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Abstract: For stable and effective control of the sensor system, analog sensor signals such as
temperature, pressure, and electromagnetic fields should be accurately measured and converted to
digital bits. However, radiation environments, such as space, flight, nuclear power plants, and nuclear
fusion reactors, as well as high-reliability applications, such as automotive semiconductor systems,
suffer from radiation effects that degrade the performance of the sensor readout system including
analog-to-digital converters (ADCs) and cause system malfunctions. This paper investigates an optimal
ADC structure in radiation environments and proposes a successive- approximation-register (SAR)
ADC using delay-based double feedback flip-flops to enhance the system tolerance against radiation
effects, including total ionizing dose (TID) and single event effects (SEE). The proposed flip-flop was
fabricated using 130 nm complementary metal–oxide–semiconductor (CMOS) silicon-on-insulator
(SOI) process, and its radiation tolerance was measured in actual radiation test facilities. Also,
the proposed radiation-hardened SAR ADC with delay-based dual feedback flip-flops was designed
and verified by utilizing compact transistor models, which reflect radiation effects to CMOS parameters,
and radiation simulator computer aided design (CAD) tools.
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1. Introduction

In order to control the sensor system stably and effectively, it is necessary to accurately
diagnose and control the sensor environments by measuring signals such as temperature, pressure,
and electromagnetic field. Various sensor signals are measured and converted from analog signals to
digital bits in the sensor front-end readout system. Figure 1 shows a sensor front-end readout system
that includes an amplifier that amplifies the measured analog signal, a filter that filters out unwanted
noise signals, and an analog-to-digital converter (ADC) that converts the analog signal into digital
bits. In particular, the ADC, which typically requires high resolution, plays a key role in directly
determining the accuracy and reliability of the system. If the ADC circuit cannot convert the measured
signals into accurate digital signals due to external influences, it will seriously degrade the stability,
accuracy, and efficiency of the system, even resulting in system malfunctions.
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paper proposes a radiation-hardening by design (RHBD) technique, especially for the ADC circuit, 
which can be accompanied by RHBS and RHBP to maximize the radiation tolerance in 
semiconductor systems. 
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transistors and generate electron-hole pairs, leading the generated holes to be trapped in the gate 
oxide. TID effects are long-term exposure, gradually changing the threshold voltage and leakage 
current of CMOS transistors, which mainly affect the performance of analog circuits. SEE is an 
instantaneous disturbance that disrupts the circuit operation when high energy particles impact the 
CMOS transistor in a moment, which instantaneously changes the voltages at surrounding nodes. 
SEE mainly affects digital, memory, and switched capacitor circuits, in which voltage values can be 
flipped or changed. Therefore, the ADC used in radiation environments requires tolerance against 
both TID and SEE.  

The rest of this paper is organized as follows. Section 2 analyzes the radiation-hardened ADC 
structures and explains how to enhance radiation tolerance in the proposed ADC. Section 3 
proposes the radiation-hardened flip-flop using delay-based dual feedback loops. Section 4 shows 
the measurement results of the proposed flip-flop tested in the actual radiation test facilities and 
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Figure 1. Block diagram of the sensor front-end readout system in radiation environments.

Since the ADC consists of analog circuits that are sensitive to parameter variations, its performance
can easily change due to external interferences such as temperature, process variations, and radiation
effects. In particular, performance degradation of the ADC due to radiation effects leads to a major
problem in system control. Typical radiation environments include flight, space, nuclear power plants,
and nuclear fusion reactors [1]. In recent years, radiation effects have also become an important issue
in systems that require high reliability in extreme environments, such as automotive semiconductor
systems [2]. For radiation-hardened circuits and systems, radiation-hardening-by-shielding (RHBS)
and radiation-hardening-by-process (RHBP) have been mainly studied, but RHBS is constrained
by size, weight, and price, while RHBP is constrained by price and performance when applied to
semiconductor systems. Therefore, this paper proposes a radiation-hardening by design (RHBD)
technique, especially for the ADC circuit, which can be accompanied by RHBS and RHBP to maximize
the radiation tolerance in semiconductor systems.

