on all the other participants in normalized space, was applied to the participant left out of the 

group analysis, and registered back into his/her native-space. We analyzed only the right 

fusiform gyrus in comparing what the group-average predicted to that participant’s actual 

fMRI image using measures of MAE (Fig. 1b).

For Group 2, we created the group-average fMRI image using the same method above, but 

from all Group 1 participants’ observed (actual) fMRI images. This fMRI image was 

mapped on to each participant in Group 2’s native-space coordinates, and compared to that 

participant’s observed fMRI pattern.

Accuracy and benchmark comparisons

As a measure of accuracy, we measured the absolute error per voxel (AE, reported in 

standardized units, s.u.) per participant, by calculating the absolute difference between the 
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predicted and actual values. To statistically compare the performance of the connectivity 

model to the random and benchmark models, we performed a pairwise t-test per participant 

across all their fusiform voxels. A criterion threshold of P < 0.001 was used to report the 

number of participants whose activation pattern was better predicted by one model versus 

another. Mean absolute error (MAE) was also calculated per participant for each model by 

averaging the AE across the fusiform voxels. A two-tailed Student’s t-test of the MAE’s per 

participant was then used to compare models, with the same threshold (P < 0.001) to decide 

which model’s predictions were significantly better.

Spatial relationship of function and connectivity

We registered the connectivity data for the right inferotemporal and lingual targets to the 

native-space anatomical image of each participant in Groups 1 and 2, and projected these 

data to each participant’s native surface vertices using FreeSurfer. The functional data were 

similarly projected to the surface. We calculated the center-of-mass for the targets with 

respect to a reference frame fixed at the center-of-mass for each participant’s fusiform gyrus 

(also on the surface). After partitioning the functionals into positive and negative values, we 

similarly calculated their centers of mass with respect to the fusiform. We observed more 

subject variability in the medial-lateral dimension for the positive, and anterior-posterior 

variability for the negative functionals, and therefore calculated correlations between 

functional values and connectivity strengths along those dimensions respectively. Since both 

functional and connectivity centers of mass were calculated with respect to the subject’s 

own fusiform, the correlations were not biased by cross-subject variability in the boundaries 

between the seed region and the predictive regions.

For the direct analyses of individual subject variation, we registered each Group 2 

participant’s connectivity data to MNI space, and subsequently onto each other participant’s 

brain, using FreeSurfer and FSL registration tools. We then applied the final model designed 

from Group 1 to both the original participant’s and registered participant’s connectivity 

values. This was done for all combinations of participant pairs (420). We then compared the 

MAE’s from predictions built from each participant’s own connectivity with those built 

from another participant’s connectivity across all participants in Group 2. All of the above 

predictions were restricted to those voxels that overlapped between the original and 

registered participants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic model design
(a) Linear regression models were trained on all but one participant’s data in Group 1. The 

22 participants’ fMRI data for each voxel in the fusiform gyrus are depicted by circles that 

are color-coded from red to blue, representing their responses to the contrast of Faces 

>Scenes). Each voxel’s corresponding connection probabilities (for the connectivity model) 

or Euclidian distances (for the distance model) to each target brain region are depicted by 

the grayscale circles. The fMRI data and connectivity or distance data from each fusiform 

voxel for the 22 participants are used to train the model, and the resulting model, f(x), is 
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applied to the remaining participant’s connectivity or distance data, resulting in predicted 

fMRI values for each fusiform voxel. The predicted values are then compared to that 

participant’s observed fMRI values and the mean absolute error (MAE) is calculated for 

each participant. The LOOCV is done iteratively through all the participants, such that each 

participant has a predicted fMRI image based on a regression from all the other participants. 

(b) Similarly, a LOOCV procedure was also performed for the group-average model, but 

rather than training a linear regression, each participant’s whole-brain fMRI data was 

spatially normalized into MNI space, superimposed to create composite maps, and a t-static 

image was generated for the random-effects analysis. This image was registered to the 

remaining participant’s native-space, and only the fusiform gyrus was extracted. This 

predicted activation based on a group analysis was then compared to that participant’s 

observed activation, and an MAE was computed per voxel.
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Figure 2. 
Benchmark comparisons per participant. MAE’s from the connectivity-based predictions are 

plotted against distance or group-average MAE’s for each participant. Participants above the 

unity line thus have higher (worse) MAE’s for the benchmark than for the connectivity-

based model. Colors reflect the difference between the connectivity-based model and the 

benchmark; hotter colors indicate better performance of the connectivity-based model. (a) 

For 21/23 participants in group 1, the distance-based predictions had higher (worse) MAE’s 

than connectivity-based predictions, and no participants’ functional activation was better 

predicted by distance than by connectivity. (b) The connectivity-based model predicted 

actual fMRI activation with fewer errors than the group-average for 17/23 participants, 

while 2 participants’ functional activation was better predicted by the group-average than by 

connectivity. (c) For 18/21 participants in group 2, connectivity-based predictions better 
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predicted actual activations than distance-based predictions, while no participants’ 

functional activation was better predicted by distance than by connectivity. (d) 16/21 

participants from group 2 had lower MAE’s with the connectivity model, while 1 participant 

had lower MAE’s with the group-average model.
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Figure 3. 
Actual and predicted fMRI activation to Faces>Scenes in the fusiform gyrus of five example 

participants. For each participant, actual and predicted activation images (t-statistic values 

for Faces>Scenes) were up-sampled from the DWI structural image (where all the analyses 

were performed) to the same participant’s structural scan, and projected onto the 

participant’s inflated brain surface. Each row is a single participant; the leftmost column 

displays the actual fMRI activation pattern in the right fusiform gyrus. The remaining 

columns illustrate, from left to right, predicted fMRI images from: connectivity, group-

average, and distance.
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Figure 4. 
Beta weights for each target region from the final connectivity model. Target regions are 

color-coded from hot-to-cold to reflect positive or negative beta weight values, and 

projected to the pial surface of an example participant, with the lateral view on the top row, 

medial view on the second row, and ventral view on the bottom. The highest predictors of 

face-selective voxels are regions labeled from red-to-yellow, while the highest predictors of 

scene-selective voxels are those labeled from blue-to-light blue. The seed region is 

highlighted in purple. See Results for the anatomical nomenclature of the target regions.
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Figure 5. Spatial relationship of function with connection strength to the highest predictors
(a) Functional activation of an example participant, with the thresholded boundaries of 

inferotemporal connectivity overlaid in dark red, and boundaries of lingual connectivity 

overlaid in dark blue. (b) Each participant’s center-of-mass of connectivity to 

inferotemporal is plotted against their center-of-mass of positively-responding voxels, along 

the medial-lateral dimension, along which each participant’s connectivity varies alongside 

face-selectivity. (c) Centroids of lingual connectivity, plotted against centroids of 

negatively-responding voxels, along the anterior-posterior dimension. Solid lines in b and c 
are the least-square fits of these data, and dashed lines are their 99% confidence intervals.
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Table 1

Mean absolute error ± s.e. in standard units for voxels in the fusiform gyrus across subjects for models based 

on connectivity, distance, their mean permutations, and group-average.

Group 1 Group 2

Connectivity 0.65 ± 0.013 0.68 ± 0.019

 Permutation 0.77 ± 0.008 N/A

Distance 1.06 ± 0.066 1.05 ± 0.051

Group-average 0.78 ± 0.031 0.82 ± 0.039
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