The effects of high energy particles from radiation sources, such as neutrons and alpha particles,
on CMOS integrated circuits, can be categorized into total ionizing dose (TID) and single event effect
(SEE) [3–5]. TID occurs when high energy particles penetrate through the CMOS transistors and
generate electron-hole pairs, leading the generated holes to be trapped in the gate oxide. TID effects are
long-term exposure, gradually changing the threshold voltage and leakage current of CMOS transistors,
which mainly affect the performance of analog circuits. SEE is an instantaneous disturbance that
disrupts the circuit operation when high energy particles impact the CMOS transistor in a moment,
which instantaneously changes the voltages at surrounding nodes. SEE mainly affects digital, memory,
and switched capacitor circuits, in which voltage values can be flipped or changed. Therefore, the ADC
used in radiation environments requires tolerance against both TID and SEE.

The rest of this paper is organized as follows. Section 2 analyzes the radiation-hardened ADC
structures and explains how to enhance radiation tolerance in the proposed ADC. Section 3 proposes the
radiation-hardened flip-flop using delay-based dual feedback loops. Section 4 shows the measurement
results of the proposed flip-flop tested in the actual radiation test facilities and verification results of
the proposed radiation-hardened ADC using radiation simulator CAD tools and compact transistor
models. Finally, Section 5 remarks on conclusions.

2. Radiation-Hardened ADC Structure

ADCs have various structures, such as flash ADC, pipelined ADC, successive-approximation-
register (SAR) ADC, and sigma-delta ADC, depending on the operation method and required
performance. Figure 2 shows various ADC structures depending on sampling rate and resolution.
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ADC performance used in typical sensor systems (temperature, pressure, magnetic fields, etc.) requires
more than a 10-bit resolution and sampling rate above tens of kHz.
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and resolution.

Flash ADCs have a high sampling rate but have limited resolution around 6–7 bit. Also, since a
large number of comparators are used, ADC performance may be greatly degraded due to transistor
variations caused by TID [6]. Pipelined ADCs can achieve high resolution, but performance can be
degraded by TID because multiple amplifiers and comparators are used in its multi-stage structure [7].
Sigma-delta ADCs also offer very high resolution but are still affected by TIDs because of a large
number of amplifiers and integrators [8].

SAR ADCs can realize the high resolution of 10 bit or above, while its sub-blocks can be mostly
implemented with digital circuits, which is relatively robust to TID [9]. The flip-flops or capacitors
used in conventional SAR ADCs may be vulnerable to SEE, but it can be addressed by adopting the
proposed radiation-hardened flip-flops and SAR ADC structure. Table 1 summarizes the performances
required for sensor readout systems, such as resolution, sampling rate, TID tolerance, and SEE tolerance,
depending on ADC structures.

Table 1. Performance comparison of various ADC structures against total ionizing dose (TID) and
single event effect (SEE).

ADC Structure Flash Pipelined Sigma-Delta SAR

High Resolution X O O O
High Sampling Rate O O X ∆

TID Tolerance X X X O
SEE Tolerance O O ∆ ∆

O: satisfied, ∆: moderate, X: not satisfied.

In this paper, the design target of the radiation-hardened ADC is to convert magnetic sensor
signals in the nuclear fusion reactor into digital data. For this purpose, the ADC requires a high
resolution of 10 bit and a sampling rate of 25 kS/s while consuming low power below 1 mW. Therefore,
we selected the SAR ADC as a radiation-hardened ADC structure and proceeded with the following
additional designs to enhance radiation-hardened performance. Figure 3 shows the block diagram of
the proposed radiation-hardened SAR ADC.

1. Digital-to-analog converter (DAC): A capacitor DAC commonly used in SAR ADCs can
significantly reduce the accuracy due to voltage changes in capacitors caused by SEE. Therefore,
this paper adopts a resistor-type DAC that can be robust to SEE.
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2. Sample-and-hold circuit (S/H): The sampling capacitor was set as large as possible within a given
operation speed to minimize the voltage changes in capacitors due to SEE.

3. Comparator: A strong-arm digital comparator, which is robust against transistor variations by
TID, is used [10]. The input stage utilizes both n-channel metal-oxide-semiconductor (NMOS) and
p-channel metal-oxide-semiconductor (PMOS) pairs to have a wide input range. Also, the TID
monitoring function inside the comparator automatically measures Vth variation in transistors
and adjusts the gate voltage to compensate for TID on transistors [11].

4. SAR logic: Conventional flip-flops used in the SAR logic circuit suffer from data flip due to SEE,
which leads to soft errors [12]. To reduce the soft error rate, the proposed radiation-hardened
flip-flops were adopted in the SAR logic circuit.
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3. Radiation-Hardened Flip-Flop with Delay-Based Dual Feedback Loops

3.1. Limitations of Conventional Flip-Flops

Figure 4 shows a basic flip-flop made with latches in a cross-coupled inverter structure. When the
clock (CLK) is low, the slave latch stores data while the master latch receives the incoming data.
However, this structure has a limitation that the stored data value can be changed by instantaneous SEE.
Dice latches and Quatro latches, which are robust to soft errors because it utilizes four memory nodes,
have been proposed to improve SEE tolerance, but these structures suffer from the racing issue [13].
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Figure 4. Schematic diagrams of (a) conventional latch and (b) conventional flip-flop.

In order to solve the racing problem and enhance radiation tolerance, a latch with dual feedback
structure has been proposed as shown in Figure 5a [14]. In this structure, soft errors occurring at QB1
and QB2 nodes do not affect the stored values when latched, but Q nodes are still vulnerable to soft
errors, leading to data flip. As shown in the timing diagram in Figure 5b, when SEE occurs at the Q
node, the instantaneous glitch temporarily activates the pull-up or pull-down path of the feedforward
inverter by changing the voltage at the QB1 and QB2 nodes simultaneously. In this case, a significant
amount of charge is injected into the Q node through a pull-up or pull-down path, resulting in data flip.
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3.2. Proposed Radiation-Hardened Flip-Flop

The proposed radiation-hardened latch adjusts the delay time of the feedback path by adding the
delay cell to the 1st feedback inverter output as shown in Figure 6a. As a result, the first feedback path
of the dual feedback loops has a longer delay time than the second feedback path. The timing diagram
in Figure 6b clearly shows why the proposed radiation-hardened latch structure is robust to soft errors.
Even if SEE occurs at the Q node of the proposed latch and instantaneous glitch occurs, the pull-up or
pull-down path of the feedforward inverter is still not activated due to the delay difference between
the first and second feedback paths. As a result, no additional charge is transferred to the Q node
through the feedforward inverter, and the voltage value of the Q node can be recovered quickly.
The radiation-hardened performance of the proposed latch is pre-verified by the process, voltage,
and temperature (PVT) corner simulation below. It should be noted that the proposed flip-flop has
roughly 60% penalties with respect to setup time and hold time due to feedback delays as well as
additional stacked transistors, which are still applicable in sensor readout systems operating at a
moderate speed (e.g., <MHz).



Sensors 2020, 20, 171 6 of 14Sensors 2019, 11, x FOR PEER REVIEW  6 of 14 

 

  
(a) (b) 

Figure 6. (a) Proposed radiation-hardened latch with delay-based dual feedback loops, (b) Timing 
diagram when the soft error occurs. 

In the extreme case when SEE occurs simultaneously at QB1 and QB2 in both conventional lath 
and proposed lath, the data values stored in Q can be flipped. However, since SEE is instantaneous 
radiation effects affecting in very short time periods, the probability of SEE occurrence at both QB1 
and QB2, which leads to data flip in Q, is very small. 

Figure 7 shows the simulation results between the feedback delay and the minimum SEE charge 
causing data flipping. The flip-flop with shorter feedback delay suffers from insufficient recovery 
time, leading to smaller Qflip, which means the data flipping errors can happen with smaller SEE 
charge. In addition, the flip-flop needs to operate within ADC operation speed, limiting the 
maximum feedback delay. In our design, we set the feedback delay as 0.4 ns considering those 
requirements. 

 
Figure 7. Simulated SEE charge (Qflip) causing data flip in the proposed flip-flop vs. delay. 

3.3. Radiation-Hardened Flip-Flop Comparison 

In order to compare the radiation-hardened performance of the proposed delay-based dual 
feedback latch (Figure 6) with the conventional latch (Figure 4) and the conventional dual feedback 
latch (Figure 5), critical charge (Qcrit), which represents the amount of externally injected charge 
when data is flipped, was compared. A double exponential current model was used for the Qcrit 
simulation [15]. A certain amount of charge pulses was injected into the Q node, which was the most 
vulnerable node to SEE, and the node voltages were observed to check whether the data was 
flipped. For a fair comparison, Q nodes of all latches were set to have the same parasitic capacitance. 

Figure 8 summarizes the simulation results for critical charges at various process and 
temperature corner conditions. In general, it can be observed that the slow-slow (SS) corner (slow 
NMOS and slow PMOS) with the slower transistor mobility results in data flip when the smaller 
critical charge is injected. The reason is that the charge injected into the Q node has to be discharged 

Figure 6. (a) Proposed radiation-hardened latch with delay-based dual feedback loops, (b) Timing
diagram when the soft error occurs.

In the extreme case when SEE occurs simultaneously at QB1 and QB2 in both conventional lath
and proposed lath, the data values stored in Q can be flipped. However, since SEE is instantaneous
radiation effects affecting in very short time periods, the probability of SEE occurrence at both QB1 and
QB2, which leads to data flip in Q, is very small.

Figure 7 shows the simulation results between the feedback delay and the minimum SEE charge
causing data flipping. The flip-flop with shorter feedback delay suffers from insufficient recovery
time, leading to smaller Qflip, which means the data flipping errors can happen with smaller SEE
charge. In addition, the flip-flop needs to operate within ADC operation speed, limiting the maximum
feedback delay. In our design, we set the feedback delay as 0.4 ns considering those requirements.
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3.3. Radiation-Hardened Flip-Flop Comparison

In order to compare the radiation-hardened performance of the proposed delay-based dual
feedback latch (Figure 6) with the conventional latch (Figure 4) and the conventional dual feedback
latch (Figure 5), critical charge (Qcrit), which represents the amount of externally injected charge
when data is flipped, was compared. A double exponential current model was used for the Qcrit
simulation [15]. A certain amount of charge pulses was injected into the Q node, which was the most
vulnerable node to SEE, and the node voltages were observed to check whether the data was flipped.
For a fair comparison, Q nodes of all latches were set to have the same parasitic capacitance.

Figure 8 summarizes the simulation results for critical charges at various process and temperature
corner conditions. In general, it can be observed that the slow-slow (SS) corner (slow NMOS and slow
PMOS) with the slower transistor mobility results in data flip when the smaller critical charge is injected.
The reason is that the charge injected into the Q node has to be discharged through a feedforward
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inverter and restored to its previous state, which takes a longer time to recover in the SS corner,
making it more vulnerable to soft errors. Since the proposed delay-based dual feedback latch has a
shorter recovery time at node Q than conventional latches, it operates normally without data flip even
at higher Qcrit value (based on the SS corner) more than 56% higher than Qcrit of conventional latches.
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Figure 8. Critical charge (Qcrit) comparison at the process and temperature corners with conventional
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Table 2 compares the performance, such as normalized overhead and limitation, of various
radiation-hardened flip-flops along with the proposed one. The overheads, such as power, area,
C-Q (clock-to-output) delay, and D-Q (data-to-output) delay, of each flip-flop were simulated through
circuit CAD tools and normalized by overheads of the conventional flip-flop in Figure 4. The DICE and
Quatro flip-flops adopt inter-locking structures, delivering strong resilience to soft errors [13]. However,
they suffer from large area and power penalties due to their complex interconnection, limiting their
applications. While our proposed radiation-hardened flip-flop requires additional delays in feedback
loops, the overheads are significantly smaller than DICE and Quatro flip-flops.

Table 2. Performance comparison of various radiation-hardened flip-flops.

Flip-Flop Conventional DICE Quatro This Work

Power (norm.) 1 1.9 2.0 1.2
Area (norm.) 1 1.8 2.1 1.3

C-Q Delay (norm.) 1 1.85 1.42 1.41
D-Q Delay (norm.) 1 1.8 1.43 1.4

SEE Tolerance X O O O

4. Measurement Results

4.1. Test Chip Fabrication and Radiation Test Setup

The proposed radiation-hardened flip-flop test chip was fabricated with a 130 nm CMOS SOI
process. Figure 9 shows the test chip photo and layout floorplan. The proposed radiation-hardened
flip-flop is designed as shown in Figure 10 based on the delay-based dual feedback latch (Figure 6).
The test chip included 10,000 proposed radiation-hardened flip-flops and 10,000 conventional latches
(Figure 4) for performance comparison.
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Figure 11 shows a test setup for test chip measurements in the actual radiation test facility.
The control signals for the test chip were generated by using the Altera DE2 board. Since observers
cannot stay in the radiation room during the radiation test, the DE2 board was controlled through
the UART port connected to the external computer. The package lid of the test chip was removed as
shown in Figure 9 because the package lid may result in a shielding effect during the radiation test.
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4.2. Test Chip Verification in Radiation Environments

To verify and compare the flip-flop performance in the radiation environment, the error rates of the
flip-flop outputs were measured when the radiation time was 60 s, 90 s, 120 s, and 150 s. The experiment
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for each radiation time was repeated five times, and the number of measured errors was summed.
Consequently, we could obtain the number of flipping errors for 50,000 flip-flops. For our radiation
test, we use a 45 MeV proton beam gun, which has 22 mm diameter and a 1 nA flux. The distance
between the proton beam gun and our test-chip is 2.5 m, and the effective energy of the proton becomes
41.16 MeV. At this time, each flip-flop operates with a supply voltage of 2.3 V.

The chip verification results are shown in Figure 12. The proposed radiation-hardened flip-flop
shows robust operations with 50–60% fewer soft errors compared to the conventional flip-flop. As the
radiation exposure time increased, conventional flip-flops suffer from a significant increase in the data
flip errors. On the other hand, the proposed radiation-hardened flip-flop shows a relatively smaller
increase in the errors as radiation time increases, verifying tolerance against SEE.
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4.3. Verification of the Radiation-Hardened SAR ADC with the Proposed Flip-Flop

The proposed delay-based dual feedback flip-flop was applied to the radiation-hardened SAR
ADC proposed in Section 2. The SAR ADC was designed in the general 65 m CMOS process to
verify that the proposed flip-flop can be useful in not only the SOI process but also the general CMOS
process. The radiation simulator CAD tool (Silvaco, Santa Clara, CA, USA) was utilized to verify the
ADC performance against SEE [16]. Figure 13 shows the simulated current and voltage waveforms
generated by SEE when the SEE function of the radiation simulator CAD tool is applied to the specific
CMOS transistor. These radiation simulations can be used to verify radiation tolerance and optimize
performance at the circuit design stage.
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In order to verify the SEE performance of the proposed radiation-hardened SAR ADC (Figure 3),
a random SEE was applied to the flip-flop in the SAR ADC. The amount of SEE charge applied to
NMOS and PMOS was set to 34.22 fC and 15.55 fC, respectively, which leads to instantaneous voltage
changes in critical nodes, Qa and Qb, in Figure 10. The SAR ADC with conventional flip-flops was also
designed and simulated under the same conditions to compare the radiation performance.

Figure 14a describes the process for circuit design and simulation considering radiation effects.
Figure 14b–d shows the output error rate of the SAR ADC due to SEE, which represents the difference
between the ideal outputs and the actual outputs when the input voltage is 0.2 V, 0.6 V, and 1 V,
respectively. The X-axis in Figure 14b–d represents the timing of SEE occurrence, which was set before
storing the data of each bit in the flip-flop. Thus, the worst-case happens when SEE is applied at
D9 data (MSB). The SAR ADC with conventional flip-flops suffers from large errors up to several
hundred mV by SEE. However, the radiation-hardened SAR ADC with the proposed flip-flops ensures
that no error occurs at all timings of SEE occurrence. These results demonstrate that the proposed
radiation-hardened SAR ADC with delay-based dual feedback flip-flops improves the radiation
tolerance against SEE.
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Figure 14. (a) Block diagram of the radiation effect simulation process. (b) SEE simulation results of
the radiation-hardened SAR ADC with proposed flip-flops when VIN is 0.2 V. (c) SEE simulation results
when VIN is 0.6 V. (d) SEE simulation results when VIN is 1 V.

Figure 15 shows another dimension of the error voltages in ADC outputs depending on the
amount of SEE charge. The SAR ADC with proposed radiation-hardened flip-flops generates an
output error when the SEE charge exceeds 37.8 fC, while the SAR ADC with conventional flip-flops
generates an output error with SEE charge above 29.25 fC. While the amount of output error voltages
also depends on the timing of SEE occurrence, the proposed flip-flop improves the SEE tolerance in the
SAR ADC.
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timing and (b) when SEE occurs at D0 timing.

Figure 16 shows the simulated output waveforms and fast fourier transform (FFT) spectrum of
the SAR ADC to verify its operation and performance. In Figure 16a, the S/H circuit samples and
holds the input voltage of 0.4 V, and then the SAR ADC sequentially performs bit decision through the
comparator, logic, and DAC, generating digital bits of 0101010101. Figure 16b shows the simulated
128-point FFT spectrum at 25 kS/s to calculate the dynamic performance of the SAR ADC, such as
signal-to-noise-distortion ratio (SNDR), the effective number of bits (ENOB), spurious-free dynamic
range (SFDR), etc. Table 3 summarizes the performance of the proposed radiation-hardened SAR ADC.
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Table 3. Performance of the radiation-hardened SAR ADC.

Specification (Unit) Simulation Results

Architecture SAR
Technology (nm) 65

Supply Voltage (V) 1.2
Input Range (Vp-p) 1.2

Sampling Rate (kS/s) 25
Resolution (bit) 10

SNR (dB) 62.43
THD (dB) -62.3

SNDR (dB) 59.49
SFDR (dB) 63.13
ENOB (bit) 9.59

Power (mW) 0.84

Figure 17 shows the SEE simulation waveforms of the digital comparator in SAR ADC. When
the SEE charge of 30 fC was applied to the tail NMOS transistor, almost the same waveforms at the
comparator output and tail NMOS drain can be observed compared to the normal case, verifying SEE
tolerance. It should be noted that if SEE occurs in the moment of comparison (i.e., at the rising edge of
CLK in Figure 3), the comparator output may change due to SEE. However, the digital comparator
makes a comparison in a very short time, so there is very little chance of soft error due to SEE in
the comparator.
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4.4. Radiation Tolerance of the Proposed Flip-Flop Against Both TID and SEE

To include the TID effects in circuit design, the Berkeley Short-channel IGFET Model (BSIM) 4
spice model was used to identify changes in CMOS transistors against TID. First, to create the BSIM4
spice model, we design the same NMOS and PMOS as a 65-nm CMOS process using 3D Technology
Computer-Aided Design (TCAD) tool. Then, the radiation effect at each Gy level is reflected in the
TCAD-designed NMOS and PMOS with the Victory Device Tool (Silvaco, Santa Clara, CA, USA), and a
graph of voltage and current characteristics are obtained. Finally, the BSIM4 spice model (compact
transistor model) can be extracted by using the obtained I-V curves and applied to the radiation effect
simulation as shown in Figure 14a [17].

The TID effect was applied to the proposed flip-flop using the compact transistor model to
verify the radiation tolerance against the TID. To consider both TID and SEE in model simulation,
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the SEE charge was also applied to the flip-flop using the radiation simulator CAD tool, in addition
to the compact transistor models, and then the amount of flip charge (Qflip), which leads to data flip,
was checked.

Figure 18 shows the Qflip and average power of the flip-flop according to the TID levels. It can be
seen that the proposed flip-flop maintained relatively constant Qflip when the TID level increases up to
1 MGy. This confirms that the TID effects rarely affect the SEE tolerance of the proposed flip-flops.
The average power consumption of the flip-flop increases slightly as the TID level increases. This
results from the increase of leakage currents in transistors by TID effects.
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5. Conclusions

Integrated circuit systems used in flight, space, nuclear power plants, nuclear fusion reactors,
and automotive semiconductors suffer from performance degradation and system malfunction due to
radiation effects. For stable and effective sensor systems, it is essential to improve radiation tolerance
of the core circuit blocks, such as ADCs, by utilizing radiation-hardening by design (RHBD) in addition
to shielding and CMOS process techniques. In this paper, a radiation-hardened delay-based dual
feedback flip-flop was designed, fabricated, and verified in actual radiation environments. In addition,
a radiation-hardened SAR ADC with the proposed flip-flop was also designed, and its performance
and radiation tolerance against TID and SEE were verified by using compact transistor models and
radiation simulator CAD tools.
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